This vignette demonstrates how to access most of data stored in a stanfit object. A stanfit object (an object of class "stanfit"
) contains the output derived from fitting a Stan model using Markov chain Monte Carlo or one of Stan’s variational approximations (meanfield or full-rank). Throughout the document we’ll use the stanfit object obtained from fitting the Eight Schools example model:
Warning: There were 7 divergent transitions after warmup. Increasing adapt_delta above 0.8 may help. See
http://mc-stan.org/misc/warnings.html#divergent-transitions-after-warmup
Warning: Examine the pairs() plot to diagnose sampling problems
[1] "stanfit"
attr(,"package")
[1] "rstan"
There are several functions that can be used to access the draws from the posterior distribution stored in a stanfit object. These are extract
, as.matrix
, as.data.frame
, and as.array
, each of which returns the draws in a different format.
The extract
function (with its default arguments) returns a list with named components corresponding to the model parameters.
[1] "mu" "tau" "eta" "theta" "lp__"
In this model the parameters mu
and tau
are scalars and theta
is a vector with eight elements. This means that the draws for mu
and tau
will be vectors (with length equal to the number of post-warmup iterations times the number of chains) and the draws for theta
will be a matrix, with each column corresponding to one of the eight components:
[1] 14.143929 8.478591 6.504845 11.970911 8.524122 8.160192
[1] 4.3662195 0.4272034 4.1657276 12.2439305 4.3656120 4.5503272
iterations [,1] [,2] [,3] [,4] [,5] [,6]
[1,] 18.368073 13.625011 13.460702 13.675479 15.789049 12.997669
[2,] 9.054741 7.636498 8.678515 8.200096 8.767222 8.219560
[3,] 13.039802 1.696952 3.759262 9.809671 13.098795 -1.065921
[4,] 25.466085 18.326098 9.691086 4.186567 1.483841 11.843660
[5,] 19.571931 11.780854 10.197163 8.152090 9.837362 11.410876
[6,] 11.027558 5.586653 9.651510 7.027319 6.748893 12.877602
iterations [,7] [,8]
[1,] 16.599195 19.8205363
[2,] 8.049113 8.6893515
[3,] 5.376531 -0.1256793
[4,] 15.633438 2.6258156
[5,] 19.492270 1.3516516
[6,] 16.822057 5.9936361
The as.matrix
, as.data.frame
, and as.array
functions can also be used to retrieve the posterior draws from a stanfit object:
[1] "mu" "tau" "eta[1]" "eta[2]" "eta[3]" "eta[4]"
[7] "eta[5]" "eta[6]" "eta[7]" "eta[8]" "theta[1]" "theta[2]"
[13] "theta[3]" "theta[4]" "theta[5]" "theta[6]" "theta[7]" "theta[8]"
[19] "lp__"
[1] "mu" "tau" "eta[1]" "eta[2]" "eta[3]" "eta[4]"
[7] "eta[5]" "eta[6]" "eta[7]" "eta[8]" "theta[1]" "theta[2]"
[13] "theta[3]" "theta[4]" "theta[5]" "theta[6]" "theta[7]" "theta[8]"
[19] "lp__"
$iterations
NULL
$chains
[1] "chain:1" "chain:2" "chain:3" "chain:4"
$parameters
[1] "mu" "tau" "eta[1]" "eta[2]" "eta[3]" "eta[4]"
[7] "eta[5]" "eta[6]" "eta[7]" "eta[8]" "theta[1]" "theta[2]"
[13] "theta[3]" "theta[4]" "theta[5]" "theta[6]" "theta[7]" "theta[8]"
[19] "lp__"
The as.matrix
and as.data.frame
methods essentially return the same thing except in matrix and data frame form, respectively. The as.array
method returns the draws from each chain separately and so has an additional dimension:
[1] 4000 19
[1] 4000 19
[1] 1000 4 19
By default all of the functions for retrieving the posterior draws return the draws for all parameters (and generated quantities). The optional argument pars
(a character vector) can be used if only a subset of the parameters is desired, for example:
parameters
iterations mu theta[1]
[1,] 8.4438307 7.354780
[2,] -0.8464116 3.003915
[3,] 6.2475111 9.006303
[4,] 6.7778817 6.760668
[5,] 11.1856605 11.255970
[6,] 10.4500162 10.216112
Summary statistics are obtained using the summary
function. The object returned is a list with two components:
[1] "summary" "c_summary"
In fit_summary$summary
all chains are merged whereas fit_summary$c_summary
contains summaries for each chain individually. Typically we want the summary for all chains merged, which is what we’ll focus on here.
