
Mixture Model Clusteringusing the Multimix ProgramLynette Hunt and Murray JorgensenUniversity of WaikatoHamilton, New ZealandAbstractHunt [1996] has implemented the �nite mixture model approach toclustering in a program called Multimix. The program is designed tocluster multivariate data with categorical and continuous variables andpossibly containing missing values. In this paper we describe the ap-proach taken to the design of Multimix and how some of the statisticalproblems were dealt with. As an example of the use of the program wecluster a large medical dataset.Key Words: Cluster analysis, EM algorithm, Latent class analysis, Local inde-pendence, Multivariate Normal distribution, Location model, Prostate cancerdata.1 IntroductionThis paper is concerned with the statistical analysis of multivariate data froma mixture of �nitely many populations when there is no information aboutmembership in any component population. This is known as cluster analysisor unsupervised learning. The goal is to partition the sample into groups sothat members of a group are as similar as possible. This is usually done byany one of a number of deterministic algorithms the most common of whichwe discuss below.Cluster analysis is di�erent from Discriminant Analysis where it is possible toclassify members of a random sample from a mixture of populations accordingto which population they come from. See Mardia et al. [1979, Chapter 11] andMcLachlan [1992] .There are many di�erent methods for cluster analysis. These methods canbe broadly categorised as hierarchical or non-hierarchical. Clustering usinghierarchical methods, is generally obtained through either agglomerative al-gorithms, which begin with a cluster for every observation and successivelymerge clusters, or divisive algorithms which begin with a single cluster andwhich continually split clusters. 1



It is possible to visualise two extremes, one in which each object is consideredto be a single member cluster, and one in which all n objects are containedin a single cluster. Each cluster obtained at any stage in the procedure is acombination or division of clusters at other stages. A hierarchical strategy�nds an e�cient path between these two extremes.Once an object is assigned to a cluster under a hierarchical strategy, there isno provision for reallocation of the objects that have been poorly allocatedat an earlier stage in the process. Each stage of the analysis involves thecomputation of the cluster similarity (or distance) matrix. Since the clustersat any stage are obtained by the fusion (agglomerative methods), or division(divisive methods) of clusters from the previous stage, these methods lead toa hierarchical structure of the objects. This is represented by a dendogram,also known as a tree diagram.1.1 Similarity matrix clustering techniquesHierarchical clustering techniques are usually implemented with the data rep-resented by a matrix of proximities (dij), where dij is the proximity of obser-vations i and j. The proximity dij , can either be a similarity or a dissimilaritymeasure. To convert a dissimilarity into a similarity index we may, for exam-ple, divide it by the greatest dissimilarity observed in the data and subtractthis from 1.Proximities may be obtained in various ways, one method being to ask anumber of people to subjectively assess all pairs of observation in a smallset for degree of similarity, recording the answer as a number between 0 (leastsimilar) and 1 (most similar). The similarities for analysis can then be obtainedby averaging the subjective similarities over the panel of judges.More often each observation has a number of measured attributes or variables,often at di�ering levels of measurement (binary, nominal, ordinal, interval orratio), and we require some means of calculating proximities from the data.Anderberg [1973, Chapters 4 & 5] and Gordon [1981, Chapter 2] give surveysof many methods of calculating proximities for the case of a single variable.Typical examples are the euclidean distance for interval variables and theJacard coe�cient n11=(n11+n10+n01) for binary (0,1) data. Another binarycoe�cient is the simple matching coe�cient (n11 + n00)=(n11 + n10 + n01 +n00); indeed Anderberg lists 14 possibilities, though deprecating 5 of these.Which notion of proximity makes the most sense depends on subject areaconsiderations.Once a similarity measure sijk comparing observation i with observation jhas been selected for each attribute k they may be combined, essentially byaveraging over the attributes. In the case of a rare binary attribute k we maywish to exclude sijk from the average as uninformative about the similarity ofi and j. Details about combining similarity measures in this way are given by2



Gower [1971].Agglomerative hierarchical techniques di�er primarily in how they measurethe distance or similarity of two clusters, where a cluster may at times, consistof a single observation only. For example, the Euclidean distance dij betweentwo observations xi and xj is de�ned as dij = [(xi � xj)0(xi � xj)]1=2, whilethe Mahalanobis distance is de�ned as dij = [(xi�xj)0�̂�1(xi�xj)]1=2, where�̂ is the within cluster covariance matrix. Further details on the properties ofthese distances and other distance measures are given by Mardia et al. [1979]and Gordon [1981].In single linkage (nearest neighbour) clustering, the distance between two clus-ters is de�ned as the distance between their two nearest neighbours:dAB = mini2Aj2B (dij)where dAB is the dissimilarity between two clusters A and B and dij is thedissimilarity between two observations i and j. This technique can lead to`rod' type elongated clusters.With complete linkage (farthest neighbour) clustering, the distance betweentwo clusters is de�ned as the distance between their two furthest neighbours:dAB = maxi2Aj2B (dij):This method tends to produce compact clusters.Other standard linkage methods replace the \min" and the \max" of theprevious methods by measures of central tendency.Lance and Williams [1967] give a general agglomerative algorithm with whichmany of the common hierarchical linkage methods can be described. If twogroups r and s amalgamate to form a new group t, the dissimilarity betweenthis group and any other group can be expressed in an equation form. Gordon[1981] includes their table of the algorithm parameters for di�erent techniques.With hierarchical clustering, the number of clusters is obtained by selectingone of the clusterings in the nested sequence of groupings displayed in thedendogram. The most common method used is to examine the dendogram forlarge changes in the distance or dissimilarity between adjacent fusion levels. A\large" change when going from K to K � 1 groups might be indicative of Kgroups. This criterion is somewhat subjective. Other sources of subjectivitylie in the choice of similarity metric for each attribute and the choice of linkagemethod.These methods are widely implemented in statistical packages and can beuseful for preliminary exploration of small multivariate datasets, especially incombination with visualization techniques such as a plot of the �rst two prin-cipal component scores and a Minimal Spanning Tree [Gower and Ross, 1969].3



