DiscountCurve {RQuantLib}R Documentation

Returns the discount curve (with zero rates and forwards) given times

Description

DiscountCurve constructs the spot term structure of interest rates based on input market data including the settlement date, deposit rates, futures prices, FRA rates, or swap rates, in various combinations. It returns the corresponding discount factors, zero rates, and forward rates for a vector of times that is specified as input.

Usage

DiscountCurve(params, tsQuotes, times)

Arguments

params A list specifying the tradeDate (month/day/year), settleDate, forward rate time span dt, and two curve construction options: interpWhat (with possible values discount, forward, and zero) and interpHow (with possible values linear, loglinear, and spline). spline here means cubic spline interpolation of the interpWhat value.
tsQuotes Market quotes used to construct the spot term structure of interest rates. Must be a list of name/value pairs, where the currently recognized names are:
flat rate for a flat yield curve
d1w 1-week deposit rate
d1m 1-month deposit rate
d3m 3-month deposit rate
d6m 6-month deposit rate
d9m 9-month deposit rate
d1y 1-year deposit rate
s2y 2-year swap rate
s3y 3-year swap rate
s5y 5-year swap rate
s10y 10-year swap rate
s15y 15-year swap rate
s20y 20-year swap rate
s30y 30-year swap rate
fut1fut8 3-month futures contracts
fra3x6 3x6 FRA
fra6x9 6x9 FRA
fra6x12 6x12 FRA
Here rates are expected as fractions (so 5% means .05). If flat is specified it must be the first and only item in the list. The eight futures correspond to the first eight IMM dates. The maturity dates of the instruments specified need not be ordered, but they must be distinct.
times A vector of times at which to return the discount factors, forward rates, and zero rates. Times must be specified such that the largest time plus dt does not exceed the longest maturity of the instruments used for calibration (no extrapolation).

Details

This function is based on QuantLib Version 0.3.10. It introduces support for fixed-income instruments in RQuantLib.

Forward rates and zero rates are computed assuming continuous compounding, so the forward rate f over the period from t1 to t2 is determined by the relation

d1/d2 = exp(f(t2 - t1)),

where d1 and d2 are discount factors corresponding to the two times. In the case of the zero rate t1 is the current time (the spot date).

Curve construction can be a delicate problem and the algorithms may fail for some input data sets and/or some combinations of the values for interpWhat and interpHow. Fortunately, the C++ exception mechanism seems to work well with the R interface, and QuantLib exceptions are propagated back to the R user, usually with a message that indicates what went wrong. (The first part of the message contains technical information about the precise location of the problem in the QuantLib code. Scroll to the end to find information that is meaningful to the R user.)

Value

DiscountCurve returns a list containing:

times Vector of input times
discounts Corresponding discount factors
forwards Corresponding forward rates with time span dt
zerorates Corresponding zero coupon rates
flatQuotes True if a flat quote was used, False otherwise
params The input parameter list

Author(s)

Dominick Samperi

References

Brigo, D. and Mercurio, F. (2001) Interest Rate Models: Theory and Practice, Springer-Verlag, New York.

For information about QuantLib see http://quantlib.org.

For information about RQuantLib see http://dirk.eddelbuettel.com/code/rquantlib.html.

See Also

BermudanSwaption

Examples


savepar <- par(mfrow=c(3,3))

# This data is taken from sample code shipped with QuantLib 0.3.10.
params <- list(tradeDate=as.Date('2002-2-15'),
               settleDate=as.Date('2002-2-19'),
               dt=.25,
               interpWhat="discount",
               interpHow="loglinear")

tsQuotes <- list(d1w  =0.0382,
                 d1m  =0.0372,
                 fut1=96.2875,
                 fut2=96.7875,
                 fut3=96.9875,
                 fut4=96.6875,
                 fut5=96.4875,
                 fut6=96.3875,
                 fut7=96.2875,
                 fut8=96.0875,
                 s3y  =0.0398,
                 s5y  =0.0443,
                 s10y =0.05165,
                 s15y =0.055175)

times <- seq(0,10,.1)

# Loglinear interpolation of discount factors
curves <- DiscountCurve(params, tsQuotes, times)
plot(curves,setpar=FALSE)

# Linear interpolation of discount factors
params$interpHow="linear"
curves <- DiscountCurve(params, tsQuotes, times)
plot(curves,setpar=FALSE)

# Spline interpolation of discount factors
params$interpHow="spline"
curves <- DiscountCurve(params, tsQuotes, times)
plot(curves,setpar=FALSE)

par(savepar)


[Package RQuantLib version 0.2.11 Index]