The summary is a matrix with rows corresponding to parameters and columns to the various summary quantities. These include the posterior mean, the posterior standard deviation, and various quantiles computed from the draws. The probs
argument can be used to specify which quantiles to compute and pars
can be used to specify a subset of parameters to include in the summary.
For models fit using MCMC, also included in the summary are the Monte Carlo standard error (se_mean
), the effective sample size (n_eff
), and the R-hat statistic (Rhat
).
mean se_mean sd 2.5% 25%
mu 8.152373213 0.11286510 5.1358386 -1.393623 4.7579790
tau 6.597015226 0.16025384 5.8470179 0.182007 2.3324600
eta[1] 0.375105745 0.01521985 0.9423738 -1.539866 -0.2349581
eta[2] 0.004162496 0.01533488 0.8969768 -1.743882 -0.5786994
eta[3] -0.200013365 0.01569546 0.9320128 -1.958753 -0.8200778
eta[4] -0.041432261 0.01457409 0.8762457 -1.767024 -0.6309151
eta[5] -0.363582954 0.01624522 0.9065110 -2.147410 -0.9557522
eta[6] -0.224676543 0.01546635 0.8838848 -1.984021 -0.7946552
eta[7] 0.330342622 0.01516175 0.9056724 -1.477945 -0.2371773
eta[8] 0.037542729 0.01527968 0.9381113 -1.863492 -0.5866037
theta[1] 11.573989322 0.18028290 8.3234373 -2.026758 6.1323593
theta[2] 8.084274400 0.10084032 6.4022741 -4.421910 4.1664885
theta[3] 6.213624955 0.13581285 7.5143841 -11.118186 2.3809189
theta[4] 7.670352873 0.10107076 6.5205295 -5.721917 3.7855647
theta[5] 5.104999308 0.10547928 6.5009347 -8.850779 1.2159498
theta[6] 6.162412608 0.11207592 6.8322897 -8.568943 2.3651420
theta[7] 10.773490319 0.12874520 7.0191371 -1.067950 5.9848201
theta[8] 8.560590595 0.13489542 7.8117042 -7.062939 4.1957742
lp__ -39.659879168 0.08250758 2.7173736 -45.778398 -41.2920493
50% 75% 97.5% n_eff Rhat
mu 7.960462031 11.3173363 18.801856 2070.634 1.0014977
tau 5.202786669 9.0768754 21.980606 1331.227 1.0023140
eta[1] 0.406653997 1.0027417 2.189448 3833.767 1.0002345
eta[2] -0.001200586 0.5974635 1.812073 3421.381 1.0010783
eta[3] -0.229506631 0.4032847 1.678803 3526.108 1.0000286
eta[4] -0.053394801 0.5349828 1.687687 3614.839 0.9995517
eta[5] -0.380153750 0.2156665 1.439561 3113.831 0.9999216
eta[6] -0.216989555 0.3607663 1.536258 3265.996 0.9994409
eta[7] 0.334079525 0.8977536 2.115716 3568.156 0.9992701
eta[8] 0.030370859 0.6495645 1.871860 3769.471 1.0002459
theta[1] 10.259084055 16.0305452 31.492743 2131.554 1.0002961
theta[2] 7.882515381 11.9434375 21.265143 4030.882 1.0004209
theta[3] 6.844580685 10.6571860 19.964577 3061.294 1.0007327
theta[4] 7.674786247 11.7692145 20.694074 4162.121 0.9992592
theta[5] 5.748314773 9.3156138 16.621352 3798.545 0.9994299
theta[6] 6.486363702 10.3469681 18.692734 3716.275 0.9998919
theta[7] 10.024560826 14.7663594 26.756726 2972.387 1.0007889
theta[8] 8.190506095 12.5719631 25.825598 3353.491 1.0005303
lp__ -39.386757916 -37.7745133 -35.060336 1084.703 1.0019144
If, for example, we wanted the only quantiles included to be 10% and 90%, and for only the parameters included to be mu
and tau
, we would specify that like this:
mu_tau_summary <- summary(fit, pars = c("mu", "tau"), probs = c(0.1, 0.9))$summary
print(mu_tau_summary)
mean se_mean sd 10% 90% n_eff Rhat
mu 8.152373 0.1128651 5.135839 1.9258178 14.62122 2070.634 1.001498
tau 6.597015 0.1602538 5.847018 0.8341973 13.77241 1331.227 1.002314
Since mu_tau_summary
is a matrix we can pull out columns using their names:
10% 90%
mu 1.9258178 14.62122
tau 0.8341973 13.77241
For models fit using MCMC the stanfit object will also contain the values of parameters used for the sampler. The get_sampler_params
function can be used to access this information.
