MLton Guide (20070826)



MLton Guide (20070826) MLton Guide

MLton Guide

This is the guide for MLton, an open-source, whole-program, optimizing Standard ML compiler.

This guide was generated automatically from the MLton wiki, available online at http://mlton.org. It is up to
date for MLton 20070826.


http://mlton.org/

MLton Guide (20070826) Home

Home
What is MLton?

MLton is an open-source, whole-program, optimizing Standard ML compiler.

What's new?

¢ Please try out our new release, MLton 20070826.

Next steps

® Read about MLton's Features.

¢ ook at Documentation.

¢ See some Users of MLton.

¢ [BIDownload MLton.

¢ Meet the MLton Developers.

¢ Get involved with MLton Development.
¢ User-maintained FAQ.

¢ Contact us.

Last edited on 2007-08-26 19:55:03 by MatthewFluet.


http://mlton.org/Download
http://mlton.org/Download

MLton Guide (20070826) Index

Index

There are 334 pages.

AIBICIDIEIEIGIHITIJIKILIMINIOIPIRISITIUIVIWIXIZ

AccessControl
AdamGoode
AdmitsEquality
Alice
AllocateRegisters
AndreiFormiga

Arrayl.iteral
AST

BasisLibrary
Bug
Bugs20041109
Bugs20051202
Bugs20070826

Cc

CallGraph

CallingFromCToSML
CallingFromSML ToC
CallingFromSMIL ToCFunctionPointer
Changelog

ChrisClearwater

Chunkify

CKitlLibrary
Closure

ClosureConvert
CMinusMinus
CommonArg
CommonBlock
CommonSubexp
CompilationManager
CompilerOverview
CompileTimeOptions
CompilingWithSMLNJ
ConcurrentML
ConcurrentMLImplementation
ConstantPropagation



MLton Guide (20070826)

Contact

Contify

CoreML
CoreMLSimplify
CreatingPages
Credits

CrossCompiling
D

DeadCode

DeepFlatten

DefineTypeBeforeUse
DefinitionOfStandardML

Defunctorize

Developers

Development
Documentation

Drawbacks

E

Eclipse

EditingPages
Elaborate

Emacs
EmacsBgBuildMode
EmacsDefUseMode
Enscript
EqualityType
EqualityTypeVariable

EtaExpansion
eXene

T
I,JCS M

Features

FirstClassPolymorphism
Fixpoints

Flatten

Fold

FoldOIN

ForeignFunctionInterface

ForeignFunctionlnterfaceSyntax
ForeignFunctionlnterfaceTypes

Forl.oops

FrontEnd
FunctionalRecordUpdate
fxp

Index



MLton Guide (20070826)
G

GarbageCollection
GenerativeDatatype

GenerativeException
Glade

Globalize
GnuMP

H

HaMI et
HenryCeijtin
History
Home

HowProfilingWorks
HowToAttachFile

Identifier
Immutable

ImperativeTypeVariable
ImplementExceptions
ImplementHandlers
ImplementProfiling
ImplementSuffix
Index
InfixingOperators
Inline
InsertlimitChecks
InsertSignalChecks
Installation
Intermediatel.anguage
Introducel.oops

J

JesperLouisAndersen
JohnnyAndersen

K
KnownCase
L

LambdaCalculus
LambdaFree

LanguageChanges

Index



MLton Guide (20070826)

Lazy
Libraries

License
LineDirective
LLVM
LocalFlatten
LocalRef

Looplnvariant
M

Machine

ManualPage
MatchCompilation

MatchCompile
MatthewFluet

mGTK
MichaelNorrish
MikeThomas
ML

MI Basis

MI BasisAnnotationExamples

MI _BasisAnnotations

MI _BasisAvailablel ibraries

MI BasisExamples
MI BasisPathMap

MI BasisSyntax AndSemantics

MINLFFI

MLNLFFIImplementation
MLRISCLibrary

ML tonArray
MI tonBinlO

MI tonCont

ML tonExn

Ml tonFinalizable
ML tonGC

MI tonIntInf

MI tonlO

ML tonltimer

ML tonMonoArray
MI tonMonoVector
MI tonPlatform
MI tonPointer

ML tonProcEnv
MI tonProcess

MI tonProfile

Ml tonRandom

Ml tonReal

Index



MLton Guide (20070826)

MI_tonRlimit

ML tonRusage

ML.tonSignal
MI tonSocket

MI tonStructure
ML.tonSyslog
ML tonTextIO
Ml tonThread
Ml tonVector
MI tonWeak
MI tonWord
M1 tonWorld
MoinMoin
Monomorphise
MoscowML
Multi

Mutable

N

NumericLiteral

(0

ObjectOrientedProgramming
OCaml

OpenGL
OperatorPrecedence
Optional Arguments
OrphanedPages

OtherSites

Overloading

P

PackedRepresentation

PageSize
ParallelMove

Performance

PhantomType
PlatformSpecificNotes
PolyEqual

PolyML
PolymorphicEquality
Polyvariance

Poplog

PortingML ton
PrecedenceParse

Printf
PrintfGentle

Index



MLton Guide (20070826)

ProductType
Profiling
ProfilingAllocation
ProfilingCounts
ProfilingTheStack
ProfilingTime
Projects

Pronounce

PropertyList

R

RayRacine

Reachability
Redundant

RedundantTests
References
RefFlatten
Regions
Release20041109
Release20051202
Release20070826
ReleaseChecklist
RemoveUnused
Restore
ReturnStatement
RSSA
RSSAShrink

RSSASimplify
RunningOnAIX
RunningOnAMD64
RunningOnCygwin
RunningOnDarwin
RunningOnFreeBSD
RunningOnHPPA
RunningOnHPUX
RunningOnLinux
RunningOnMinGW
RunningOnNetBSD
RunningOnOpenBSD
RunningOnPowerPC
RunningOnSolaris
RunningOnSparc
RunningOnX86
RunTimeOptions

S

Scopelnference
SelfCompiling

Index



MLton Guide (20070826)

Serialization
ShowBasis
ShowProf

Shrink
SimplifyTypes
SMINET

SMINJ
SMI_NJDeviations

SMINJLibrary
SMLofNJStructure

SMIL.Sharp
Sources

SpaceSafety
SSA
SSA2

SSA2Simplify

SSASimplify
Stabilizers

StandardML
StandardMI_Books
StandardMI Gotchas

StandardMI History

StandardMIImplementations

StandardMI Portability
StandardMI Tutorials
StephenWeeks

StyleGuide
Subversion

SuccessorML

SureshJagannathan
Survey

SurveyDone
Swerve

SXML
SXMI Shrink

SXMLSimplify
SyntacticConventions
SystemlInfo

T

Talk

TalkDiveln
TalkFolkl ore
TalkFromSMI . To
TalkHowHigherOrder
TalkHowModules
TalkHowPolymorphism
TalkMI tonApproach
TalkMI tonFeatures

TalkML tonHistory

Index



MLton Guide (20070826)

TalkStandardML

TalkWholeProgram
TILT

TipsForWritingConciseSML
ToMachine

TomMurphy
ToRSSA
ToSSA2

TrustedGroup
TypeChecking
TypeConstructor
TypelndexedValues
TypeVariableScope

U

Unicode

UniversalType

UnresolvedBugs
UnsafeStructure

Useless
Users
Utilities

'

ValueRestriction
VariableArityPolymorphism
Variant

VesaKarvonen

w

WantedPages
WebSite
WesleyTerpstra

WholeProgramOptimization
WikiMacros

WikiName
WikiTool
Wishlist

X

XML

XML Shrink
XMLSimplify
XMLSimplifyTypes

Index

10



MLton Guide (20070826)
Z

Zone

2770rphanedPages

Index

11



MLton Guide (20070826) AST

AST

AST is the Intermediatel.anguage produced by the FrontEnd and translated by Elaborate to CoreML..

Description

The abstract syntax tree produced by the FrontEnd.

Implementation

@ast—programs.sig @ast—pro grams.fun
@ast—modules.sig [Blast-modules.fun

@ast—core.sig [Blast-core.fun
[Blast

Type Checking

The AST Intermediatel.anguage has no independent type checker. Type inference is performed on an AST
program as part of Elaborate.

Details and Notes

Last edited on 2006-11-02 17:54:45 by MatthewFluet.

12


http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ast/ast-programs.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ast/ast-programs.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ast/ast-programs.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ast/ast-programs.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ast/ast-modules.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ast/ast-modules.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ast/ast-modules.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ast/ast-modules.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ast/ast-core.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ast/ast-core.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ast/ast-core.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ast/ast-core.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ast
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ast

MLton Guide (20070826) AccessControl

AccessControl

MoinMoin supports a lot of Blaccess control features.

Because people download binaries from the MLton web site, and we are worried about malicious users either
changing those binaries, or changing the links that should point at those binaries, we allow editing of some
pages (in particular, Home, BiDownload, B|Experimental, and ReleaseYYYYMMDD pages) only by
TrustedGroup members.

All other pages are freely editable by any user with an account.

Last edited on 2007-08-24 20:29:18 by MatthewFluet.

13


http://moinmaster.wikiwikiweb.de/HelpOnAccessControlLists
http://moinmaster.wikiwikiweb.de/HelpOnAccessControlLists
http://mlton.org/Download
http://mlton.org/Download
http://mlton.org/Experimental
http://mlton.org/Experimental

MLton Guide (20070826)

AdamGoode

I maintain the Fedora package of MLton, in [#[Fedora Extras.

AdamGoode

Last edited on 2006-12-03 04:04:02 by AdamGoode.