They are less satisfactory with large data sets (hundreds rather than tens) be-cause of the large number of pairwise similarities which must be processed, andbecause of the enhanced possibilities for unfortunate and irreversible amalga-mations of clusters at an early stage.An important problem with the use of these forms of cluster analysis lies inthe many ways in which the subjective decisions made by the analyst mayin
uence the outcome. The analyst must choose1. the form of the proximity index2. the linkage method, and3. the similarity level at which to `cut' the dendrogram, or equivalently, thenumber of groups.1.2 Optimisation based techniquesNonhierarchical techniques of cluster analysis have the same extremes as hi-erarchical techniques, that is, n clusters consisting of one observation and onecluster with all n observations in it. However nonhierarchical techniques allowpoints to be reallocated to other clusters during the clustering process. Thesetechniques of cluster analysis often use optimisation procedures in which ob-servations are transferred between clusters with the aim of optimising someclustering criterion that rewards both within-cluster similarity and between-cluster di�erences. Once again, there are many di�erent methods availablebecause of di�erent optimising criteria and di�erent optimising algorithms.For further discussions on these procedures see for Everitt [1980] and Hand[1981].The k-means algorithm of Hartigan [1975] is a commonly used optimisationtechnique. The means of each of the k initial clusters are found, and then eachdata point is examined to see if it is closer to the mean of another cluster thanto the mean of its current cluster. If this occurs, that point is transferred andthe cluster means are recalculated. The means can be recalculated after eachdata point has been reallocated, or after all the data points have been examinedand those that needed reallocating have been transferred. The means of thek clusters are calculated and the process is repeated. In this procedure, thecluster mean is the point that minimises the sum of squares of the distances(to that point) of the observations in that cluster.The \classi�cation likelihood" approach is a nonhierarchical technique thatuses a form of likelihood function as a clustering criterion. Under this ap-proach, a probabilistic formulation is taken in which it is assumed that theobservations x1; : : : ;xn each arise from any one of K possible sub-populationswith a probability density function of f(x; �k) for k = 1; : : : ;K. This approachdi�ers from the discriminant analysis problem in that it is not known which4



sub-population the observation comes from. Letzik = � 1 if observation i 2 group k;0 if observation i =2 group k,and de�ne the vector of indicator variables as zi = (zi1; : : : ; ziK)0: The likeli-hood function is given byLClass(z1; : : : ; zn; �1; : : : ; �K) = nYi=1 KYk=1 ff(xi; �k)gzikLet z = (z1; : : : ; zn) and � = (�1; : : : ; �K): Maximisation of LClass(z;�), thelog-likelihood for the complete data is with respect to � and z. That is, theunobservable indicator variables z1; : : : ; zn are treated as unknown parametersto be estimated along with �. The maximisation process can be carried out bycomputing the maximum value of the likelihood over all possible partitions ofthe n observations to the K groups. This approach was considered by severalauthors including Scott and Symons [1971], Sclove [1977] and Symons [1981].More recently Ban�eld and Raftery [1993] have extended the methods of Scottand Symons [1971] and their approach is discussed below. Unfortunately withthis procedure, the zij increase in number with the number of observations,and the maximum likelihood estimates are not consistent [McLachlan andBasford, 1988].Using the classi�cation likelihood approach, Scott and Symons [1971] showedthat the assumption that xi � N(�k;�) for k = 1; : : : ;K, led to the clusteranalysis procedure based on minimising j W j, the determinant of the pooledwithin group dispersion matrix. This method of cluster analysis was discussedby Friedman and Rubin [1967]. Scott and Symons [1971] found that this ap-proach has the tendency to divide the data into clusters of equal size if theseparation between the sub populations is not large. Marriot [1975] pointedout that the maximum (classi�cation) likelihood estimates are not consistentunder the assumption of underlying normal distributions with a common co-variance structure. Bryant and Williamson [1978] showed that the approachcan also be expected to give biased results. Symons [1981] and Binder [1978]give Bayesian versions of this method.Although usually considered as nonhierarchical clustering techniques, criterionoptimization methods may be used in a hierarchical fashion by applying thealgorithm repeatedly to subdivide clusters found earlier. Such an approachusually leads to clusters that are not themselves optimal on the criterion.1.3 Clustering methods based on �nite mixture modelsThere is a vast quantity of literature available on algorithmic cluster analy-sis. For comprehensive reviews of clustering techniques see Cormack [1971],5



