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Abstract

Hunt [1996] has implemented the finite mix-
ture model approach to clustering in a pro-
gram called Multimiz. The program is de-
signed to cluster multivariate data with cat-
egorical and continuous variables and possi-
bly containing missing values. In this pre-
sentation we describe the approach taken to
the design of Multimiz and how some of the
statistical problems were dealt with. As ex-
amples of the use of the program we clus-
ter a large medical dataset and a version of
Fisher’s Iris data in which a third of the val-
ues are randomly made ‘missing’.

1 INTRODUCTION

The Multimiz computer program, written in Fortran
by Lynette Hunt, fits a mixture of distributions to
multivariate data where the variables may be either
continuous or categorical. The model fitted simulta-
neously generalises the Latent Class model and the
mixture of multivariate normals model. Like either of
these models Multimiz can be used to form clusters by
the Bayes allocation rule. This is the intended use of
the program, although the parameter estimates can be
used to give a succinct description of the clusters.

The program is designed to encourage the use of par-
simonious models that explain the associations and
covariances by the cluster structure; it favours mix-
ture component models with independent variables.
In fact the user specifies a partition of the variables
into groups such that variables in different groups are
independent in the component models.

Use of the EM algorithm, with its view of the ob-
served data as being notionally augmented by missing
information to form the ‘complete data’, gives a broad
framework for estimation which is able to handle two
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types of missing information: unknown cluster assign-
ment and missing data. Using the methodology of
Little and Rubin [1987] in this way Multimiz is able to
handle missing data in a less ad hoc way than many
clustering algorithms. The program runs in acceptable
time with large data matrices (say hundreds of obser-
vations on tens of variables). Use of the missing-data
facility increases execution time somewhat.

2 STRUCTURE OF THE MODELS
FITTED BY Multimix

We expect the data to be in the form of an n X p
matrix of observations by variables which we regard
as a random sample from the distribution f(z) =
S fr(x), itself a finite mixture of K component
distributions fj in proportions 7, > 0 satisfying
> mr = 1. We suppose that the vector of variables
x = (21,...,%j,...,2p)" has been partitioned into
(ill [ % |---] EIL)’ We consider component
distributions that factorize fi(x) = [[; fri(X:), con-
formably with this partition. This is a weak form of
‘local independence’: within each of the K subpopula-
tions the variables in the subvector X; are independent
of the variables in X; for 1 <1 < ' < L. True ‘local
independence’ is the independence of each z; within
subpopulations. We can write the model for the ith
observation as
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where 6, consists of the parameters of the distribu-
tion fi; and the 7 are the mixing proportions. This
formulation includes the motivating examples of La-
tent Class analysis [Aitkin et al., 1981] and mixtures
of multivariate normals [McLachlan and Basford, 1988]
When a subvector contains only a single variable, that
variable is independent of all other variables within
each subpopulation. It is convenient to assume forms
for the fi;, and hence for the f;, that belong to the



exponential family. The model is then well suited for
maximum likelihood estimation of its parameters by
the EM algorithm of Dempster et al. [1977].

2.1 LOCAL INDEPENDENCE

A simple case of the model class (2.1) occurs when each
X, consists of a single variable. In this case true local
independence holds and all variables are independent
of each other within each subpopulation, even though
they may be strongly related within the population as
a whole. A succinct description of the data may then
be given by reporting the proportions within each com-
ponent and individual distribution summary statistics
for each variable within each component. When all
variables are discrete the model is then known as the
Latent Class Model.

A natural way to generalize the Latent Class model
to multivariate data involving variables of different
kinds, discrete and continuous, is to consider local in-
dependence models with a range of different univari-
ate distributions allowed for each variable. This kind
of model often leads to fairly good cluster assignments
even when it does not fit very well and the number of
parameters that need to be estimated is fairly small.
However it is easy to manufacture artificial examples
where poor results are obtained, such as elliptical clus-
ters in different orientations.

2.2 UNSTRUCTURED MODELS

Another extreme is where we take L = 1 and make no
assumptions about independence within clusters. This
is the case when we seek to fit a mixture of p-variate
normals to the data, estimating means and covariance
matrices separately for each component.

These models may be worth considering when p is
quite small, but not otherwise. Highly parameterized
models are very difficult to estimate unless very large
amounts of data are available. Effective failure of iden-
tifiability may occur in which quite different parameter
values give nearly equal likelihood values.

Another problem is that for variables of different types
no explicit and tractable multivariate distributions
may be known. This is the case when within-cluster
associations need to be modeled for several categorical
and several continuous variables.

2.3 MODELS SUPPORTED IN Multimiz

Only some distribution types are currently available in
Multimiz although it is hoped to progressively extend
these. Currently available are

1. arbitrary discrete univariate distributions
2. multivariate normal distributions

3. location model distributions.