14


http://fedoraproject.org/wiki/Extras
http://fedoraproject.org/wiki/Extras

MLton Guide (20070826) AdmitsEquality

AdmitsEquality

A TypeConstructor admits equality if whenever it is applied to equality types, the result is an EqualityType.
This notion enables one to determine whether a type constructor application yields an equality type solely
from the application, without looking at the definition of the type constructor. It helps to ensure that
PolymorphicEquality is only applied to sensible values.

The definition of admits equality depends on whether the type constructor was declared by a t ype definition
or a datatype declaration.

Type definitions

For type definition
type ('al, ..., 'an) t = ...

type constructor t admits equality if the right-hand side of the definition is an equality type after replacing
'al, ..., "an by equality types (it doesn't matter which equality types are chosen).

For a nullary type definition, this amounts to the right-hand side being an equality type. For example, after the
definition

type t = bool * int

type constructor t admits equality because bool * int is an equality type. On the other hand, after the
definition

type t = bool * int * real

type constructor t does not admit equality, because real is not an equality type.
For another example, after the definition

type 'a t = bool * 'a

type constructor t admits equality because bool * int is an equality type (we could have chosen any
equality type other than int).

On the other hand, after the definition

type 'a t = real * 'a

type constructor t does not admit equality because real * int is not equality type.
We can check that a type constructor admits equality using an egt ype specification.

structure Ok: sig eqtype 'a t end =
struct
type 'a t = bool * 'a
end

15



MLton Guide (20070826) AdmitsEquality

structure Bad: sig eqtype 'a t end =
struct
type 'a t = real * int * 'a
end

On structure Bad, MLton reports the following error.

Type t admits equality in signature but not in structure.
not equality: [real] * _ *

The not equality section provides an explanation of why the type did not admit equality, highlighting
the problematic component (real).

Datatype declarations

For a type constructor declared by a datatype declaration to admit equality, every variant of the datatype must
admit equality. For example, the following datatype admits equality because bool and char * int are
equality types.

datatype t = A of bool | B of char * int
Nullary constructors trivially admit equality, so that the following datatype admits equality.
datatype t = A | B | C

For a parameterized datatype constructor to admit equality, we consider each variant as a type definition, and
require that the definition admit equality. For example, for the datatype

datatype 'a t = A of bool * 'a | B of 'a
the type definitions

type 'a tA bool * 'a
type 'a tB = 'a

both admit equality. Thus, type constructor t admits equality.

On the other hand, the following datatype does not admit equality.
datatype 'a t = A of bool * 'a | B of real * 'a

As with type definitions, we can check using an eqt ype specification.

structure Bad: sig eqtype 'a t end =
struct
datatype 'a t = A of bool * 'a | B of real * 'a
end

MLton reports the following error.

Type t admits equality in signature but not in structure.
not equality: B of [real] * _

16



MLton Guide (20070826) AdmitsEquality

MLton indicates the problematic constructor (B), as well as the problematic component of the constructor's
argument.

Recursive datatypes

A recursive datatype like
datatype t = A | B of int * t

introduces a new problem, since in order to decide whether t admits equality, we need to know for the B
variant whether t admits equality. The Definition answers this question by requiring a type constructor to
admit equality if it is consistent to do so. So, in our above example, if we assume that t admits equality, then
the variant B of int * t admits equality. Then, since the A variant trivially admits equality, so does the
type constructor t. Thus, it was consistent to assume that t admits equality, and so, t does admit equality.

On the other hand, in the following declaration
datatype t = A | B of real * t

if we assume that t admits equality, then the B yvariant does not admit equality. Hence, the type constructor t
does not admit equality, and our assumption was inconsistent. Hence, t does not admit equality.

The same kind of reasoning applies to mutually recursive datatypes as well. For example, the following
defines both t and u to admit equality.

datatype t = A | B of u
and u = C | Dof t

But the following defines neither t nor u to admit equality.

datatype t = A | B of u * real
and u = C | Dof t

As always, we can check whether a type admits equality using an egt ype specification.

structure Bad: sig eqtype t eqtype u end =
struct
datatype t = A | B of u * real
and u = C | Dof t
end

MLton reports the following error.

Error: z.sml 1.16.
Type t admits equality in signature but not in structure.
not equality: B of [u] * [real]
Error: z.sml 1.16.
Type u admits equality in signature but not in structure.
not equality: D of [t]

Last edited on 2007-07-08 22:57:33 by MatthewFluet.

17



MLton Guide (20070826)

Alice

[B|Alice is an extension of SML with concurrency, distribution, and constraint solving.

Alice

Last edited on 2004-12-28 19:46:32 by StephenWeeks.

18


http://www.ps.uni-sb.de/alice/
http://www.ps.uni-sb.de/alice/

MLton Guide (20070826) AllocateRegisters

AllocateRegisters

AllocateRegisters is an analysis pass for the RSSA Intermediatel.anguage, invoked from ToMachine.

Description

Computes an allocation of RSSA variables as Machine register or stack operands.

Implementation
@allocate—registers.sig [Ballocate-re gisters.fun

Details and Notes

Last edited on 2006-11-02 17:36:11 by MatthewFluet.

19


http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/backend/allocate-registers.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/backend/allocate-registers.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/backend/allocate-registers.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/backend/allocate-registers.fun?view=markup

MLton Guide (20070826) AndreiFormiga

AndreiFormiga

I'm a graduate student just back in academia. I study concurrent and parallel systems, with a great deal of
interest in programming languages (theory, design, implementation). I happen to like functional languages.

I use the nickname tautologico on #sml and my email is andrei DOT formiga AT gmail DOT com.

Last edited on 2004-11-20 18:17:19 by AndreiFormiga.

20



MLton Guide (20070826) ArrayLiteral

ArrayLiteral

Standard ML does not have a syntax for array literals or vector literals. The only way to write down an array
is like

Array.fromList [w, x, y, z]

No SML compiler produces efficient code for the above expression. The generated code allocates a list and
then converts it to an array. To alleviate this, one could write down the same array using Array.tabulate,
or even using Array.array and Array.update, but that is syntactically unwieldy.

Fortunately, using Fold, it is possible to define constants A, and * so that one can write down an array like:
A 'w 'x 'y 'z §

This is as syntactically concise as the fromList expression. Furthermore, MLton, at least, will generate the
efficient code as if one had written down a use of Array.array followed by four uses of
Array.update.

Along with A and *, one can define a constant V that makes it possible to define vector literals with the same
syntax, e.g.,

V'w 'x 'y "z 8

Note that the same element indicator, ", serves for both array and vector literals. Of course, the $ is the
end-of-arguments marker always used with Fold. The only difference between an array literal and vector
literal is the A or V at the beginning.

Here is the implementation of A, V, and " . We place them in a structure and use signature abstraction to hide
the type of the accumulator. See Fold for more on this technique.

structure Literal:>

sig

type 'a z

val A: ('a z, 'a z, 'a array, 'd) Fold.t

val V: ('a z, 'a z, 'a vector, 'd) Fold.t

val * : ('a, 'a z, 'a z, 'b, 'c, 'd) Fold.stepl
end =
struct

type 'a z = int * 'a option * ('a array —> unit)

val A =
fn z =>
Fold.fold

((0, NONE, ignore),
fn (n, opt, fill) =>
case opt of

NONE =>
Array.tabulate (0, fn _ => raise Fail "arrayO")
| SOME x =>
let
val a = Array.array (n, x)
val () = fill a
in

21



MLton Guide (20070826) ArrayLiteral

end)
V4

val V = fn z => Fold.post (A, Array.vector) z

val = =
fn z =>
Fold.stepl
(fn (x, (i, opt, £fill)) =>
(1 + 1,
SOME x,
fn a => (Array.update (a, i, x); fill a)))
V4
end

The idea of the code is for the fold to accumulate a count of the number of elements, a sample element, and a
function that fills in all the elements. When the fold is complete, the finishing function allocates the array,
applies the fill function, and returns the array. The only difference between A and V is at the very end; A just
returns the array, while V converts it to a vector using post-composition, which is further described on the
Fold page.

Last edited on 2007-08-15 22:05:16 by MatthewFluet.

22



MLton Guide (20070826) BasisLibrary

BasisLibrary

The Standard ML Basis Library is a collection of modules dealing with basic types, input/output, OS
interfaces, and simple datatypes. It is intended as a portable library usable across all implementations of SML.
The official online version of the Basis Library specification is at [@http://www.standardml.org/Basis/. We
keep a copy at [@http://mlton.org/basis/. There is a _book that includes all of the online version and more. For
a reverse chronological list of changes to the specification, see

[Bhhttp.//www.standardml.org/Basis/history.html.

MLton implements all of the required portions of the Basis Library. MLton also implements many of the
optional structures. You can obtain a complete and current list of what's available using

mlton -show-basis (see ShowBasis). By default, MLton makes the Basis Library available to user
programs. You can also access the Basis Library from ML Basis files.

Below is a complete list of what MLton implements.

. Top-level types and constructors
. Top-level exception constructors
. Top-level values

. Overloaded identifiers

. Top-level signatures

. Top-level structures

. Top-level functors

. T'ype equivalences
. Real and Math functions

O 0 1O\ N B~ Wi~

Top-level types and constructors

egtype 'a array

datatype bool = false | true

egtype char

type exn

egtype int

datatype 'a list = nil | :: of ('a * 'a list)
datatype 'a option = NONE | SOME of 'a
datatype order = EQUAL | GREATER | LESS
type real

datatype 'a ref = ref of 'a

egtype string

type substring

egtype unit

eqtype 'a vector

egtype word

Top-level exception constructors
Bind
Chr

Div

23


http://www.standardml.org/Basis/
http://www.standardml.org/Basis/
http://mlton.org/basis/
http://mlton.org/basis/
http://www.standardml.org/Basis/history.html
http://www.standardml.org/Basis/history.html

MLton Guide (20070826)

Domain

Empty

Fail of string
Match

Option
Overflow

Size

Span

Subscript

Top-level values

BasisLibrary

MLton does not implement the optional top-level value use: string —-> unit, which conflicts with
whole-program compilation because it allows new code to be loaded dynamically. MLton implements all

other top-level values:

1, :1=,<>,=,Q, ", app, before, ceil, chr, concat, exnMessage, exnName, explode, floor,
foldl, foldr, getOpt, hd, ignore, implode, isSome, length, map, not, null, o, ord, print,

real, rev, round, size, str, substring, tl, trunc, valOf, vector.