Everitt [1980], Jardine and Sibson [1971], and Gordon [1981]. For clusteringalgorithms see Hartigan [1975] and James [1985].There are some inescapable drawbacks shared by all these traditional ap-proaches to clustering: any randomness in the sample is not re
ected andsmall perturbations in the sample may lead to quite di�erent groups beingformed. Further, experience with real mixed populations shows that they arequite often substantially overlapping, whereas by design most traditional clus-tering algorithms will tend to come up with compact nonoverlapping clusters.An alternative to algorithmic cluster analysis, is to adopt a statistical formula-tion similar to that of discriminant analysis, and regard the observations to beclustered as a random sample from a �nite mixture of distributions. However,unlike discriminant analysis, the observations are not identi�ed as belongingto a particular group, and there is often very little information about the formof the population distributions for each group. By making generic distribu-tional assumptions we obtain a well speci�ed model, whose parameters can beestimated by the method of maximum likelihood. The estimated conditionalprobabilities of group membership can be estimated by Bayes rule using theparameter estimates. These probabilities can be used when the algorithm hasconverged to obtain a probabilistic assignment of observations to clusters.Furthermore, the estimated component distributions together with the esti-mated proportions for each component provide a concise description of whatmay be a very complicated set of data.As with any clustering method, clustering by �nite mixture models also im-poses a structure on the data. It is possible to check the overall �t of themixture model to the data, although the individual components cannot bechecked unless the groups turn out to be well separated. The mixture like-lihood approach can be seen as an example of a nonhierarchical clusteringtechnique. But a uni�cation with the mainstream of statistical modelling isachieved because clustering methods based on mixture models allow estima-tion and hypothesis testing within the framework of standard statistical theory[Aitkin et al., 1981].2 Earlier work in mixture model clusteringThe Multimix program to be described later in this paper builds on earlier ap-proaches and is most easily understood as an extension and uni�cation of someof these. The estimation problem for �nite mixtures of normal distributionshas quite a lengthy history. We will describe some of this work now.2.1 Mixtures of normal distributionsKarl Pearson put forward a solution in the case of a mixture of two univariatedistributions with unequal variances using the method of moments [Pearson,6



1894]. This was a di�cult problem and involved the solution of a ninth degreepolynomial equation. Later investigation showed that likelihood estimationwas more e�cient than the method of moments for this problem [Tan andChan, 1972].Maximum of likelihood estimation for the parameters in mixture distributionswas suggested by Rao [1948] , who used Fisher's method of scoring for theestimation of parameters in a mixture of two univariate normal distributionswith equal variances. This appeared to be the �rst use of likelihood estimationfor mixtures [Everitt and Hand, 1981]. However, Butler [1986] notes that therewas an investigation by Newcomb [1886] of the maximum likelihood estimationof the parameters of a mixture of k univariate normal populations with knownvariances. His investigation could be interpreted as an application of the EMalgorithm [Dempster, Laird, and Rubin, 1977]. Butler also found that Je�reys[1932] had essentially used the EM algorithm to compute the estimates of themeans in two univariate normal populations, which had known variances andwhich were mixed in unknown proportions.With the advent of high speed computers, interest increased in the likeli-hood estimation of the parameters of mixture distributions. Hasselblad [1966,1969] applied maximum likelihood estimation for the parameters of a mixtureof k univariate normal distributions with equal variances, and then for mix-tures of distributions from the exponential family. Day [1969] estimated thecomponents of a mixture of two multivariate normal distributions with equalcovariances. Wolfe [1967, 1970] used maximum likelihood estimation for theparameters of a mixture of K multivariate normal distributions with unequalcovariances, and also a mixture of Bernoulli distributions. These three re-searchers all presented their solutions in iterative forms that could be viewedas applications of the EM algorithm.For additional references on �nite mixtures, see the monographs on �nitemixture distributions by Everitt and Hand [1981], Titterington et al. [1985],McLachlan and Basford [1988] , the reviews by and the encyclopedia entry byEveritt [1985]2.2 Basford's mixture-�tting programsIn their monograph on mixture models and their application to clusteringMcLachlan and Basford [1988] focus on the use of p-variate normal distri-butions for the component models and consider mainly continuous variables.Included with this book are listings of the Fortran 66 source code for fourprograms which estimate the parameters of normal mixture models in vari-ous situations. The program of most relevance for cluster analysis is KMM,which �ts a mixture of multivariate normal distributions, with either arbitraryor common covariance matrices, by maximum likelihood using the EM algo-rithm. In designing the Multimix program, we sought to extend and modify7



KMM to enhance its suitability as a general-purpose nonhierarchical clus-tering program. In fact Multimix was written from scratch, but its outputwas tested against that from KMM where possible. We are grateful to KayeBasford for making her programs available to us in electronic form.Some development beyond KMM was necessary because of three major di�-culties which frustrate the application of multivariate normal mixture modelsto clustering. Firstly, they are not easily adapted to cope with discrete data.This is unfortunate because many real clustering problems involve both contin-uous and discrete variables. Secondly, they lead to models with large numbersof parameters: for example if p = 8 we will need to estimate 36 parametersfor even a common covariance matrix, many more if they must be estimatedseparately for each group. A third consideration is the common occurrence ofmissing values in multivariate data, particularly when the observations are onhumans. A variant of Multimix accommodates observations that are missingat random using the methodology of Little and Rubin [1987], but this is notdescribed here.Highly parameterized models can lead to di�culties in several ways. As dis-cussed by McLachlan and Basford [1988, p. 11] the likelihood function of amixture model can have singularities in a neighbourhood of which it is un-bounded. Iterative methods for computing maximum likelihood estimates aredrawn towards these singularities from many starting values if the model ishighly parameterized. It is also common to �nd many local maxima in suchmodels. Even if we �nd the largest of the local maxima we will often �ndthe likelihood nearly constant in a low-dimensional set in which some of theparameters are functions of the others.2.3 Mixtures of discrete distributionsLatent Class analysis was developed by the mathematical sociologist PaulLazarsfeld who was interested in making more precise the relationship betweenunderlying or latent states that are not observable, and directly observablecategorical variables indicating these states.Latent class models can be described as follows: assume the population to bemade up ofK groups or sub-populationsG1; : : : ; GK in proportions �1; : : : ; �K .Let x be the vector of responses on the p variables that we observe on eachobservation, where the jth variable can take on levels numbered from 1 toMj . If the ith observation xi happens to come from Gk then its probabilityfunction is given byfk(xi; �k) = pYj=1Ym f�kjm : 1 � m �Mj and m = xigwhere �k are the parameters of the distribution of the responses in the kthsubpopulation, in this case being the probabilities f�kjmg that variable j takes8