The object returned by get_sampler_params
is a list with one component (a matrix) per chain. Each of the matrices has number of columns corresponding to the number of sampler parameters and the column names provide the parameter names. The optional argument inc_warmup (defaulting to TRUE
) indicates whether to include the warmup period.
sampler_params <- get_sampler_params(fit, inc_warmup = FALSE)
sampler_params_chain1 <- sampler_params[[1]]
colnames(sampler_params_chain1)
[1] "accept_stat__" "stepsize__" "treedepth__" "n_leapfrog__"
[5] "divergent__" "energy__"
To do things like calculate the average value of accept_stat__
for each chain (or the maximum value of treedepth__
for each chain if using the NUTS algorithm, etc.) the sapply
function is useful as it will apply the same function to each component of sampler_params
:
mean_accept_stat_by_chain <- sapply(sampler_params, function(x) mean(x[, "accept_stat__"]))
print(mean_accept_stat_by_chain)
[1] 0.7495132 0.8524633 0.8615635 0.9528063
max_treedepth_by_chain <- sapply(sampler_params, function(x) max(x[, "treedepth__"]))
print(max_treedepth_by_chain)
[1] 6 5 5 5
The Stan program itself is also stored in the stanfit object and can be accessed using get_stancode
:
The object code
is a single string and is not very intelligible when printed:
[1] "data {\n int<lower=0> J; // number of schools \n real y[J]; // estimated treatment effects\n real<lower=0> sigma[J]; // s.e. of effect estimates \n}\nparameters {\n real mu; \n real<lower=0> tau;\n vector[J] eta;\n}\ntransformed parameters {\n vector[J] theta;\n theta = mu + tau * eta;\n}\nmodel {\n target += normal_lpdf(eta | 0, 1);\n target += normal_lpdf(y | theta, sigma);\n}"
attr(,"model_name2")
[1] "schools"
A readable version can be printed using cat
:
data {
int<lower=0> J; // number of schools
real y[J]; // estimated treatment effects
real<lower=0> sigma[J]; // s.e. of effect estimates
}
parameters {
real mu;
real<lower=0> tau;
vector[J] eta;
}
transformed parameters {
vector[J] theta;
theta = mu + tau * eta;
}
model {
target += normal_lpdf(eta | 0, 1);
target += normal_lpdf(y | theta, sigma);
}
The get_inits
function returns initial values as a list with one component per chain. Each component is itself a (named) list containing the initial values for each parameter for the corresponding chain:
$mu
[1] -0.7013894
$tau
[1] 1.791801
$eta
[1] 1.19252640 1.06597020 -1.22324298 0.02262201 1.57796061 1.94667109
[7] -1.99503156 -1.50724646
$theta
[1] 1.4353801 1.2086166 -2.8931967 -0.6608552 2.1260013 2.7866569 -4.2760879
[8] -3.4020743
The get_seed
function returns the (P)RNG seed as an integer:
[1] 2081004574
The get_elapsed_time
function returns a matrix with the warmup and sampling times for each chain:
warmup sample
chain:1 0.030285 0.026706
chain:2 0.032524 0.028686
chain:3 0.031837 0.028443
chain:4 0.034213 0.036218