Overloaded identifiers

*a +9 ) /7 <, <=, >, >=, ~, abS, d.lV, mod.

Top-level signatures

ARRAY

ARRAY?2
ARRAY_SLICE
BIN_IO
BIT_FLAGS
BOOL

BYTE

CHAR
COMMAND_ LINE
DATE

GENERAL
GENERIC_SOCK
IEEE_REAL
IMPERATIVE_TO
INET_SOCK
INTEGER
INT_INF

I0

LIST
LIST_PAIR
MATH
MONO_ARRAY
MONO_ARRAY?2

24



MLton Guide (20070826)

MONO_ARRAY_SLICE
MONO_VECTOR
MONO_VECTOR_SLICE
NET_HOST_DB
NET_PROT_DB
NET_SERV_DB
OPTION

0S

OS_FILE_SYS
0S_1IO

OS_PATH
OS_PROCESS
PACK_REAL
PACK_WORD
POSIX
POSIX_ERROR
POSIX_FILE_SYS
POSIX_IO
POSIX_PROCESS
POSIX_PROC_ENV
POSIX_SIGNAL
POSIX_SYS_DB
POSIX_TTY

PRIM IO

REAL

SOCKET
STREAM_IO
STRING
STRING_CVT
SUBSTRING

TEXT

TEXT_IO
TEXT_STREAM_TIO
TIME

TIMER

UNIX

UNIX_SOCK
VECTOR
VECTOR_SLICE
WORD

Top-level structures

structure Array: ARRAY
structure Array2: ARRAY2

structure ArraySlice:

ARRAY_SLICE

structure BinIO: BIN_IO

structure BinPrimIO:
structure Bool: BOOL

PRIM IO

structure BoolArray: MONO_ARRAY

BasisLibrary

25



MLton Guide (20070826)

structure
structure
structure
structure
structure
structure

® Char characters correspond to ISO-8859-1. The Char functions do not depend on locale.

structure
structure
structure
structure
structure
structure
structure

BoolArray2: MONO_ARRAY2
BoolArraySlice: MONO_ARRAY_SLICE
BoolVector: MONO_VECTOR
BoolVectorSlice: MONO_VECTOR_SLICE
Byte: BYTE

Char: CHAR

CharArray: MONO_ARRAY

CharArray2: MONO_ARRAY2
CharArraySlice: MONO_ARRAY_SLICE
CharVector: MONO_VECTOR
CharVectorSlice: MONO_VECTOR_SLICE
CommandLine: COMMAND_ LINE

Date: DATE

BasisLibrary

eDate.fromString and Date. scan accept a space in addition to a zero for the first character of

the day of the month. The Basis Library specification only allows a zero.

structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure

structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure

FixedInt: INTEGER
General: GENERAL
GenericSock: GENERIC_SOCK
IEEEReal: IEEE_REAL
INetSock: INET_SOCK
I0: IO

Int: INTEGER

Intl: INTEGER

Int2: INTEGER

Int3: INTEGER

Int4: INTEGER

Int31: INTEGER

Int32: INTEGER

Int64: INTEGER

IntArray: MONO_ARRAY

IntArray2: MONO_ARRAY2
IntArraySlice: MONO_ARRAY_SLICE
IntVector: MONO_VECTOR
IntVectorSlice: MONO_VECTOR_SLICE
Int8: INTEGER

Int8Array: MONO_ARRAY

Int8Array2: MONO_ARRAY2
Int8ArraySlice: MONO_ARRAY_SLICE
Int8Vector: MONO_VECTOR
Int8VectorSlice: MONO_VECTOR_SLICE
Intl6: INTEGER

Intl6Array: MONO_ARRAY
Intl6Array2: MONO_ARRAYZ2
Intl6ArraySlice: MONO_ARRAY_SLICE
Intl6Vector: MONO_VECTOR

26



MLton Guide (20070826)

structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure

IntloVectorSlice: MONO_VECTOR_SLICE
Int32: INTEGER

Int32Array: MONO_ARRAY

Int32Array2: MONO_ARRAY2
Int32ArraySlice: MONO_ARRAY_SLICE
Int32Vector: MONO_VECTOR
Int32VectorSlice: MONO _VECTOR_SLICE
Int64Array: MONO_ARRAY

Int64Array2: MONO_ARRAYZ2
Int64ArraySlice: MONO_ARRAY_SLICE
Int64Vector: MONO_VECTOR
Int64VectorSlice: MONO _VECTOR_SLICE
IntInf: INT_INF

LargeInt: INTEGER

LargeIntArray: MONO_ARRAY
LargeIntArray2: MONO_ARRAY2
LargeIntArraySlice: MONO_ARRAY_SLICE
LargeIntVector: MONO_VECTOR
LargeIntVectorSlice: MONO_VECTOR_SLICE
LargeReal: REAL

LargeRealArray: MONO_ARRAY
LargeRealArray2: MONO_ARRAY2
LargeRealArraySlice: MONO_ARRAY_SLICE
LargeRealVector: MONO_VECTOR
LargeRealVectorSlice: MONO_VECTOR_SLICE
LargeWord: WORD

LargeWordArray: MONO_ARRAY
LargeWordArray2: MONO_ARRAY2
LargeWordArraySlice: MONO_ARRAY_SLICE
LargeWordVector: MONO_VECTOR
LargeWordVectorSlice: MONO_VECTOR_SLICE
List: LIST

ListPair: LIST_ PAIR

Math: MATH

NetHostDB: NET_HOST_DB

NetProtDB: NET_PROT_DB

NetServDB: NET_SERV_DB

0S: 0S

Option: OPTION

PackReal32Big: PACK_REAL
PackReal32Little: PACK_REAL
PackReal64Big: PACK_REAL
PackRealo64lLittle: PACK_REAL
PackRealBig: PACK_REAL
PackReallLittle: PACK_REAL
PackWordl6Big: PACK_WORD
PackWordloeLittle: PACK_WORD
PackWord32Big: PACK_WORD
PackWord32Little: PACK_WORD
PackWord64Big: PACK_WORD
PackWordod4Little: PACK_WORD

BasisLibrary

27



MLton Guide (20070826)

structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure

BasisLibrary

Position: INTEGER

Posix: POSIX

Real: REAL

RealArray: MONO_ARRAY

RealArray2: MONO_ARRAY2
RealArraySlice: MONO_ARRAY_SLICE
RealVector: MONO_VECTOR
RealVectorSlice: MONO_VECTOR_SLICE
Real32: REAL

Real32Array: MONO_ARRAY
Real32Array2: MONO_ARRAYZ2
Real32ArraySlice: MONO_ARRAY_SLICE
Real32Vector: MONO_VECTOR
Real32VectorSlice: MONO_VECTOR_SLICE
Real6d4: REAL

Real64Array: MONO_ARRAY
Real64Array2: MONO_ARRAYZ2
Real64ArraySlice: MONO_ARRAY_SLICE
Realo64Vector: MONO_VECTOR
Realo64d4VectorSlice: MONO_VECTOR_SLICE
Socket: SOCKET

e The Basis Library specification requires functions like Socket . sendVec to raise an exception if
they fail. However, on some platforms, sending to a socket that hasn't yet been connected causes a
SIGPIPE signal, which invokes the default signal handler for SIGPIPE and causes the program to
terminate. If you want the exception to be raised, you can ignore SIGPIPE by adding the following
to your program.

let
open MLton.Signal
in
setHandler (Posix.Signal.pipe, Handler.ignore)
end
structure String: STRING

® The St ring functions do not depend on locale.

structure
structure

StringCvt:
Substring:

STRING_CVT
SUBSTRING

structure SysWord: WORD
structure Text: TEXT
structure TextIO: TEXT_IO
structure TextPrimIO: PRIM_IO
structure Time: TIME
structure Timer: TIMER
structure Unix: UNIX
structure UnixSock: UNIX_ SOCK
structure Vector: VECTOR
structure VectorSlice: VECTOR_SLICE
structure Word: WORD
structure Wordl: WORD

28



MLton Guide (20070826) BasisLibrary

structure Word2: WORD
structure Word3: WORD
structure Word4: WORD

structure Word31l: WORD

structure Word32: WORD

structure Word64: WORD

structure WordArray: MONO_ARRAY

structure WordArray2: MONO_ARRAYZ2

structure WordArraySlice: MONO_ARRAY_ SLICE
structure WordVectorSlice: MONO_VECTOR_SLICE
structure WordVector: MONO_VECTOR

structure Word8Array: MONO_ARRAY

structure Word8Array2: MONO_ARRAY2

structure Word8ArraySlice: MONO_ARRAY_SLICE
structure Word8Vector: MONO_VECTOR

structure Word8VectorSlice: MONO_VECTOR_SLICE
structure Wordl6Array: MONO_ARRAY

structure Wordl6Array2: MONO_ARRAY2

structure Wordl6ArraySlice: MONO_ARRAY_SLICE
structure Wordlo6Vector: MONO_VECTOR

structure Wordlo6VectorSlice: MONO_VECTOR_SLICE
structure Word32Array: MONO_ARRAY

structure Word32Array2: MONO_ARRAY2

structure Word32ArraySlice: MONO_ARRAY_SLICE
structure Word32Vector: MONO_VECTOR

structure Word32VectorSlice: MONO_VECTOR_SLICE
structure Word64Array: MONO_ARRAY

structure Word64Array2: MONO_ARRAY2

structure Word64ArraySlice: MONO_ARRAY_SLICE
structure Word64Vector: MONO_VECTOR

structure Word64VectorSlice: MONO_VECTOR_SLICE

Top-level functors

ImperativelIO
PrimIO
StreamIO

¢ MLton's St reamIO functor takes structures ArraySlice and VectorSlice in addition to the
arguments specified in the Basis Library specification.