level m, conditional on the observation belonging to group k. The overallprobability function is a mixture of these conditional probability functions:f(xi;�) = KXk=1�kfk(xi; �k)so that the latent class model is a �nite mixture model. The parameter vector� is made up of the �k and the �kjm as k, j, and m take on all allowablevalues. Note that the �k sum to one over k and the �kjm sum to one over mfor any �xed j, k.The original method of �tting these models, discussed at some length inLazarsfeld and Henry [1968] for the case of binary variables, was to attempt tosolve the system of equations given by equating the �tted cell probabilities tothe observed cell proportions. The solution of these equations can be di�cultand Latent Class analysis became much easier to use when Goodman [1974]introduced a new iterative algorithm for the maximum likelihood �tting oflatent class models. It soon became clear that this algorithm was a specialcase of the very general EM algorithm.To use latent class analysis as a clustering method the probability �ik thatthe ith observation comes from the kth group is �rst estimated by Bayes Rulefrom the estimated component distributions and the estimated proportions ineach component. In fact these probabilities are also required in the course ofthe algorithm, although it is not until the algorithm has converged that wecan use them for clustering. The versatility of latent class analysis as a clus-tering method was shown by Aitkin et al. [1981] who �tted 2-class and 3-classmodels to 38 binary variables describing how each of 468 teachers organisedtheir classes, interpreting the classes as levels of a `teaching style' factor insubsequent analyses. An even larger data set was studied by Pickering andForbes [1984] using this method. It consisted of clinical and diagnostic infor-mation about approximately 50,000 infant births. Eleven categorical variableseach having from 2 to 4 levels were used to �t models having between 1 and6 latent classes. The analysis was feasible because only about 600 distinctresponse pro�les actually occurred in the data. Pickering and Forbes givereferences to other studies using latent class methods.Most applications of latent class analysis remain within the social scienceswhere the method was developed. The ability to �t latent class models isone of the capabilities of `EM, a very general program for �tting models tocategorical data written by Vermunt [1997].2.4 Everitt's model for ordinal variablesEveritt [1988] proposed incorporating binary and ordinal variables into mix-ture models by means of `threshold' parameters which divide the real line into9



regions corresponding to outcomes of the ordinal variable. Such thresholdmodels have been widely used for ordinal data and a brief survey is givenby Zhaorong et al. [1992] where they are used in a continuous latent vari-able model for the comparison of 20 ternary variables representing variantsof microbiological test methods. This data could also have been analyzed bylatent class analysis which involves a discrete latent variable. Everitt andM�erette [1990] compare the clustering performance of Everitt's �nite mixturemethod on four simulated data sets each having 3 continuous and 2 categor-ical variables, and on Fisher's iris data [Andrews and Herzberg, 1985, pp.5-8] after two of the four variables had been categorised. They report goodperformance of the mixture method compared with conventional hierarchicalmethods. There are some severe practical limitations to the use of this methodat present. Everitt proposes the use of standard optimization algorithms ap-plied to the log-likelihood function. The computation of the log-likelihoodfunction requires the numerical evaluation of a q-dimensional integral, whereq is the number of categorical variables, and Everitt and M�erette consider noexamples where q > 2. Their methods would be di�cult to apply to the highlymultivariate data sets to which cluster analysis has traditionally been applied.For these reasons Multimix makes no special provision for ordinal variables.Depending on the circumstances it will usually be acceptable to treat themeither as categorical or continuous.3 The Multimix model familyWe will now describe our approach to mixture model clustering in detail.We expect the data to be in the form of an n � p matrix of observations byvariables which we regard as a random sample from the distribution f(x) =P�kfk(x), itself a �nite mixture of K component distributions fk in propor-tions �k � 0 satisfyingP�k = 1. We suppose that the vector of variables x =(x1; : : : ; xj ; : : : ; xp)0 has been partitioned into (x̂01 j : : : j x̂0l j : : : j x̂0L)0.We consider component distributions that factorize fk(x) = Ql fkl(x̂l), con-formably with this partition. This is a weak form of `local independence' :within each of the K subpopulations the variables in the subvector x̂l are in-dependent of the variables in x̂l0 for 1 � l < l0 � L. True `local independence'is the independence of each xj within subpopulations. We can write the modelfor the ith observation asf(xi;�) = KXk=1�k LYl=1 fkl(x̂il; �kl) (2:1)where �kl consists of the parameters of the distribution fkl and the �k arethe mixing proportions. This formulation includes the motivating examples ofLatent Class analysis [Aitkin et al., 1981] and mixtures of multivariate normals10



[McLachlan and Basford, 1988]. With one exception to be described latersubvectors will usually be formed with vectors of the same type, categoricalor continuous. When a subvector contains only a single variable, that variableis independent of all other variables within each subpopulation.It is convenient to assume forms for the fkl, and hence for the fk, that belongto the exponential family. The model is then well suited for maximum like-lihood estimation of its parameters by the EM algorithm of Dempster et al.[1977]. This approach is followed in Multimix with the following distributionsfor the x̂kl:(a) Discrete Distribution. Here x̂l = fxjg is a 1-dimensional discrete randomvariable taking values 1; : : : ;Mj with probabilities �kl1; : : : ; �klMj .(b) Multivariate Normal. Here x̂l is a pl-dimensional vector of continuousrandom variables with the Npl(�kl;�kl) distribution.(c) Location Model. Here x̂l is a 1+pl dimensional vector of random variableswith one discrete variable, xj , and pl continuous variables as elements. The dis-crete random variable takes values 1; : : : ;Mj with probabilities �kl1; : : : ; �klMj .Conditional on the discrete variable taking value m the pl continuous ran-dom variables have the multivariate normal distribution Npl(�mkl;�kl). SeeKrzanowski [1983] for details.If all variables are of continuous type, then the f(x) = P�kfk(x) will bea mixture of multivariate normal distributions. The way in which the setof variables is partitioned into subvectors determines the form of the ma-trix of covariance parameters in each fk. The form is block-diagonal with asquare block corresponding to each subvector. Extreme cases are the fullyunstructured covariance matrix case and the diagonal covariance matrix case.Unstructured covariance matrices introduce many parameters into the modeland hence should be avoided as far as possible. A reasonable strategy for�tting a mixture of multivariate normals for clustering purposes would be tobegin with the local independence case (diagonal covariance matrices) andthen to estimate the model parameters, assign observations to clusters andthen study the within-cluster correlation matrices. Variables that are highlycorrelated in some of the clusters could be grouped into a subvector and thewhole process repeated with the model so modi�ed.If all the variables are of discrete type the model is the usual Latent ClassModel. In principal local independence could fail in this situation as well,although this is not often checked for. If strong within-cluster associationsbetween two discrete variables are detected after a preliminary clustering thenthe two variables may be combined into a single discrete variable with a levelfor each cell of the two-way table (or fewer, if some cells are pooled).The location model for a subvector in the partition is introduced in the generalMultimix model to cope with the possibility of within-cluster associations be-tween a discrete variable and several continuous variables. We do not expect11