The location model is a joint distribution of a single
categorical distribution with several continuous vari-
ables. Conditional on each value of the categorical
variable, the continuous variables follow a multivari-
ate normal distribution. The mean vector of the mul-
tivariate normal may depend on the categorical vari-
able, but the covariance matrix is the same whatever
the value of the categorical variable. See Krzanowski
[1983] for details.

The user of Multimiz must partition the variables into
groups or ‘subvectors’ in such a manner that each sub-
vector corresponds to an available model. For example
in a data set with 2 categorical variables and 15 con-
tinuous variables we might divide the variables into

e 3 group containing a single categorical variable

e a group containing a categorical variable and
three continuous variables

e a group containing four continuous variables

e cight groups each containing a single continuous
variable

these groups would be associated with a discrete distri-
bution, a location model, a multivariate normal distri-
bution, and eight univariate normal distributions and
then the corresponding Multimiz model would be a fi-
nite mixture of distributions, all having a joint density
of the same form: a product of the 11 densities given
above.

The model fitting strategy for fitting a mixture that we
employ is to first fit the model with full local indepen-
dence (in which each subvector of variables is a single-
ton). The EM algorithm which is used to calculate the
maximum likelihood estimates of the parameters also
produces for each observation the estimated probabil-
ities Z;; that the observation ¢ belongs to component
j. We may ‘sharpen’ the resultant fuzzy classification
by allocating each observation to the component that
it has the highest probability of belonging to. The
clusters so constructed can be examined for within-
cluster correlations or associations. The model may
then be modified by coarsening the partition of the
variables so that variables with within-cluster associa-
tions are grouped in the same partition. One difficulty
that may arise is the discovery of within-cluster asso-
ciations involving more than one categorical variable.
These may be handled by replacing those categorical



variables by a single new categorical variable indexing
the cells of the multi-way table that they define, pos-
sibly with some appropriate pooling of cells to reduce
the number of values of the new variable.

The EM algorithm for fitting finite mixtures [McLach-
lan and Basford, 1988] treats the assignments z;; of
observations to clusters as it they were missing data.
The adoption of the framework for Multimiz means
that it has been possible to extend the approach to
cope with missing values in the data as well as missing
cluster assignments. In fact having two categories of
missing data complicates the situation sufficiently that
the version of Multimiz that handles missing data is
about twice the length of the original Multimiz. The
algorithm used is an extension by Hunt [1996] of that
of Little and Schluchter [1985] to finite mixtures of
distributions. The FE-step of the EM algorithm used
incorporates a very efficient ‘sweeping’ on augmented
covariance matrices to estimate the missing portion of
the complete-data sufficient statistics. It is useful to
have both versions of the program available, because
the speed of the simpler program on data without
missing values is greater than that of the missing-data
version, and the parameter estimates found using the
complete cases and the simpler program usually make
good starting values for the larger program.

3 SOME EXAMPLES OF
CLUSTERING WITH Multimix

3.1 BYAR PROSTATE CANCER DATA

The ultimate test of any clustering methodology is
whether the clusters that result have any value for
the user. To examine whether the clusters formed by
Multimiz have any usefulness we have clustered Byar’s
Prostate Cancer data [Andrews and Herzberg, 1985,
pp. 5-8] into 2 groups using 12 pre-treatment covari-
ates; 8 continuous variables and 4 categorical variables
with between 2 and 7 levels. This is a useful data set
to test clustering programs on, because the patients
are classified into Stage 3 and Stage 4 (more severe)
of the disease, and post-trial information on the sur-
vival status of the patients is available. The Stage
4 patients had some signs of the cancer spreading to
other parts of the body. The stages were not used in
the clustering, nor was the information on post-trial
status (alive/dead/cause of death).

We report only an outline of our analysis of this data
set, more details are given in Hunt [1996] and Hunt and
Jorgensen [1999]. We use only the 475 out of 506 pa-
tients with complete pre-trial information. The initial
model fitted was a 2-component model with complete
local independence.

The initial clusters found had a strong relationship to
the clinical stages:

Cluster 1  Cluster 2
Stage 3 252 21
Stage 4 20 182

Inspection of the clusters showed three continuous
variables that appeared to be associated within clus-
ters. These were Systolic Blood Pressure, Diastolic
Blood Pressure and Body Weight Index (Weight cor-
rected for height). The physical plausibility of correla-
tions between these variables within clusters gave ad-
ditional reason to modify the model partition of vari-
ables bringing these three variables together in a sub-
vector. Thus six additional covariance parameters are
now estimated, three for each cluster.

The modification of the model model makes little dif-
ference to the clusters, in fact only four patients change
cluster. The connection with the clinical stages tabu-
lated above changes to

Cluster 1 Cluster 2
Stage 3 252 21
Stage 4 18 184

Each patient in the data set has a survival status
recorded that was not used in the clustering. A use-
ful grouping of the status values is into four categories:
alive(0), dead from prostatic cancer(1), dead from car-
diovascular causes(2), dead from other causes(3). The
following table shows that the clusters found have
some prognostic value.