Type equivalences

The following types are equivalent.

FixedInt Int64.1int
LargeInt = IntInf.int
LargeReal.real = Real64.real
LargeWord = Word64.word

29



MLton Guide (20070826) BasisLibrary

The default int, real, and word types may be set by the —~-default-type type compiler option. By
default, the following types are equivalent:

int = Int.int = Int32.int
real = Real.real = Realb6b4d.real
word = Word.word = Word32.word

Real and Math functions

The Real, Real32, and Real 64 modules are implemented using the C math library, so the SML functions
will reflect the behavior of the underlying library function. We have made some effort to unify the differences
between the math libraries on different platforms, and in particular to handle exceptional cases according to
the Basis Library specification. However, there will be differences due to different numerical algorithms and
cases we may have missed. Please submit a bug report if you encounter an error in the handling of an
exceptional case.

On x86, real arithmetic is implemented internally using 80 bits of precision. Using higher precision for
intermediate results in computations can lead to different results than if all the computation is done at 32 or 64
bits. If you require strict IEEE compliance, you can compile with —~ieee—fp true, which will cause
intermediate results to be stored after each operation. This may cause a substantial performance penalty.

Last edited on 2007-08-23 03:19:17 by MatthewFluet.

30



MLton Guide (20070826) Bug
Bug

To report a bug, please send mail to EIMLton @mlton.org. Please include the complete SML program that
caused the problem and a log of a compile of the program with ~verbose 2. For large messages (over
256K), please send an email containing the discussion text and a link to any large files. You may use our
[BfTemporaryUpload page for uploading large files.

There are some UnresolvedBugs that we don't plan to fix.

We also maintain a list of bugs found with each release.

® Bugs20051202
® Bugs20041109

Last edited on 2006-08-10 12:26:17 by VesaKarvonen.

31


mailto:MLton@mlton.org
mailto:MLton@mlton.org
http://mlton.org/TemporaryUpload
http://mlton.org/TemporaryUpload

MLton Guide (20070826) Bugs20041109

Bugs20041109

Here are the known bugs in MLton 200411009, listed in reverse chronological order of date reported.

eMLton.Finalizable.touch doesn't necessarily keep values alive long enough. Our SVN has a
patch to the compiler. You must rebuild the compiler in order for the patch to take effect.

Thanks to Florian Weimer for reporting this bug.

¢ A bug in an optimization pass may incorrectly transform a program to flatten ref cells into their
containing data structure, yielding a type-error in the transformed program. Our CVS has a [@lpatch to
the compiler. You must rebuild the compiler in order for the patch to take effect.

Thanks to VesaKarvonen for reporting this bug.

® A bug in the front end mistakenly allows unary constructors to be used without an argument in
patterns. For example, the following program is accepted, and triggers a large internal error.

fun £ x = case x of SOME => true | _ => false
We have fixed the problem in our CVS.
Thanks to William Lovas for reporting this bug.
¢ A bug in Posix.IO.{getlk,setlk,setlkw} causes a link-time error:
undefined reference to Posix_IO_FLock_typ Our CVShasa @p_atch to the Basis
Library implementation.

Thanks to Adam Chlipala for reporting this bug.

* A bug can cause programs compiled with -profile alloc to segfault. Our CVS has a [@patch to
the compiler. You must rebuild the compiler in order for the patch to take effect.

Thanks to John Reppy for reporting this bug.

® A bug in an optimization pass may incorrectly flatten ref cells into their containing data structure,
breaking the sharing between the cells. Our CVS has a @lpatch to the compiler. You must rebuild the
compiler in order for the patch to take effect.
Thanks to Paul Govereau for reporting this bug.

e Some arrays or vectors, such as (char * char) vector, are incorrectly implemented, and will
conflate the first and second components of each element. Our CVS has a @patch to the compiler.
You must rebuild the compiler in order for the patch to take effect.

Thanks to Scott Cruzen for reporting this bug.

® Socket.Ctl.getLINGER and Socket .Ctl.setLINGER mistakenly raise Subscript. Our
CVS has a [@patch to the Basis Library implementation.

32


http://mlton.org/cgi-bin/viewcvs.cgi/mlton/mlton/mlton/ssa/ref-flatten.fun.diff?r1=1.35&r2=1.37
http://mlton.org/cgi-bin/viewcvs.cgi/mlton/mlton/mlton/ssa/ref-flatten.fun.diff?r1=1.35&r2=1.37
http://mlton.org/cgi-bin/viewcvs.cgi/mlton/mlton/basis-library/posix/primitive.sml.diff?r1=1.34&r2=1.35
http://mlton.org/cgi-bin/viewcvs.cgi/mlton/mlton/basis-library/posix/primitive.sml.diff?r1=1.34&r2=1.35
http://mlton.org/cgi-bin/viewcvs.cgi/mlton/mlton/mlton/backend/ssa-to-rssa.fun.diff?r1=1.106&r2=1.107
http://mlton.org/cgi-bin/viewcvs.cgi/mlton/mlton/mlton/backend/ssa-to-rssa.fun.diff?r1=1.106&r2=1.107
http://mlton.org/cgi-bin/viewcvs.cgi/mlton/mlton/mlton/ssa/ref-flatten.fun.diff?r1=1.32&r2=1.33
http://mlton.org/cgi-bin/viewcvs.cgi/mlton/mlton/mlton/ssa/ref-flatten.fun.diff?r1=1.32&r2=1.33
http://mlton.org/cgi-bin/viewcvs.cgi/mlton/mlton/mlton/backend/packed-representation.fun.diff?r1=1.32&r2=1.33
http://mlton.org/cgi-bin/viewcvs.cgi/mlton/mlton/mlton/backend/packed-representation.fun.diff?r1=1.32&r2=1.33
http://mlton.org/cgi-bin/viewcvs.cgi/mlton/mlton/basis-library/net/socket.sml.diff?r1=1.14&r2=1.15
http://mlton.org/cgi-bin/viewcvs.cgi/mlton/mlton/basis-library/net/socket.sml.diff?r1=1.14&r2=1.15

MLton Guide (20070826) Bugs20041109

Thanks to Ray Racine for reporting the bug.

¢ CML Mailbox.send makes a call in the wrong atomic context. Our CVS has a [@lpatch to the CML
implementation.

¢ 0S.Path.joinDirFile and OS.Path.toString did not raise InvalidArc when they were
supposed to. They now do. Our CVS has a Bpatch to the Basis Library implementation.

Thanks to Andreas Rossberg for reporting the bug.

¢ The front end incorrectly disallows sequences of expressions (separated by semicolons) after a topdec
has already been processed. For example, the following is incorrectly rejected.

val x = 0;
ignore x;
ignore x;

We have fixed the problem in our CVS.
Thanks to Andreas Rossberg for reporting the bug.

¢ The front end incorrectly disallows expansive val declarations that bind a type variable that doesn't
occur in the type of the value being bound. For example, the following is incorrectly rejected.

val 'a x = let exception E of 'a in () end
We have fixed the problem in our CVS.
Thanks to Andreas Rossberg for reporting this bug.

¢ The x86 codegen fails to account for the possibility that a 64-bit move could interfere with itself (as
simulated by 32-bit moves). We have fixed the problem in our CVS.

Thanks to Scott Cruzen for reporting this bug.

® NetHostDB.scan and NetHostDB. fromString incorrectly raise an exception on internet
addresses whose last component is a zero, e.g 0.0 . 0. 0. Our CVS has a @patch to the Basis Library
implementation.

Thanks to Scott Cruzen for reporting this bug.

® StreamIO. inputLine has an off-by-one error causing it to drop the first character after a newline
in some situations. Our CVS has a @patch. to the Basis Library implementation.

Thanks to Scott Cruzen for reporting this bug.

®BinIO.getInstreamand TextIO.getInstream are implemented incorrectly. This also
impacts the behavior of BinIO.scanStreamand TextIO.scanStream. If you (directly or
indirectly) realize a TextIO.StreamIO.instream and do not (directly or indirectly) call
TextIO.setInstream with a derived stream, you may lose input data. We have fixed the
problem in our CVS.

33


http://mlton.org/cgi-bin/viewcvs.cgi/mlton/mlton/lib/cml/core-cml/mailbox.sml.diff?r1=1.3&r2=1.4
http://mlton.org/cgi-bin/viewcvs.cgi/mlton/mlton/lib/cml/core-cml/mailbox.sml.diff?r1=1.3&r2=1.4
http://mlton.org/cgi-bin/viewcvs.cgi/mlton/mlton/basis-library/system/path.sml.diff?r1=1.8&r2=1.11
http://mlton.org/cgi-bin/viewcvs.cgi/mlton/mlton/basis-library/system/path.sml.diff?r1=1.8&r2=1.11
http://mlton.org/cgi-bin/viewcvs.cgi/mlton/mlton/basis-library/net/net-host-db.sml.diff?r1=1.12&r2=1.13
http://mlton.org/cgi-bin/viewcvs.cgi/mlton/mlton/basis-library/net/net-host-db.sml.diff?r1=1.12&r2=1.13
http://mlton.org/cgi-bin/viewcvs.cgi/mlton/mlton/basis-library/io/stream-io.fun.diff?r1=text&tr1=1.29&r2=text&tr2=1.30&diff_format=h
http://mlton.org/cgi-bin/viewcvs.cgi/mlton/mlton/basis-library/io/stream-io.fun.diff?r1=text&tr1=1.29&r2=text&tr2=1.30&diff_format=h

MLton Guide (20070826) Bugs20041109

Thanks to WesleyTerpstra for reporting this bug.