this facility to be needed very often in practice.Other types of variable models are available in other mixture modelling pro-grams to be discussed below. It is no problem in principal to add new typesof attribute model from within the exponential family to extend the Multimixmodel.As the model has been described, it is a mixture of K distributions, each ofwhich can be seen to belong to the exponential family. It is therefore well suitedfor maximum likelihood estimation of its parameters by the EM algorithm ofDempster et al. [1977] , and the Fortran 77 program Multimix was writtenby Lynette Hunt to do this.The `complete data', in EM terminology, consists of the n�p array of observeddata fxijg and the conceptual n�K array fzikg of class membership indica-tors. The indicator vectors z1; : : : ; zi; : : : ; zn are independently and identicallydistributed according to a multinomial distribution generated by one draw ona population made up of K categories in proportions �1; : : : ; �K .The complete-data speci�cation treats the zi as known leading to the log-likelihood LC(�) = log0@ nYi=1 KYk=124�zikk ( LYl=1 fkl(xi; �kl))zik351A= nXi=1 KXk=1(zik log �k + zik LXl=1 log fkl(xi; �kl))= nXi=1 KXk=1 zik log �k + KXk=1 lk(�k)where lk(�k) = nXi=1(zik LXl=1 log fkl(xi; �kl)) = LXl=1 nXi=1 zik log fkl(xi; �kl):Maximising the complete data log-likelihood LC(�) is equivalent to maximis-ing lk(�k) separately for each subvector in the partition. By substituting theappropriate density for the fkl Hunt [1996] deduces that the complete datasu�cient statistics for the model are1. For each class Gk the sum Xi zik;2. For each class Gk, each categorical variable xj, and each value m of xj ,the sum Xi zik�ijm;12



where �ijm = � 1 if xij =m0 otherwise ;3. (a) For each class Gk and each continuous variable xj belonging to amultivariate normal subvector, the sumsXi zikxij and Xi zikx2ij ;(b) For each class Gk and each pair of continuous variables xj and xj0 ,j < j0, belonging to the same multivariate normal subvector, thesum Xi zikxijxij0 ;4. (a) For each class Gk, each continuous variable xj belonging to a loca-tion model subvector indexed by l and each value m of the categor-ical variable ul, the sumsXi zikwilmxij and Xi zikwilmx2ij;(b) For each class Gk, each pair of continuous variables xj and xj0 ,j < j0, belonging to the location model subvector indexed by l andeach value m of the categorical variable ul, the sumXi zikwilmxijxij0 ;where wilm = � 1 if ul = m0 otherwise.The EM iteration alternates between two calculations, the E-step and the M-step. Beginning at a current value for �, say �(p),the vector of all unknownparameters, the E-step requires the calculation of Q(�;�(p)) = EfLC(�) jX;�(p)g, the expectation of the complete data log-likelihood, conditional onthe observed data and the current value of the parameters. Because thecomplete-data su�cient statistics are linear in the unobserved zik we can cal-culate Q(�;�(p)) from LC(�) by replacing zik with�̂ik = E(zik j xi;�(p)) = �(p)k fk(xi; �(p)k )KPk=1�(p)k fk(xi; �(p)k )in LC(�). That is, zik is replaced by the estimate of the posterior probability�ik that observation i belongs to group Gk.13



At the M-Step �(p+1) is chosen to be a value of � which maximises Q(�;�(p))with respect to its �rst argument. For the Multimix model the elements of�(p+1) are given bŷ�k = 1n nXi=1 �̂ik �̂klm = 1n�̂k Xi;uil=m �̂ik�̂kl = 1n�̂k nXi=1 �̂ikvil �̂kl = 1n�̂k nXi=1 �̂ik(vil � �̂kl)(vil � �̂kl)0�̂klm = 1n�̂k Xi;uil=m �̂ikvijm �̂kl = 1n�̂ Xi;uil=m �̂ik(vil � �̂klm)(vil � �̂klm)0for k = 1; : : : ;K and l = 1; : : : ; L. Note that the level probabilities �klm for thecategorical variables are calculated in the same way, irrespective of whetheror not the discrete variable ul belongs to a location model subvector.The current version of the program uses a convergence criterion to cease iter-ating when the di�erence in log-likelihoods at iteration t and iteration t� 10is less than 0.0000001. The iteration may be started either from an initialclassi�cation or from an initial set of parameter estimates. As the numberof parameters is quite large it is usually more convenient to begin with aclassi�cation.4 Example: Byar prostate cancer dataWe consider the clustering of cases on the basis of pre-trial covariates alone forthe Prostate Cancer clinical trial data of Byar and Green [1980] reproducedin Andrews and Herzberg [1985, pp 261{274]. This data set was obtainedfrom a randomized clinical trial comparing four treatments for 506 patientswith prostatic cancer grouped on clinical criteria into stages 3 and 4 of thedisease. As reported by Byar and Green Stage 3 represents local extension ofthe disease without evidence of distant metastasis, while Stage 4 representsdistant metastasis as evidenced by elevated acid phosphatase, x-ray evidence,or both. We will compare the clusters obtained by Multimix with the clinicalstages, and also consider the trial outcomes for patients in di�erent clusters.The treatments consisted of estrogen therapy at di�ering rates. Daily pillscontaining 0.0 (placebo), 0.2, 1.0, and 5.0 mg of diethylstilbestrol were ad-ministered in the four treatments. As Byar and Green noted little di�erencebetween the e�ects of the �rst two treatments and also between the e�ects ofthe last two treatments, we will call patients in either of the �rst two treat-ments `Untreated' and in either of the last two treatments `Treated'.There are twelve pre-trial covariates (Table 1) measured on each patient, sevenmay be taken to be continuous, four to be discrete, and one variable (SG) is14