Survival Status

Cluster | 0 1 2 3
1 9 24 92 58
2 41 97 46 21

We can go on to investigate the clusterings generated
by fitting models with more components. In the case
of a three component model based on the same parti-
tioning of the variables clusters are generated with the
following relationship to the outcomes:

Survival Status

Cluster 0 1 2 3
A 56 18 31 21
B 43 12 63 40
C 38 91 44 18

To a good approximation Cluster 1 from the two com-
ponent model splits into Cluster A and Cluster B, and
Cluster C is more or less the same as Cluster 2. We
can describe Cluster A as the more healthy patients;
Cluster B patients are less healthy, but with health



problems other than prostate cancer dominating; Clus-
ter C patients are the main group at risk from prostate
cancer.

Hunt [1996] goes on to investigate 4- and 5-component
mixture models for the prostate cancer data. Some dif-
ficulty was experienced in fitting 5-component models
as the EM algorithm took a long time to converge and
many local likelihood maxima where encountered.

It is clear that Multimiz is discovering structure re-
lated to the prognosis of the patients even though the
Survival Status information is not used by the pro-
gram.

3.2 FISHER’S IRISES WITH MISSING
VALUES

A less ‘real’ but more familiar example is now derived
from the Fisher Iris data by randomly making values
missing with probability 1/3. The results in a data
set that would be challenging to most clustering algo-
rithms, but which is clustered easily by Multimiz.

In the Iris data measurements of four variables Sepal
length, Sepal width, Petal length, Petal width are
available for 150 irises, 50 each from each of three
species Setosa, Versicolor, and Virginica. As may be
noted by graphical exploration the Setosa species is
relatively well-separated from the other two. In a
first exercise we take the 100 observations for Setosa
and Versicolor and make the data values missing with
probability 1/3. This is quite an extreme amount of
missing data, in fact one Setosa observation finishes
up with all four variables missing!

We consider two models: the local independence
model, which in this case is a mixture of two 4-variate
normal distributions both having diagonal covariance
matrices; and the unstructured model which is a mix-
ture of two general 4-variate normal distributions. The
100 observations are assigned by Multimiz to clusters
that are related to the species as follows:

Cluster 1  Cluster 2
Setosa 48 2
Versicolor 1 49

Actually the assignment is the same for all observa-
tions under the two models. For example the totally
unobserved Setosa iris is assigned to Versicolor by
both models as the estimated proportion of Versicolor
is 0.5011, and 0.5064 under the local independence and
unstructured models respectively.

The assignment probabilities 2;; are somewhat closer
to 0 or 1 under the unstructured model as it is able to
fit the data better.

Separating Versicolor and Virginica is a harder task,
even when all data values are present, but we repeat
the exercise above with this pair. With the local inde-
pendence model the clusters found relate to the origi-
nal species as follows:

Cluster 1 Cluster 2
Versicolor 37 13
Virginica 6 44

and with the unstructured model the corresponding
table is

Cluster 1  Cluster 2
Versicolor 36 14
Virginica 6 44

Although the results for the two models look similar,
in fact 17 observations change their assignment to clus-
ters between the two groups.

4 COMPARISON WITH RELATED
SOFTWARE AND FUTURE
DIRECTIONS

4.1 AutoClass

AutoClass [Cheeseman and Stutz, 1996] is a Bayesian
clustering program developed by Peter Cheeseman and
colleagues at NASA Ames Research Center. The mod-
els fitted by AutoClass are very similar to those fitted
by Multimiz, although both programs were developed
independently. Two obvious differences are

1. AutoClass has automated the process of model se-
lection as well as that of parameter estimation but
Multimiz leaves model-specification to the user;

2. AutoClass uses Maximum Posterior estimation in
place of Maximum Likelihood estimation.

In fact the first is the more crucial difference, because
the EM algorithm at the basis of both programs ac-
commodates both MLL and MAP estimation. Auto-
Class compares different models by calculating an ap-
proximation to the marginal density of the observed
data after the model parameters have been integrated
out. In usual EM language the approximation used
is analogous to taking observed data likelihood to be
proportional to complete data likelihood with the con-
stant of proportionality to be evaluated at the maxi-
mum likelihood estimates.

The models currently available in AutoClass for at-
tributes within a component are as follows. Cat-
egorical attributes are modelled by general discrete



distributions (multi-category Bernoulli) as in Multi-
miz. Continuous attributes may be taken to have uni-
form or normal distributions, possibly after transfor-
mation. Poisson distributions are available for count
attributes. Cheeseman and Stutz [1996] report that
von Mises-Fisher distributions for circular and spheri-
cal attributes are under development. At present it ap-
pears that AutoClass does not offer facilities for mod-
elling within cluster dependencies, that is, all mod-
els assume within-cluster independence of attributes.
Missing values are treated as a special kind of value in
some attribute models, but there has been no imple-
mentation of the Little and Rubin [1987] methodology
for data missing at random.

