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This document contains derivations of the MSD 〈δx〉2 on some curved sur-
faces. These are checked against what our fix combined with LAMMPS’ fix
langevin produces.

1 Cylinder

On a cylinder the MSD is the combination of a regular 1D MSD along the z-axis
and the 2D MSD along a circle in the other direction. The 1D regular MSD
is obviously given by 〈δz〉 = 2Dt. For the MSD-part associated with diffusion
along the circle we first solve the φ-part of the diffusion equation in cylindrical
coordinates for a density n(φ, t) :

D
1

R2

∂2n

∂φ2
=
∂n

∂t
, n(φ) = n(φ+ 2π)

This equation has a general solution

n(φ, t) =

∞∑
l=0

Al cos (lφ) e−l
2Dt/R2

.

Assuming that the initial distribution of particles is δ-distributed, n(t = 0) =
n0δ(φ)/R, we can find the coefficients Al :

R

∫ φ=2π

φ=0

n0(φ) cos (l′φ) dφ = R

∫ φ=2π

φ=0

∞∑
l=0

Al cos (lφ) cos (l′φ) dφ.

The left term is easily integrated using the δ-property:

R

∫ φ=2π

φ=0

n0(φ) cos (l′φ) dφ = R

∫ φ=2π

φ=0

n0
R
δ(φ) cos (l′φ) = n0

The second term of the integral can be rewritten as

R

∞∑
l=0

Al

∫ φ=2π

φ=0

cos (lφ) cos (l′φ) dφ =

R

∞∑
l=0

Al

∫ φ=2π

φ=0

δll′ cos2 (l′φ) dφ =

{
RπAl, if l > 0

2RπA0, if l = 0
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Thus we find for n(φ, t) that

n(φ, t) =
n0
πR

∞∑
l=0

1

1 + δl0
cos(lφ) exp

[
−l2Dt

R2

]

=
n0
πR

{
1

2
+

∞∑
l=1

cos(lφ) exp

[
−l2Dt

R2

]}

In figure ?? we plot this density for a few times. Since the density evolution is
given by n(φ, t), the probability density function for the position of a particle is
given by p(φ, t) = n(φ, t)/n0 :

p(φ, t) =
1

πR

{
1

2
+

∞∑
l=1

cos(lφ) exp

[
−l2Dt

R2

]}

This probability is normalised with respect to integration over a infinitesimal
ring along the cylinder Rdφ :∫ 2π

0

p(φ, t)Rdφ =

∫ 2π

0

1

πR

{
1

2
+

∞∑
l=1

cos(lφ) exp

[
−l2Dt

R2

]}
Rdφ

=
1

π

{∫ 2π

0

1

2
dφ+

∞∑
l=1

exp

[
−l2Dt

R2

] ∫ 2π

0

cos(lφ)dφ

}

=
1

π

{
π +

∞∑
l=1

exp

[
−l2Dt

R2

] [
1

l
sin(2πl)

]}

=1 +

∞∑
l=1

exp

[
−l2Dt

R2

]
· 0 = 1

To find the MSD we first compute the squared distance between a point
at our intial density configuration, x0 = (R, 0, 0), and an arbitrary point x =
(R cos(φ), R sin(φ), z2) :

r2 = ‖x(φ)− x0‖2 =
(
R2(cosφ− 1)2 +R2 sin2 φ+ z2

)
= 2R2(cosφ− 1) + z2

Now we can compute the mean squared displacement:〈
δx2
〉

=
〈
r2
〉

=
〈
2R2(1− cosφ) + z2

〉
=

∫ 2π

0

(
2R2(1− cosφ) + z2

) 1

πR

{
1

2
+

∞∑
l=1

cos(lφ) exp

[
−l2Dt

R2

]}
Rdφ

=
〈
2R2

〉
−
〈
2R2 cosφ

〉
+
〈
z2
〉

In this case the expectation values only deal with φ-dependence, so both
〈
2R2

〉
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and
〈
z2
〉

remain unchanged. This only leaves
〈
2R2 cosφ

〉
to be computed:

〈
2R2 cosφ

〉
=

1

πR

∫ 2π

0

2R2 cosφ

{
1

2
+

∞∑
l=1

cos(lφ) exp

[
−l2Dt

R2

]}
Rdφ

=
2R2

π

∫ 2π

0

1

2
cosφdφ+

∞∑
l=1

exp

[
−l2Dt

R2

] ∫ 2π

0

cos(lφ) cosφdφ

=
2R2

π

[
0 +

∞∑
l=1

exp

[
−l2Dt

R2

]
πδl1

]
= 2R2 exp

[
−Dt
R2

]
In the last step δl1 is Kronecker’s delta.

The diffusion along the z-direction is not affected by the cylinder, so we have〈
z2
〉

= 2Dt. Combining this with
〈
2R2(1− cosφ)

〉
we find for the mean squared

displacement that〈
δx2
〉

=
〈
z2
〉

+
〈
2R2(1− cosφ)

〉
= 2Dt+ 2R2

(
1− exp

[
−Dt/R2

])
(1)

In the limit of small t we have exp
[
−Dt/R2

]
≈ 1 − Dt/R2 and equation (1)

becomes
〈
δx2
〉
≈ 2Dt+2R2

(
1− 1 +Dt/R2

)
= 4Dt, the familiar expression for

diffusion in a 2D plane.