an index nearly all of whose values lie between 7 and 15, and which could beconsidered either discrete or continuous. We will treat SG as a continuousvariable. A preliminary inspection of the data showed that the size of theprimary tumour (SZ) and serum prostatic acid phosphatase (AP) were bothskewed variables. These variables have therefore been transformed, SZ undera square root transformation, and AP using a logarithmic transformation,to make their distributions more symmetric. Observations that had missingvalues in any of the twelve pretreatment covariates were omitted from furtheranalysis, leaving 475 out of the original 506 observations available. In factseveral of the analyses to be described were also carried out using a version ofthe program which allows for missing observations, treating them as missingat random in the sense of Little and Rubin [1987] There was little variationfrom the results using only the complete observations.We will consider the �tting of 2-class models (K = 2). The simplest modelis the model [LInd] of complete local independence in which the componentdensities take the form fk(xi; �k) = 12Yl=1 fkl(x̂il; �kl);where �kl is the parameter vector for group k, subvector l; and k = 1; 2.Note that fkl(x̂il; �kl) is N(�kl; �2kl) for each of the 8 continuous variables, andD(�kl1; : : : ; �klml) for each of the 4 categorical variables.The �tting strategy used was a form of forward selection of covariances, be-ginning with [LInd] and progressively adding local associations to the modelby taking coarser and coarser partitions of the set of 12 variables. The mod-i�cations to the current model were determined by examining correlations,scatterplots and two-way tables within each of the two clusters formed by al-locating each observation according to the current model. Table 2 summarisesthe results of this �tting process and a description of some of the steps follows.When the data had been grouped into two classes following the �tting of [LInd],correlations between SBP and DBP of about 0.62 were observed within bothof the classes, and these appeared to be the strongest associations. The factthat one would expect such a correlation within any naturally formed group ofpatients made it compelling to �t a model [BPr] in which SBP and DBP had abivariate normal distribution within clusters. The partition of the variables forthis model placed these two variables together in a subvector, the remainingsubvectors being singletons. Thus [BPr] contains 2 more parameters than[LInd].The next group of variables chosen was the triple fBM;WtI;HGg, giving alocation model factor to the mixture densities as BM is dichotomous while WtIand HG are continuous. The resultant model is denoted by [3,2], referring tothe size of these variable groups. Six extra parameters are introduced in this15



change: there are four new mean parameters, as the �tted means of WtI andHG are now speci�c to each level of BM within each subpopulation, and twonew covariance parameters. Model [5] combines these two variable groups ata cost of introducing 12 new parameters and Model [9] has one large variablegroup combining BM with all 8 continuous variables. Table 2 also includes thelog-likelihoods obtained. In the case of [LInd], [BPr], [3,2] and [5] these log-likelihoods were obtained from several initial con�gurations including randomgroupings of the observations; however [9] proved to be sensitive to the choiceof starting con�guration and the greatest log-likelihood over 4 runs is shownfor this model. Convergence was usually obtained after 60 to 70 iterationsalthough one run for model [9] reached 200 iterations without converging.There was little di�erence between the group allocations determined by [LInd],[BPr], [3,2] and [5], with the allocation of only 4 patients out of 475 changingbetween these models. Model [9] allocations were sensitive to the initial classi-�cation and did not agree so closely with each other nor with the classi�cationsof the more parsimonious models. Comparing the [BPr] allocation with theclinical grouping into Stages 3 and 4 of the disease we �nd one cluster with252 Stage 3 and 21 Stage 4 patients and the other cluster with 21 Stage 3 and181 Stage 4 patients.It is of interest to examine the post-trial survival status of patients in thefour Stage/ cluster combinations, which have been arrived at using pre-trialinformation only. This information is presented in Table 3 for the [BPr] model,and it will be noticed that while model cluster 1 and clinical Stage 3 areassociated with a better chance of survival, the patterns of outcomes for the 42patients whose model and clinical classi�cations con
ict show that the modelclassi�cations are better indications of prognosis than the clinical criteria used.This is especially noticeable among the treated patients.Hunt [1996] analyses this data set in more detail, also �tting 3-class and 4-classmodels yielding classi�cations with distinctively di�erent outcome patternssuggesting that the models were detecting real features of the population. Shealso develops the methods of Little and Rubin [1987] for use with the modelof this paper and applies this to the complete data set of 506 Prostate Cancerpatients.5 Model comparison tests5.1 Number of components in the mixtureMcLachlan and Basford [1988] devote their section 1.10 to the question oftesting for the number of components in a mixture. The problem is di�cultbecause although a model with K1 components is nested within a model withK2 > K1 components the usual regularity conditions are not met. These con-ditions are required to conclude that if � is the likelihood ratio, �2 log � is16