®Posix.ProcEnv.setpgid doesn't work. If you compile a program that uses it, you will get a link
time error

undefined reference to "Posix_ProcEnv_setpgid’

The bug is due to Posix_ProcEnv_setpgid being omitted from the MLton runtime. We fixed
the problem in our CVS by adding the following definition to
runtime/Posix/ProcEnv/ProcEnv.c

Int Posix_ProcEnv_setpgid (Pid p, Gid g) {
return setpgid (p, 9g);
}

Thanks to Tom Murphy for reporting this bug.

Last edited on 2007-08-24 20:21:00 by MatthewFluet.

34



MLton Guide (20070826) Bugs20051202

Bugs20051202

Here are the known bugs in MLton 20051202, listed in reverse chronological order of date reported.

* Bug in the [@Real<N>.fmt, [BiReal<N>.fromString, BIReal<N>.scan, and [#Real<N>.toString
functions of the basis library implementation. These functions were using TO_NEAREST semantics,
but should obey the current rounding mode. (Only Real<N>.fmt StringCvt.EXACT,
Real<N>.fromDecimal, and Real<N>.toDecimal are specified to override the current
rounding mode with TO_NEAREST semantics.) Thanks to Sean McLaughlin for the bug report. Fixed
by revision #15827.

® Bug in the treatment of floating-point operations. Floating-point operations depend on the current
rounding mode, but were being treated as pure. Thanks to Sean McLaughlin for the bug report. Fixed
by revision #5794,

* Bug in the [#Real32.tolnt function of the basis library implementation could lead incorrect results
when applied to a Real . real value numerically close to valOf (Int .maxInt) . Fixed by
revision [5764.

* The [Socket structure of the basis library implementation used andb rather than orb to unmarshal
socket options (for Socket .Ct1l.get<OPT> functions). Thanks to Anders Petersson for the bug
report and patch. Fixed by revision #5735.

* Bug in the [@Date structure of the basis library implementation yielded some functions that would
erroneously raise Date when applied to a year before 1900. Thanks to Joe Hurd for the bug report.
Fixed by revision [5732.

® Bug in monomorphisation pass could exhibit the error Type error: type mismatch. Thanks
to Vesa Karvonen for the bug report. Fixed by revision B5731.

* The [EPackReal<N>.toBytes function in the basis library implementation incorrectly shared (and
mutated) the result vector. Thanks to Eric McCorkle for the bug report and patch. Fixed by revision
[i5281.

® Bug in elaboration of FFI forms. Using a unary FFI types (e.g., array, ref, vector) in places
where MLton.Pointer.t was required would lead to an internal error TypeError. Fixed by

revision [214890.

* The MMONO VECTOR signature of the basis library implementation incorrectly omits the
specification of £ind. Fixed by revision 4707.

¢ The optimizer reports an internal error (TypeError) when an imported C function is called but not
used. Thanks to jq for the bug report. Fixed by revision E4690.

® Bug in pass to flatten data structures. Thanks to Joe Hurd for the bug report. Fixed by revision
[Bl4662.

¢ The native codegen's implementation of the C-calling convention failed to widen 16-bit arguments to
32-bits. Fixed by revision [@4631.

35


http://mlton.org/basis/real.html#SIG:REAL.fmt:VAL
http://mlton.org/basis/real.html#SIG:REAL.fmt:VAL
http://mlton.org/basis/real.html#SIG:REAL.fromString:VAL
http://mlton.org/basis/real.html#SIG:REAL.fromString:VAL
http://mlton.org/basis/real.html#SIG:REAL.scan:VAL
http://mlton.org/basis/real.html#SIG:REAL.scan:VAL
http://mlton.org/basis/real.html#SIG:REAL.toString:VAL
http://mlton.org/basis/real.html#SIG:REAL.toString:VAL
http://mlton.org/cgi-bin/viewsvn.cgi?rev=5827&view=rev
http://mlton.org/cgi-bin/viewsvn.cgi?rev=5827&view=rev
http://mlton.org/cgi-bin/viewsvn.cgi?rev=5794&view=rev
http://mlton.org/cgi-bin/viewsvn.cgi?rev=5794&view=rev
http://mlton.org/basis/real.html#SIG:REAL.toInt:VAL
http://mlton.org/basis/real.html#SIG:REAL.toInt:VAL
http://mlton.org/cgi-bin/viewsvn.cgi?rev=5764&view=rev
http://mlton.org/cgi-bin/viewsvn.cgi?rev=5764&view=rev
http://mlton.org/basis/socket.html
http://mlton.org/basis/socket.html
http://mlton.org/cgi-bin/viewsvn.cgi?rev=5735&view=rev
http://mlton.org/cgi-bin/viewsvn.cgi?rev=5735&view=rev
http://mlton.org/basis/date.html
http://mlton.org/basis/date.html
http://mlton.org/cgi-bin/viewsvn.cgi?rev=5732&view=rev
http://mlton.org/cgi-bin/viewsvn.cgi?rev=5732&view=rev
http://mlton.org/cgi-bin/viewsvn.cgi?rev=5731&view=rev
http://mlton.org/cgi-bin/viewsvn.cgi?rev=5731&view=rev
http://mlton.org/basis/pack-float.html#SIG:PACK_REAL.toBytes:VAL
http://mlton.org/basis/pack-float.html#SIG:PACK_REAL.toBytes:VAL
http://mlton.org/cgi-bin/viewsvn.cgi?rev=5281&view=rev
http://mlton.org/cgi-bin/viewsvn.cgi?rev=5281&view=rev
http://mlton.org/cgi-bin/viewsvn.cgi?rev=4890&view=rev
http://mlton.org/cgi-bin/viewsvn.cgi?rev=4890&view=rev
http://mlton.org/basis/mono-vector.html
http://mlton.org/basis/mono-vector.html
http://mlton.org/cgi-bin/viewsvn.cgi?rev=4707&view=rev
http://mlton.org/cgi-bin/viewsvn.cgi?rev=4707&view=rev
http://mlton.org/cgi-bin/viewsvn.cgi?rev=4690&view=rev
http://mlton.org/cgi-bin/viewsvn.cgi?rev=4690&view=rev
http://mlton.org/cgi-bin/viewsvn.cgi?rev=4662&view=rev
http://mlton.org/cgi-bin/viewsvn.cgi?rev=4662&view=rev
http://mlton.org/cgi-bin/viewsvn.cgi?rev=4631&view=rev
http://mlton.org/cgi-bin/viewsvn.cgi?rev=4631&view=rev

MLton Guide (20070826) Bugs20051202

e The IPACK_REAL structures of the basis library implementation used byte, rather than element,
indexing. Fixed by revision @l4411.

® MLton.share could cause a segmentation fault. Fixed by revision [#14400.
e The SSA simplifier could eliminate an irredundant test. Fixed by revision E4370.

e A program with a very large number of functors could exhibit the error
ElaborateEnv.functorClosure: firstTycons. Fixed by revision [84344.

Last edited on 2007-08-24 20:21:04 by MatthewFluet.

36


http://mlton.org/basis/pack-float.html
http://mlton.org/basis/pack-float.html
http://mlton.org/cgi-bin/viewsvn.cgi?rev=4411&view=rev
http://mlton.org/cgi-bin/viewsvn.cgi?rev=4411&view=rev
http://mlton.org/cgi-bin/viewsvn.cgi?rev=4400&view=rev
http://mlton.org/cgi-bin/viewsvn.cgi?rev=4400&view=rev
http://mlton.org/cgi-bin/viewsvn.cgi?rev=4370&view=rev
http://mlton.org/cgi-bin/viewsvn.cgi?rev=4370&view=rev
http://mlton.org/cgi-bin/viewsvn.cgi?rev=4344&view=rev
http://mlton.org/cgi-bin/viewsvn.cgi?rev=4344&view=rev

MLton Guide (20070826) Bugs20070826

Bugs20070826

Here are the known bugs in MLton 20070826, listed in reverse chronological order of date reported.

Last edited on 2007-08-26 19:54:52 by MatthewFluet.

37



MLton Guide (20070826) CKitLibrary

CKitLibrary

The @ickit Library is a C front end written in SML that translates C source code (after preprocessing) into
abstract syntax represented as a set of SML datatypes. The ckit Library is distributed with SML/NJ. Due to
differences between SML/NJ and MLton, this library will not work out-of-the box with MLton.

As of 20070812, MLton includes a port of the ckit Library synchronized with SML/NJ version 110.65.

Usage

® You can import the ckit Library into an MLB file with:
MLB file Description

$(SML_LIB) /ckit—-1ib/ckit-1ib.mlb

e If you are porting a project from SML/NJ's CompilationManager to MLton's ML Basis system using
cm2mlb, note that the following map is included by default:

Sckit-lib.cm/ckit-1lib.cm S (SML_LIB) /ckit-1lib/ckit-1lib.mlb

This will automatically converta $/ckit—-1ib.cm importin an input . cm file into a
$ (SML_LIB) /ckit-1lib/ckit-1ib.mlb import in the output .mlb file.

Details

The following changes were made to the ckit Library, in addition to deriving the .m1Db file from the . cm
files:

®parser/parse-tree-sig.sml (modified): Rewrote use of (sequential) withtype in
signature.

e parser/parse-tree.sml (modified): Rewrote use of (sequential) withtype.

® ast/ast-sig.sml (modified): Rewrote use of withtype in signature.

® ast/pp/pp-1lib.sml (modified): Rewrote use of or-patterns.

® ast/pp/pp-ast—ext—sig.sml (modified): Rewrote use of signaturein local.