4.2 Snob

Snob [Wallace and Dowe, 1998] is a clustering pro-
gram developed by Chris Wallace and co-workers
at the Monash University Department of Com-
puter Science, beginning in the late sixties.[Wallace
and Boulton, 1968]. Snob has a home page
at http://www.cs.monash.edu.au/"d1ld/Snob.html.
Snob is a mixture model similar in structure to Auto-
Class and offering local independence models based on
discrete, Normal, Poisson and von Mises distributions.
In fact Snob is the older program. A novel feature of
Snob is that inference is by the principal of Minimum
Message Length [Wallace and Freeman, 1987]. This
form of inference takes discrete variables as fundamen-
tal and seeks to minimise the negative logarithm of the
probability of the model and parameter values plus the
negative logarithm of the probability of the data given
the model and parameter values. A continuous ana-
logue of this estimation principle is similar to Maxi-
mum Posterior estimation (MAP) but introduces an
additional factor of (F(8))™2 to the prior, where F(6)
is the determinant of the Fisher information matrix at
the parameter vector 6.

In contrast to Multimiz, where the user must spec-
ify the number of classes, Snob selects the number
of classes automatically using the Minimum Message
Length criterion. Thus the MML criterion is used for
all aspects of model selection and parameter estima-
tion in the Snob approach.

4.3 Mclust

Banfield and Raftery [1993] have developed the classifi-
cation likelihood approach of Scott and Symons [1971]
further to introduce a controlled amount of flexibility
to criterion-based cluster analysis for continuous data.
Wallace and Dowe [1998] point out that in the case
of a substantially overlapping pair of normal distribu-
tions having equal abundance and common ¢ this kind

of estimation is likely to overestimate the difference
in means and underestimate o. This inconsistency in
classification likelihood is also discussed by McLachlan
and Basford [1988].

Banfield and Raftery characterize the dispersion ma-
trices of multivariate normal clusters by their orien-
tation, size, and shape. They mainly consider models
where the shape is the same in each component of
the mixture, but orientation and size are permitted
to vary. They also consider an approach to robus-
tifying cluster analysis by allowing a very dispersed
‘noise’ component, in addition to the multivariate nor-
mal components.

A Fortran program called Mclust has been written by
Chris Fraley to fit these models and others. It is avail-
able from StatLib either as a Fortran program or as
an S-PLUS function. Although criterion-based, rather
than being based on a distance matrix, Mclust is writ-
ten to proceed initially as an agglomerative hierarchi-
cal program. However once the number of clusters has
been determined by the user Mclust can proceed by
reallocating points to seek a minimum of the criterion
in a fashion similar to the k-means algorithm of Harti-
gan [1975]. In recent versions of S-PLUS Mclust now
forms the core of the clustering functions provided.

5 THE PLACE OF Multimixz IN
MIXTURE MODELING

The brief survey of other related programs helps to
clarify the role of Multimiz as a mixture modelling
tool. In contrast to Snob and AutoClass it automates
only parameter estimation, leaving model selection to
the control of the user. It appears to be unique in
offering a maximum likelihood approach to a class
of models extending mixtures of multivariate normals
and latent class models. (Although it is possible that
AutoClass and Snob might be coaxed into producing
similar output for at least some models by appropriate
prior specification and the switching off of their model
search facilities).

A natural further development for Multimiz would be
to introduce new types of attribute distribution such
as the Poisson and circular von Mises distributions.

To the extent that robust estimation is appropriate for
a particular dataset it seems that it would be better
to add a very small proportion of a highly dispersed
component to the mixture than to follow Banfield and
Raftery [1993] in modifying the likelihood criterion to
gain robustness.

There are no present plans to automate model selec-
tion in Multimiz, but it must be acknowledged that



more needs to be done in the way of graphical diagnos-
tic output to assist the user with the refinement of the
models. Eventually some form of automation of model
selection will be necessary if Multimiz is to be used on
extremely large data sets, but we would feel happier
about adopting any proposal for model selection if we
could compare it with human-driven procedures over
a range of datasets.

The availability of the four programs AutoClass,
Meclust, Multimiz and Snob offering similar ranges
of models but using different inferential princi-
ples provides an opportunity to learn more about
the strengths and weaknesses of these principles in
the practical data analysis context of large mul-
tivariate data sets. Currently Multimiz is avail-
able as Fortran 77 source code from the URL
ftp://ftp.math.waikato.ac.nz/pub/maj/. Some
documentation, data sets and auxiliary programs are
available at the same location.
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