asymptotically distributed as �2 with degrees of freedom equal to the di�er-ence in the number of parameters in the two models. In fact the asymptoticdistribution may depend on the true values of the parameters of the compo-nent distributions, so there will be no general result. McLachlan and Basforddiscuss a number of bootstrap approaches to the problem. Feng and McCul-loch [1992, 1994, 1996] have studied several aspects of this problem. In theirmost recent paper they recommend a bootstrap procedure. Bootstrap proce-dures would be very costly to apply to the clustering of data sets with manyobservations on many variables. Wolfe [1971] investigated the distribution of�2 log � when comparing nested mixtures of multivariate normal distributionsand recommended treating the distribution as �2, but with double the nomi-nal degrees of freedom. Ban�eld and Raftery [1993] developed an approximateBayesian approximate weight of evidence criterion as a guide for choosing thenumber of components in the mixture. Wallace and Dowe [1998] use a `mini-mum message length' criterion as a basis for their parameter estimation. Thismethod uni�es model selection and parameter estimation and leads to a choicefor the number of components.A speci�c example provides an illustration of how it may not be realistic toexpect to choose a value forK on sample evidence alone. Consider the problemof estimating growth and age structure in a stock of �sh from length-frequencydata. Suppose that k = 1 : : : K indexes K subpopulations �k (age classes) of�sh and that the �sh in �k all have age tk years, where tk = t1 + k � 1. Let�k be the proportion of the population in �k and �k and �k be the mean andstandard deviation of �k. Schnute and Fournier [1980] discuss the maximumlikelihood �tting of a model of this kind where the parameters �k and �kare modelled parametrically as functions of tk. In the �sheries applicationdiscussed by Schnute and Fournier the �k and �k tend to limiting values as kincreases and the �k vary because of annual recruitment variations but tendto diminish geometrically because of cumulative mortality, both natural and�shing. Thus as k increases the �k become closer together but are representedin the sample by smaller and smaller proportions. This kind of situation seemsvery natural but would appear to resist any form of statistical inference for thevalue of K. In view of the complexities of this question it seems best to regardthe number of components K as a choice to be made by the modeller, in muchthe same way as a functional form for a distribution is selected arbitrarily. Thisdoes not mean that model comparison statistics of the �2 log � kind cannotbe used heuristically. There remains the possibility that a small number ofobservations from unmodelled components will upset the �t of the model to thebulk of the data. Jorgensen [1990] discussed a number of diagnostic statisticsthat may be used to detect these points.
17



5.2 Number of within-cluster associationsIn contrast to the determination of the number of classes K, the standardlikelihood ratio tests for two nested models based on an approximate distribu-tion for �2 log � of �2 with degrees of freedom equal to the di�erence in thenumber of parameters in the two models are not likely to mislead. The mosttroublesome regularity condition requiring checking is that the third orderderivatives of log f with respect to the parameters are bounded (in a neigh-bourhood of the true parameter vector) by functions of the data with �niteexpectation [Lehmann, 1983, p. 429] . This can be shown to be the case,roughly, if the partial derivatives of the component densities fk, with respectto all parameters and up to third order, are not too large in comparison withthe mixture density f . Even for the simple case of a mixture of two bivariatenormals, a model with 11 parameters we have 63 + 63 third order derivativesof component densities to check, although many of these coincide. Checkingsome of these by hand suggests that all will be well unless a true varianceparameter is zero or a correlation is �1, that is, unless a component densityis degenerate. We also need neither proportion to be close to zero. A naturalconjecture in the case of a �nite mixture of multivariate normals is that theregularity conditions will be satis�ed as long as the smallest eigenvalue of thetrue variance/covariance matrix for each group is not close to zero. In practi-cal terms, the suggestion is that when a `Reduced' model is being comparedwith a `Full' model (having the same number of components, but with extraassociation parameters) that we may base a model comparison test on theassumption that �2 log � has an approximate distribution of �2 with degreesof freedom equal to the di�erence in the number of parameters in the twomodels when the Reduced model is operating, unless the �t obtained underthe Reduced model has any degeneracies either in the number of componentsor in the form of any of the components. Similar model selection problemsare considered by Dempster [1972] and Wermuth [1976a,b], but in the caseof a single multivariate normal component, rather than a mixture of these.Wermuth also considers loglinear contingency table models. These authorsparameterise the multivariate normal using the inverse of the covariance ma-trix, called the concentration matrix, rather than the covariance matrix. Theytest for the vanishing of a set of elements of the concentration matrix, which isequivalent to the vanishing of the corresponding set of partial correlations. Aswe restrict ourselves to models with block-diagonal covariance structure, andthe inverses may be calculated block by block, tests involving the splitting orcombining of blocks may be formulated either in terms of the covariances orthe concentrations.
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6 Other programs for mixture model clustering6.1 AutoClassAutoClass [Cheeseman and Stutz, 1996] is a Bayesian clustering program de-veloped by Peter Cheeseman and colleagues at NASA Ames Research Center.The models �tted by AutoClass are very similar to those �tted by Multimix,although both programs were developed independently. Two obvious di�er-ences are1. AutoClass has automated the process of model selection as well as thatof parameter estimation but Multimix leaves model-speci�cation to theuser;2. AutoClass uses Maximum Posterior estimation in place of MaximumLikelihood estimation.In fact the �rst is the more crucial di�erence, because the EM algorithm atthe basis of both programs accommodates both ML and MAP estimation.AutoClass compares di�erent models by calculating an approximation to themarginal density of the observed data after the model parameters have beenintegrated out. In usual EM language the approximation used is analogous totaking observed data likelihood to be proportional to complete data likelihoodwith the constant of proportionality to be evaluated at the maximum likelihoodestimates.The models currently available in AutoClass for attributes within a compo-nent are as follows. Categorical attributes are modelled by general discretedistributions (multi-category Bernoulli) as inMultimix. Continuous attributesmay be taken to have uniform or normal distributions, possibly after transfor-mation. Poisson distributions are available for count attributes. Cheesemanand Stutz [1996] report that von Mises-Fisher distributions for circular andspherical attributes are under development. At present it appears that Auto-Class does not o�er facilities for modelling within cluster dependencies, thatis, all models assume within-cluster independence of attributes. Missing val-ues are treated as a special kind of value in some attribute models, but therehas been no implementation of the Little and Rubin [1987] methodology fordata missing at random.Cheeseman and Stutz claim that the AutoClass method of model comparisonintroduces an `Occam factor' which penalizes over�tting. However Edwardsand Dowe [1998] describe the Minimum Message Length (see below) �tting ofa model that combined a continuous latent factor with a number of classes toa set of 5425 infrared spectra from astronomical point sources. Edwards andDowe found 12 classes where AutoClass had found 77 [Goebel et al., 1989]. Itis not clear whether the di�erence in the number of classes in the �t is dueto the explicit penalty on over�tting built into the Minimum Message Length19