® ast/pp/pp-ast—adornment-sig.sml (modified): Rewrote use of signaturein local.

® ast/type-util-sig.sml (modified): Rewrote use of signaturein local.

® ast/type-util.sml (modified): Rewrote use of or-patterns.

® ast/sizeof.sml (modified): Rewrote use of or-patterns.

®ast/initializer-normalizer.sml (modified): Rewrote use of or-patterns.

® ast/build-ast.sml (modified): Rewrote use of or-patterns.

Patch

e Wickit.patch

Last edited on 2007-08-23 17:24:41 by MatthewFluet.

38


http://www.smlnj.org/doc/ckit
http://www.smlnj.org/doc/ckit
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/lib/ckit-lib/ckit.patch?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/lib/ckit-lib/ckit.patch?view=markup

MLton Guide (20070826) CMinusMinus

CMinusMinus

[BIC-- is a portable assembly language intended to make it easy for compilers for different high-level
languages to share the same backend. An experimental version of MLton has been made to generate C--.

[Bthttp://mlton.org/pipermail/mlton/2005-March/026850.html

Also see

e LLVM

Last edited on 2006-09-04 20:25:21 by StephenWeeks.

39


http://cminusminus.org
http://cminusminus.org
http://mlton.org/pipermail/mlton/2005-March/026850.html
http://mlton.org/pipermail/mlton/2005-March/026850.html

MLton Guide (20070826) CallGraph

CallGraph

For easier visualization of profiling data, m1prof can create a call graph of the program in dot format, from
which you can use the Blgraphviz software package to create a postscript graph. For example,

mlprof -call-graph foo.dot foo mlmon.out

will create foo . dot with a complete call graph. For each source function, there will be one node in the
graph that contains the function name (and source position with ~show—1ine true), as well as the
percentage of ticks. If you want to create a call graph for your program without any profiling data, you can
simply call m1prof without any m1mon . out files, as in

mlprof —-call-graph foo.dot foo

Because SML has higher-order functions, the call graph is is dependent on MLton's analysis of which
functions call each other. This analysis depends on many implementation details and might display spurious
edges that a human could conclude are impossible. However, in practice, the call graphs tend to be very
accurate.

Because call graphs can get big, m1prof provides the —keep option to specify the nodes that you would like
to see. This option also controls which functions appear in the table that m1prof prints. The argument to
—-keep is an expression describing a set of source functions (i.e. graph nodes). The expression e should be of
the following form.

thresh-gc x)
thresh-stack x)

In the grammar, a1l denotes the set of all nodes. "s" is a regular expression denoting the set of functions
whose name (followed by a space and the source position) has a prefix matching the regexp. The and, not,
and or expressions denote intersection, complement, and union, respectively. The pred and succ
expressions add the set of immediate predecessors or successors to their argument, respectively. The from
and t o expressions denote the set of nodes that have paths from or to the set of nodes denoted by their
arguments, respectively. Finally, thresh, thresh-gc, and thresh-stack denote the set of nodes
whose percentage of ticks, gc ticks, or stack ticks, respectively, is greater than or equal to the real number x.

For example, if you want to see the entire call graph for a program, you can use —keep all (this is the
default). If you want to see all nodes reachable from function foo in your program, you would use
-keep ' (from "foo")'.Or, if you want to see all the functions defined in subdirectory bar of your
project that used at least 1% of the ticks, you would use

-keep '(and ".*/bar/" (thresh 1.0))"'

40


http://www.research.att.com/sw/tools/graphviz/
http://www.research.att.com/sw/tools/graphviz/

MLton Guide (20070826) CallGraph

To see all functions with ticks above a threshold, you can also use —~thresh x, which is an abbreviation for
-keep ' (thresh x)'.You can not use multiple ~keep arguments or both ~keep and ~thresh.
When you use —keep to display a subset of the functions, m1prof will add dashed edges to the call graph to
indicate a path in the original call graph from one function to another.

When compiling with ~-profile-stack true,youcanusemlprof -gray true to make the nodes
darker or lighter depending on whether their stack percentage is higher or lower.

MLton's optimizer may duplicate source functions for any of a number of reasons (functor duplication,
monomorphisation, polyvariance, inlining). By default, all duplicates of a function are treated as one. If you
would like to treat the duplicates separately, you can use mlprof -split regexp, which will cause all
duplicates of functions whose name has a prefix matching the regular expression to be treated separately. This
can be especially useful for higher-order utility functions like General. o.

Caveats

Technically speaking, m1prof produces a call-stack graph rather than a call graph, because it describes the
set of possible call stacks. The difference is in how tail calls are displayed. For example if £ nontail calls g
and g tail calls h, then the call-stack graph has edges from f to g and £ to h, while the call graph has edges
from f to g and g to h. That is, a tail call from g to h removes g from the call stack and replaces it with h.

Last edited on 2005-11-30 23:11:25 by StephenWeeks.

41



MLton Guide (20070826) CallingFromCToSML

CallingFromCToSML

MLton's ForeignFunctionInterface allows programs to export SML functions to be called from C. Suppose

you would like export from SML a function of type real * char -> int asthe C function foo. MLton

extends the syntax of SML to allow expressions like the following:

_export "foo": (real * char -> int) -> unit;

The above expression exports a C function named f oo, with prototype

Int32 foo (Real64 x0, Char x1);

The _export expression denotes a function of type (real * char —-> int) -> unit that when
called with a function f, arranges for the exported foo function to call £ when foo is called. So, for

example, the following exports and defines foo.

val e = _export "foo": (real * char -> int) -> unit;
val _ e (fn (x, c) => 13 + Real.floor x + Char.ord c)

The general form of an _export expression is
_export "C function name" attr... : cFuncTy -> unit;

The type and the semicolon are not optional. As with _import, a sequence of attributes may follow the
function name.

MLton's —export—-header option generates a C header file with prototypes for all of the functions

exported from SML. Include this header file in your C files to type check calls to functions exported from
SML. This header file includes t ypedefs for the types that can be passed between SML and C.

Example

Suppose that export .sml is

val e = _export "f": (int * real * char -> char) -> unit;
val _ = ¢ (£fn (i, r, _) =>

(print (concat ["i1i = ", Int.toString i,

" r =", Real.toString r, "\n"])
#"g"))

val g = _import "g": unit -> unit;
val _ =g ()
val _ =g ()
val e = _export "£2": (Word8.word -> word array) —-> unit;
val _ = e (fn w =>

Array.tabulate (10, f£n _ => Word.fromLargeWord (Word8.toLargeWord w)))
val g2 = _import "g2": unit -> word array;
val a = g2 ()
val _ = print (concat ["Owx", Word.toString (Array.sub (a, 0)), "\n"])
val e = _export "£3": (unit -> unit) -> unit;
val _ = e (fn () => print "hello\n");
val g3 = _import "g3": unit -> unit;
val _ = g3 ()

42



MLton Guide (20070826)

(* This example demonstrates mutual recursion between C and SML. *)

val e = _export "£4": (int -> unit) -> unit;

val g4 = _import "g4": int -> unit;

val _ = e (fn i => if i = 0 then () else g4 (i - 1))
val _ = g4 13

val (_, zzzSet) = _symbol "zzz" alloc: (unit -> int)
val () = zzzSet 42

val g5 = _import "g5": unit -> unit;

val _ = g5 ()

val _ = print "success\n"

Create the header file with —export—-header.

)

% mlton -default-ann 'allowFFI true' \
—export—header export.h
-stop tc \

export.sml

—

export . h now contains the following C prototypes.

Int8 £ (Int32 x0, Real6d4 x1, Int8 x2);
Pointer f2 (Word8 x0);

void £3 ();

void f4 (Int32 x0);

extern Int32 zzz;
Use export.hina C program, ffi-export.c, as follows.

#include <stdio.h>
#include "export.h"

void g () {
Char8 c;
fprintf (stderr, "g starting\n");
c = f (13, 17.15, 'a');
fprintf (stderr, "g done char = %c\n", c);
}
Pointer g2 () {
Pointer res;
fprintf (stderr, "g2 starting\n");
res = f2 (0xFF);
fprintf (stderr, "g2 done\n");

return res;

void g3 () {
fprintf (stderr, "g3 starting\n");
£3 ();
fprintf (stderr, "g3 done\n");
}
void g4 (Int32 i) {
fprintf (stderr, "g4 (%d)\n", 1i);

*

(int -> unit);

CallingFromCToSML

43



MLton Guide (20070826)

f4 (i);
}
void g5 () {
fprintf (stderr, "g5 ()\n");
fprintf (stderr, "zzz = %i\n", zzz);

fprintf (stderr, "g5 done\n");

Compile ffi-export.c and export.sml.

o\°

gcc —-c ffi-export.c
% mlton —-default-ann 'allowFFI true' \
export.sml ffi-export.o

Finally, run export.

% ./export
g starting

g4 (0)
success

Download

* Mlexport.sml
° @ffi—export.c

CallingFromCToSML

Last edited on 2006-11-02 17:34:21 by MatthewFluet.

44


http://mlton.org/cgi-bin/viewsvn.cgi/*checkout*/mlton/tags/on-20070826-release/doc/examples/ffi/export.sml
http://mlton.org/cgi-bin/viewsvn.cgi/*checkout*/mlton/tags/on-20070826-release/doc/examples/ffi/export.sml
http://mlton.org/cgi-bin/viewsvn.cgi/*checkout*/mlton/tags/on-20070826-release/doc/examples/ffi/ffi-export.c
http://mlton.org/cgi-bin/viewsvn.cgi/*checkout*/mlton/tags/on-20070826-release/doc/examples/ffi/ffi-export.c

MLton Guide (20070826) CallingFromSMLToC

CallingFromSMLToC

MLton's ForeignFunctionInterface allows an SML program to import C functions. Suppose you would like to
import from C a function with the following prototype:

int foo (double d, char c);

MLton extends the syntax of SML to allow expressions like the following:

_import "foo": real * char -> int;

This expression denotes a function of type real * char -> int whose behavior is implemented by
calling the C function whose name is foo. Thinking in terms of C, imagine that there are C variables d of

type double, c of type unsigned char, and i of type int. Then, the C statement 1 = foo (d, c)
is executed and i is returned.

