lognormal {VGAM}R Documentation

Lognormal Distribution

Description

Maximum likelihood estimation of the (univariate) lognormal distribution.

Usage

lognormal(lmeanlog = "identity", lsdlog = "loge",
          emeanlog=list(), esdlog=list(), zero = NULL)
lognormal3(lmeanlog = "identity", lsdlog = "loge",
           emeanlog=list(), esdlog=list(),
           powers.try = (-3):3, delta = NULL, zero = NULL)

Arguments

lmeanlog, lsdlog Parameter link functions applied to the mean and (positive) sigma (standard deviation) parameter. Both of these are on the log scale. See Links for more choices.
emeanlog, esdlog List. Extra argument for each of the links. See earg in Links for general information.
zero An integer-valued vector specifying which linear/additive predictors are modelled as intercepts only. For lognormal(), the values must be from the set {1,2} which correspond to mu, sigma, respectively. For lognormal3(), the values must be from the set {1,2,3} where 3 is for λ.
powers.try Numerical vector. The initial lambda is chosen as the best value from min(y) - 10^powers.try where y is the response.
delta Numerical vector. An alternative method for obtaining an initial lambda. Here, delta = min(y)-lambda. If given, this supersedes the powers.try argument. The value must be positive.

Details

A random variable Y has a 2-parameter lognormal distribution if log(Y) is distributed N(mu, sigma^2). The expected value of Y, which is

E(Y) = exp(mu + 0.5 sigma^2)

and not mu, make up the fitted values.

A random variable Y has a 3-parameter lognormal distribution if log(Y-lambda) is distributed N(mu, sigma^2). Here, lambda < Y. The expected value of Y, which is

E(Y) = lambda + exp(mu + 0.5 sigma^2)

and not mu, make up the fitted values.

lognormal() and lognormal3() fit the 2- and 3-parameter lognormal distribution respectively. Clearly, if the location parameter lambda=0 then both distributions coincide.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such as vglm, and vgam.

Author(s)

T. W. Yee

References

Kleiber, C. and Kotz, S. (2003) Statistical Size Distributions in Economics and Actuarial Sciences, Hoboken, NJ: Wiley-Interscience.

See Also

rlnorm, normal1.

Examples

y = rlnorm(n <- 1000, meanlog=1.5, sdlog=exp(-0.8))
fit = vglm(y ~ 1, lognormal, trace=TRUE)
coef(fit, mat=TRUE)
Coef(fit)

x = runif(n <- 1000)
y = rlnorm(n, mean=0.5, sd=exp(x))
fit = vglm(y ~ x, lognormal(zero=1), trace=TRUE, crit="c")
coef(fit, mat=TRUE)
Coef(fit)

lambda = 4
y = lambda + rlnorm(n <- 1000, mean=1.5, sd=exp(-0.8))
fit = vglm(y ~ 1, lognormal3, trace=TRUE)
fit = vglm(y ~ 1, lognormal3, trace=TRUE, crit="c")
coef(fit, mat=TRUE)
Coef(fit)
summary(fit)

[Package VGAM version 0.7-7 Index]