criterion or whether it is the introduction of the continuous factor which isresponsible.6.2 SnobSnob [Wallace and Dowe, 1998] is a clustering program developed by ChrisWallace and co-workers at the Monash University Department of ComputerScience, beginning in the late sixties. [Wallace and Boulton, 1968]. Snob hasa home page at http://www.cs.monash.edu.au/~dld/Snob.html. Snob is amixture model similar in structure to AutoClass and o�ering local indepen-dence models based on discrete, Normal, Poisson and von Mises distributions.In fact Snob is the older program. A novel feature of Snob is that inferenceis by the principal of Minimum Message Length [Wallace and Freeman, 1987].This form of inference takes discrete variables as fundamental and seeks tominimise the negative logarithm of the probability of the model and param-eter values plus the negative logarithm of the probability of the data giventhe model and parameter values. A continuous analogue of this estimationprinciple is similar to Maximum Posterior estimation (MAP) but introducesan additional factor of (F (�))� 12 to the prior, where F (�) is the determinantof the Fisher information matrix at the parameter vector �.In contrast to Multimix, where the user must specify the number of classes,Snob selects the number of classes automatically using the Minimum MessageLength criterion. Thus the MML criterion is used for all aspects of modelselection and parameter estimation in the Snob approach.6.3 MclustBan�eld and Raftery [1993] have developed the classi�cation likelihood ap-proach of Scott and Symons further to introduce a controlled amount of 
ex-ibility to criterion-based cluster analysis for continuous data. Although thisapproach su�ers from the disadvantages mentioned in Section 1.2, it does leadsimilar optimization problems to those faced in traditional cluster analysis,and hence the model �tting may be done by algorithms similar to those usedto solve those problems. Wallace and Dowe [1998] point out that in the caseof a substantially overlapping pair of normal distributions having equal abun-dance and common � this kind of estimation is likely to overestimate thedi�erence in means and underestimate �.Bam�eld and Raftery characterize the dispersion matrices of multivariate nor-mal clusters by their orientation, size, and shape. They mainly consider modelswhere the shape is the same in each component of the mixture, but orientationand size are permitted to vary. They also consider an approach to robustifyingcluster analysis by allowing a very dispersed `noise' component in addition tothe multivariate normal components. 20



A Fortran program called Mclust has been written by Chris Fraley to �tthese models and others. It is available from StatLib either as a Fortranprogram or as an S-PLUS function. Although criterion-based, rather thanbeing based on a distance matrix, Mclust is written to proceed initially as anagglomerative hierarchical program. However once the number of clusters hasbeen determined by the userMclust can proceed by reallocating points to seeka minimum of the criterion in a fashion similar to the k-means algorithm ofHartigan [1975]. In recent versions of S-PLUS Mclust now forms the core ofthe clustering functions provided.7 The place of Multimix in mixture modellingThe brief survey of other related programs helps to clarify the role of Multimixas a mixture modelling tool. In contrast to Snob and AutoClass it automatesonly parameter estimation, leaving model selection to the control of the user.It appears to be unique in o�ering a maximum likelihood approach to a classof models extending mixtures of multivariate normals and latent class models.(Although it is possible that AutoClass and Snob might be coaxed into produc-ing similar output for at least some models by appropriate prior speci�cationand the switching o� of their model search facilities).A natural further development forMultimix would be to introduce new types ofattribute distribution such as the Poisson and circular von Mises distributions.To the extent that robust estimation is appropriate for a particular datasetit seems that it would be better to add a very small proportion of a highlydispersed component to the mixture than to follow Ban�eld and Raftery [1993]in modifying the likelihood criterion to gain robustness.There are no present plans to automate model selection in Multimix, but itmust be acknowledged that more needs to be done in the way of graphical diag-nostic output to assist the user with the re�nement of the models. Eventuallysome form of automation of model selection will be necessary if Multimix is tobe used on extremely large data sets, but we would feel happier about adopt-ing any proposal for model selection if we could compare it with human-drivenprocedures over a range of datasets.The availability of the four programs AutoClass, Mclust, Multimix and Snobo�ering similar ranges of models but using di�erent inferential principles pro-vides an opportunity to learn more about the strengths and weaknesses ofthese principles in the practical data analysis context of large multivariatedata sets. Currently Multimix is available as Fortran 77 source code fromthe URL ftp://ftp.math.waikato.ac.nz/pub/maj/. Some documentation,data sets and auxiliary programs are available at the same location.
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