The general form of an _import expression is:
_import "C function name" attr... : cFuncTy;
The type and the semicolon are not optional.

The function name is followed by a (possibly empty) sequence of attributes, analogous to C
__attribute___ specifiers. For now, the only attributes supported are cdecl and stdcall. These
specify the calling convention of the C function on Cygwin/Windows, and are ignored on all other platforms.
The default is cdecl. You must use stdcall in order to correctly call Windows API functions.

Example

import.sml imports the C function ££i and the C variable FFI_INT as follows.

(* main.sml *)

(* Declare ffi to be implemented by calling the C function ffi. *)
val ffi = _import "ffi": real array * int ref * int -> char;
open Array

val size = 10

val a = tabulate (size, fn i => real 1)
val r = ref O

val n = 17

(* Call the C function *)

val ¢ = ffi (a, r, n)

val (nGet, nSet) = _symbol "FFI_INT": (unit -> int) * (int -> unit);
val _ = print (concat [Int.toString (nGet ()), "\n"])

val =

print (if ¢ = #"c" andalso !r = 45
then "success\n"
else "fail\n")

45



MLton Guide (20070826)
ffi-import.cis
#include "platform.h"
Int32 FFI_INT = 13;
Word32 FFI_WORD = 0OxFF;
Bool FFI_BOOL = TRUE;

Real64 FFI_REAL = 3.14159;

Char8 ffi (Pointer al, Pointer a2, Int32 n) {

double *ds = (double*)al;
int *p = (int*)a2;
int i;

double sum;

for (i = 0; 1 < GC_getArraylLength (al); ++1i)
sum += ds[i];
ds[i] += n;

}

*p = (int) sum;

return 'c';

Compile and run the program.

% mlton -default-ann 'allowFFI true' import.sml ffi-import.c

oe

./import
3
success

=

Download

e Wlimport.sml
o Biffi-import.c

Next Steps

e CallingFromSMI ToCFunctionPointer

{

CallingFromSMLToC

Last edited on 2006-11-14 01:25:50 by MatthewFluet.

46


http://mlton.org/cgi-bin/viewsvn.cgi/*checkout*/mlton/tags/on-20070826-release/doc/examples/ffi/import.sml
http://mlton.org/cgi-bin/viewsvn.cgi/*checkout*/mlton/tags/on-20070826-release/doc/examples/ffi/import.sml
http://mlton.org/cgi-bin/viewsvn.cgi/*checkout*/mlton/tags/on-20070826-release/doc/examples/ffi/ffi-import.c
http://mlton.org/cgi-bin/viewsvn.cgi/*checkout*/mlton/tags/on-20070826-release/doc/examples/ffi/ffi-import.c

MLton Guide (20070826) CallingFromSMLToCFunctionPointer

CallingFromSMLToCFunctionPointer

Just as MLton can directly call C functions, it is possible to make indirect function calls; that is, function calls
through a function pointer. MLton extends the syntax of SML to allow expressions like the following:

_import * : MLton.Pointer.t -> real * char -> int;
This expression denotes a function of type

MLton.Pointer.t -> real * char -> int

whose behavior is implemented by calling the C function at the address denoted by the MLt on.Pointer.t
argument, and supplying the C function two arguments, a double and an int. The C function pointer may
be obtained, for example, by the dynamic linking loader (d1open, dlsym, ...).

The general form of an indirect _import expression is:
_import * attr... : cPtrTy —-> cFuncTy;

The type and the semicolon are not optional.

Example

This example uses d1open and friends (imported using normal _import) to dynamically load the math
library (1ibm) and call the cos function. Suppose iimport .sml contains the following.

signature DYN_LINK =
sig
type hndl
type mode
type fptr

val dlopen : string * mode -> hndl
val dlsym : hndl * string —-> fptr
val dlclose : hndl -> unit

val RTLD_LAZY : mode
val RTLD_NOW : mode
end

structure DynLink :> DYN_LINK =
struct
type hndl MLton.Pointer.t
type mode = Word32.word

type fptr = MLton.Pointer.t
val dlopen =
_import "dlopen" : string * mode -> hndl;

val dlerror =

_import "dlerror": unit -> MLton.Pointer.t;
val dlsym =

_import "dlsym" : hndl * string -> fptr;
val dlclose =

_import "dleclose" : hndl -> Int32.int;

47



MLton Guide (20070826)

val RTLD_LAZY

= 0wx00001 (* Lazy function call binding.

CallingFromSMLToCFunctionPointer

*)

val RTLD_NOW = 0wx00002 (* Immediate function call binding. *)
val dlerror = £n () =>
let
val addr = dlerror ()
in
if addr = MLton.Pointer.null
then NONE
else let
fun loop (index, cs) =
let
val w = MLton.Pointer.getWord8 (addr, index)
val ¢ = Byte.byteToChar w
in
if ¢ = #"\00O"
then SOME (implode (rev cs))
else loop (index + 1, c::cs)
end
in
loop (0, [1)
end
end
val dlopen = fn (filename, mode) =>
let
val filename = filename ~ "\000"
val hndl = dlopen (filename, mode)
in
if hndl = MLton.Pointer.null
then raise Fail (case dlerror () of
NONE => "?2?2?"
| SOME s => s)
else hndl
end
val dlsym = £n (hndl, symbol) =>
let
val symbol = symbol ~ "\000"
val fptr = dlsym (hndl, symbol)
in
case dlerror () of
NONE => fptr
| SOME s => raise Fail s
end
val dlclose = f£n hndl =>
if MLton.Platform.0OS.host = MLton.Platform.OS.Darwin
then () (* Darwin reports the following error message 1f you
* try to close a dynamic library.
* "dynamic libraries cannot be closed"
* So, we disable dlclose on Darwin.
*)
else
let
val res = dlclose hndl
in
if res =0

then ()
else raise Fail

(case dlerror
NONE =>

() of

nooon

48



MLton Guide (20070826) CallingFromSMLToCFunctionPointer

| SOME s => s)

end
end
val dll =
let
open MLton.Platform.OS
in

case host of
Cygwin => "cygwinl.dll"
| Darwin => "libm.dylib"
| _ => "libm.so"
end

val hndl = DynLink.dlopen (dll, DynLink.RTLD_LAZY)

local
val double_to_double =
_import * : DynLink.fptr -> real -> real;
val cos_fptr = DynLink.dlsym (hndl, "cos")

in
val cos = double_to_double cos_fptr
end
val _ = print (concat [" Math.cos(2.0) = ", Real.toString (Math.cos 2.0), "\n",
"libm.so::cos(2.0) = ", Real.toString (cos 2.0), "\n"])
val _ = DynLink.dlclose hndl

Compile and run i import.sml.

% mlton —-default-ann 'allowFFI true' \
-target-link-opt linux -1d1 \
-target-link-opt solaris -1dl \

iimport.sml

% iimport

Math.cos(2.0) = ~0.416146836547
libm.so::cos (2.0) ~0.416146836547

This example also shows the —~target-1ink-opt option, which uses the switch when linking only when
on the specified platform. Compile with —verbose 1 to see in more detail what's being passed to gcc.

Download

¢ Wliimport.sml

Last edited on 2006-11-02 17:49:16 by MatthewFluet.

49


http://mlton.org/cgi-bin/viewsvn.cgi/*checkout*/mlton/tags/on-20070826-release/doc/examples/ffi/iimport.sml
http://mlton.org/cgi-bin/viewsvn.cgi/*checkout*/mlton/tags/on-20070826-release/doc/examples/ffi/iimport.sml

MLton Guide (20070826)

Changelog

Here are the changes from version 20051202 to version 2007087?7.

Summary:
+ New platforms:
amd64-1linux, amdo64-freebsd
hppa-hpux
powerpc-aix
x86—darwin (Mac 0OS X)
+ Compiler.
o Support for 64-bit platforms.
* Native amdé64 codegen.
o Command-line switches.

* Added: -codegen amd64, -codegen x86, -default-type <type>,
-profile-val {false|true}.

* Changed: -stop f (file listing now includes .mlb files)

o Bytecode codegen.
* Support for profiling.
* Support for exception history.
+ Language.
o ML Basis annotations.
* Removed: allowExport, allowImport, sequenceUnit, warnMatch.
+ Libraries.
o Basis Library.

* Added: PackWordl6Big, PackWordleLittle, PackWord64Big,
PackWord64Little.

* Bug Fixes: see changelog.

o MLton structure.

* Added: MLTON_MONO_ARRAY, MLTON_MONO_VECTOR, MLTON_REAL,
MLton.BinIO.tempPrefix, MLton.CharArray, MLton.CharVector,
MLton.IntInf.BigWord, MLton.IntInf.SmallInt,
MLton.Exn.defaultTopLevelHandler,
MLton.Exn.getTopLevelHandler, MLton.Exn.setTopLevelHandler,
MLton.LargeReal, MLton.LargeWord, MLton.Real, MLton.Real32,
MLton.Real64, MLton.Rlimit.Rlim, MLton.TextIO.tempPrefix,
MLton.Vector.create, MLton.Word.bswap, MLton.Word8.bswap,
MLton.Wordl6, MLton.Word32, MLton.Wordé64, MLton.Word8Array,
MLton.Word8Vector.

* Changed: MLton.Array.unfoldi, MLton.IntInf.rep, MLton.Rlimit,
MLton.Vector.unfoldi.