2 Sphere

For the sphere we also need to solve the diffusion equation, but this time diffusion
in all directions is hindered by the constraint. We therefore solve the diffusion
equation in spherical coordinates (x, y, z) = R(cosφ sin θ, sinφ sin θ, cos θ) :

D

[
1

R2

∂2n

∂φ2
+

1

R2 sin θ

∂

∂θ

(
sin θ

∂n

∂θ

)]
=
∂n

∂t

We can expand the left hand side in terms of spherical harmonics Ylm(θ, φ).
Furthermore, if the initial density n(φ, θ, t = 0) is located at the “north” pole,
n(φ, θ, t = 0) = n0δ(φ)δ(θ)/(sin θR2), then the problem is symmetry in φ and
only the φ-independent spherical harmonics Yl0(θ) contribute. For clarity, we
use the definition

Yl0(θ) =

√
2l + 1

4π
Pl(cos θ),

with Pl(x) Legendre polynomials. If we write n(φ, θ, t) = AlYl0(θ)T (t) the
diffusion equation reduces to an eigenvalue problem:

AlD
1

R2 sin θ

∂

∂θ

(
sin θ

∂Yl0(θ)

∂θ

)
T (t) = −l(l+1)

D

R2
AlYl0(θ)T (t) = AlYl0(θ)T ′(t)

This immediately reveals that T (t) = T0 exp
(
−l(l + 1)Dt/R2

)
, and we choose

to absorb the factor T0 into Al, so we obtain

n(θ, t) =

∞∑
l=0

AlYl0(θ) exp

[
−l(l + 1)

Dt

R2

]
(2)
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This leaves us with the task of finding this coefficient Al, which we do by inte-
grating n(θ, t) multiplied by Yl′0(θ) over the initial condition:

R2

∫ π

θ=0

∫ 2π

φ=0

n(θ, t = 0)Yl′0(θ) sin θdθdφ

=R2

∫ π

θ=0

∫ 2π

φ=0

Yl′0(θ)
n0

R2 sin θ
δ(φ)δ(θ) sin θdθdφ = n0Yl′0(0)

Integrating equation (2) in the same manner results in

n0Yl′0(0) =R2

∫ π

θ=0

∫ 2π

φ=0

∞∑
l=0

AlYl0(θ)Yl′0(θ) sin θdθdφ

=2πR2
∞∑
l=0

Al

∫ π

θ=0

Yl0(θ)Yl′0(θ) sin θdθ

In our convention for spherical harmonics, we have this becomes∫ π

θ=0

Yl0(θ)Yl′0(θ) sin θdθ =
δll′

2π

with δll′ again Kronecker’s delta. Thus we find for the coefficients Al that

n0Yl′0(0) = 2πR2
∞∑
l=0

Al
δll′

2π
→ Al =

n0Yl0(0)

R2

Finally we use the definition for Yl0(θ) to replace Yl0(θ) with
√

(2l + 1)/4π to
obtain

n(θ, t) =
n0
R2

∞∑
l=0

√
2l + 1

4π
Yl0(θ) exp

[
−l(l + 1)

Dt

R2

]

=
n0

4πR2

∞∑
l=0

(2l + 1)Pl(cos θ) exp

[
−l(l + 1)

Dt

R2

]
We can again divide this expression by n0 to obtain the probability distribution
of particles on the sphere:

p(θ, t) =
1

4πR2

∞∑
l=0

(2l + 1)Pl(cos θ) exp

[
−l(l + 1)

Dt

R2

]
(3)

In order to obtain a MSD from equation (3) we again compute the distance
between a point in our initial distribution x0 = R(0, 0, 1) and an arbitrary point
x = R(sin θ cosφ, sin θ sinφ, cos θ) :

‖x− x0‖2 =R2
(
sin2 θ cos2 φ+ sin2 θ sin2 φ+ (1− cos θ)2

)
=R2(sin2 θ + 1− 2 cos θ + cos2 θ) = 2R2(1− cos θ)
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We now again calculate
〈
2R2(1− cos θ)

〉
using equation (3):

〈
δx2
〉

=
1

2π

∫ π

θ=0

∫ 2π

φ=0

(1− cos θ)

∞∑
l=0

(2l + 1)Pl(cos θ)e−l(l+1)Dt/R2

R2 sin θdθdφ

=

∫ π

θ=0

(1− cos θ)

∞∑
l=0

(2l + 1)Pl(cos θ) sin θ exp

[
−l(l + 1)

Dt

R2

]
R2dθ

=R2
∞∑
l=0

(2l + 1) exp

[
−l(l + 1)

Dt

R2

] ∫ π

θ=0

(1− cos θ)Pl(cos θ) sin θdθ

We know recognize in 1 and cos θ the first two Legendre polynomials of cos θ :
P0(cos θ) = 1 and P1(cos θ) = cos θ. Using the substitution u = cos θ then
simplifies the integral to∫ π

θ=0

(1− cos θ)Pl(cos θ) sin θdθ =

∫ 1

u=−1
(1− u)Pl(u)du = [2δl0 − δl1]

We thus have for the MSD that

〈
δx2
〉

=R2
∞∑
l=0

(2l + 1) exp

[
−l(l + 1)

Dt

R2

] [
2δl0 −

2

3
δl1

]
= R2

[
2− 2e−2Dt/R

2
]

=2R2
[
1− e−2Dt/R

2
]

(4)
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