* Deprecated: MLton.Socket

o Other libraries.
* Added: MLRISC libary.
* Updated: ckit library, SML/NJ library.
+ Tools.

O O O O

* 2007-08-12
- Removed deprecated ML Basis annotations.

* 2007-08-06
- Fixed bug in treatment of Real<N>.{scan,fromString} operations.
Real<N>.{scan, fromString} were using TO_NEAREST semantics, but
should obey current rounding mode. (Only Real<N>.fromDecimal is
specified to always have TO_NEAREST semantics.) Thanks to Sean
McLaughlin for the bug report.

* 2007-07-27
- Fixed bugs in constant-folding of floating-point operations with
codegen.

Changelog

50



MLton Guide (20070826) Changelog

* 2007-07-26
- Fixed bug in treatment of floating-point operations. Floating-point
operations depend on the current rounding mode, but were being
treated as pure. Thanks to Sean McLaughlin for the bug report.

* 2007-07-13
- Added MLton.Exn.{default, get, set}TopLevelHandler.

* 2007-07-12
- Restored native option to -codegen flag.

* 2007-07-11
- Fixed bug in Real32.toInt: conversion of real values close to
Int.maxInt could be incorrect.

* 2007-07-07
- Updates to bytecode code generator: support for amd64-* targets,
support for profiling (including exception history).
- Fixed bug in Socket module of Basis Library; unmarshalling of
socket options (for get* functions) used andb rather than orb.
Thanks to Anders Petersson for the bug report (and patch).

* 2007-07-06
— Fixed bug in Date module of Basis Library; some functions would

erroneously raise Date when given a year <= 1900. Thanks to Joe
Hurd for the bug report.
- Fixed a long-standing bug in monomorphisation pass. Thanks to

Vesa Karvonen for the bug report.

* 2007-05-18
- Native amdé64 code generator for amdé64-* targets.
— Eliminate native option from -codegen flag.
- Add x86 and amd64 options to -codegen flag.

* 2007-04-29
— Improved type checking of RSSA and Machine ILs.

* 2007-04-14
- Fixed aliasing issues with basis/Real/*.c files.
- Added real/word casts in MLton structure.

* 2007-04-12
- Added primitives for bit cast of word to/from real.
— Implement PackReal<N>{Big,Little} using PackWord<N>{Big,Little}
and bit casts.

* 2007-04-11
- Move all system header #include-s to platform/ os headers.
- Use C99 <assert.h>, rather than custom "assert.{h,c}".

* 2007-03-13
- Implement PackWord<N>{Big,Little} entirely in ML, using an ML
byte swap function.

* 2007-02-25
— Change amdé64-* target platforms from 32-bit compatability mode

(i.e., -m32) to 64-bit mode (i.e., -m64). Currently, only the C
codegen is able to generate 64-bit executables.

* 2007-02-23

51



MLton Guide (20070826) Changelog

- Removed expert command line switch -coalesce <n>.
— Added expert command line switch -chunkify {coalesce<n>|func|one}.

* 2007-02-20
— Fixed bug in PackReal<N>.toBytes. Thanks to Eric McCorkle for the
bug report (and patch).

* 2007-02-18
— Added command line switch -profile-val, to profile the evaluation of
val bindings; this is particularly useful with exception history for
debugging uncaught exceptions at the top-level.

* 2006-12-29
- Added command line switch -show {anns|path-map} and deprecated command
line switch —-show-anns {false|true}. Use -show path-map to see the
complete MLB path map as seen by the compiler.

* 2006-12-20
- Changed the output of command line switch -stop f to include mlb-files.
This is useful for generating Makefile dependencies. The old output is
easy to recover if necessary (e.g. grep -v '\.mlb$').

* 2006-12-8
- Added command line switches —{,target}-{as,cc,link}-opt—quote, which
pass their argument as a single argument to gcc (i.e., without
tokenization at spaces). These options support using headers and
libraries (including the MLton runtime headers and libraries) from a
path with spaces.

* 2006-12-02
- Extensive reorganization of garbage collector, runtime system, and
Basis Library implementation. (This is in preparation for future
64bit support.) They should be more C standards compliant and easier
to port to new systems.
- FFI revisions
Disallow nested indirect types (e.g., int array array).

* 2006-11-30
- Fixed a bug in elaboration of FFI forms; unary FFI types (e.g.,
array, ref, vector) could be used in places where MLton.Pointer.t was
required. This would later cause the compiler to raise the TypeError
exception, along with a lot of XML IL.

* 2006-11-19
- On *-darwin, work with GnuMP installed via Fink or MacPorts.

* 2006-10-30
- Ported to x86-darwin.

* 2006-09-23
— Added missing specification of find to the MONO_VECTOR signature.

* 2006-08-03
- Fixed a bug in the "useless" SSA optimization, caused by calling
an imported C function and then ignoring the result.

* 2006-06-24
- Fixed a bug in pass to flatten data structures. Thanks to Joe Hurd

for the bug report.

* 2006-06-08

52



MLton Guide (20070826) Changelog

- Fixed a bug in the native codegen's implementation of the C-calling
convention.

* 2006-05-11

— Ported to PowerPC-AIX.

- Fixed a bug in the runtime for the cases where nonblocking IO with
sockets was implemented using MSG_DONTWAIT. This flag does not
exist on AIX, Cygwin, HPUX, and MinGW and was previously just
ignored. Now the runtime simulates the flag for these platforms
(except MinGW, yet, where it's still ignored).

* 2006-05-06
- Added -default-type '<ty><N>' for specifying the binding of default
types in the Basis Library (e.g., Int.int).

* 2006-04-25
- Ported to HPPA-HPUX.
- Fixed PackReal{,32,64}{Big,Little} to follow the Basis Library
specification.

* 2006-04-19
- Fixed a bug in MLton.share that could cause a segfault.

* 2006-03-30
— Changed MLton.Vector.unfoldi to return the state in addition to the
result vector.

* 2006-03-30
- Added MLton.Vector.create, a more powerful vector-creation function
than is available in the basis library.

* 2006-03-04
- Added MLRISC from SML/NJ 110.57 to standard distribution.

* 2006-03-03
- Fixed bug in SSA simplifier that could eliminate an irredundant test.

* 2006-03-02
- Ported a bugfix from SML/NJ for a bug with the combination of withNack
and never in CML.

* 2006-02-09
- Support compiler specific annotations in ML Basis files. If an
annotation contains ":", then the text preceding the ":" is meant to
denote a compiler. For MLton, if the text preceding the ":" is equal
to "mlton", then the remaining annotation is scanned as a normal
annotation. If the text preceding the ":" is not-equal to "mlton",
then the annotation is ignored, and no warning is issued.

* 2006-02-04
- Fixed bug in elaboration of functors; a program with a very large

number of functors could exhibit the error
"ElaborateEnv. functorClosure: firstTycons".

Here are the changes from version 20041109 to version 20051202.
Summary:

+ New license: BSD-style instead of GPL.
+ New platforms:

53



MLton Guide (20070826) Changelog

o hppa: Debian Linux.
o x86: MinGW.
+ Compiler.
o improved exception history.
o Command-line switches.
* Added: —-as-opt, —-mlb-path-map, -target—-as-opt, —-target-cc-opt.
* Deprecated: none.
* Removed: -native, -sequence-unit, -warn-match, -warn-unused.
+ Language.
o FFI syntax changes and extensions.
* Added: _symbol.
* Changed: _export, _import.
* Removed: _ffi.
o ML Basis annotations.
* Added: allowFFI, nonexhaustiveExnMatch, nonexhaustiveMatch,
redundantMatch, sequenceNonUnit.
* Deprecated: allowExport, allowImport, sequenceUnit, warnMatch.
+ Libraries.
o Basis Library.
* Added: Intl, Wordl.
o MLton structure.
* Added: Process.create, ProcEnv.setgroups, Rusage.measureGC,
Socket.fdToSock Socket.Ctl.getError.
* Changed: MLton.Platform.Arch.
o Other libraries.
* Added: ckit library, ML-NLFFI library, SML/NJ library.
+ Tools.
o updates of mllex and mlyacc from SML/NJ.
o added mlnlffigen.
o profiling supports better inclusion/exclusion of code.

* 2005-11-19
- Updated SML/NJ Library and CKit Library from SML/NJ 110.57.

* 2005-11-15
- Fixed a bug in MLton.ProcEnv.setgroups.

* 2005-11-11
- Fixed a bug in the interleaving of lexing/parsing and elaborating of
ML Basis files, which would raise an unhandled Force exception on
cyclic basis references. Thanks to John Dias for the bug report.

* 2005-11-10

- Fixed two bugs in Time.scan. One would raise Time on a string with a
large fractional component. Thanks to Carsten Varming for the bug
report. The other failed to scan strings with an explicit sign

followed by a decimal point.

* 2005-11-03
- Removed MLton.GC.setRusage.
— Added MLton.Rusage.measureGC.

* 2005-09-11
- Fixed bug in display of types with large numbers of type
variables, which could cause unhandled exception Chr.

* 2005-09-08
— Fixed bug in type inference of flexible records that would show up

as "Type error: variable applied to wrong number of type args".

* 2005-09-06

54



MLton Guide (20070826) Changelog

- Fixed bug in Real.signBit, which had assumed that the underlying
C signbit returned 0 or 1, when in fact any nonzero value is
allowed to indicate the signbit is set.

* 2005-09-05
— Added -mlb-path-map switch.

* 2005-08-25
- Fixed bug in MLton.Finalizable.touch, which was not keeping alive
finalizable values in all cases.

* 2005-08-18

- Added SML/NJ Library and CKit Library from SML/NJ 110.55 to
standard distribution.

- Fixed bug in Socket.Ctl.*, which got the endianness wrong on
big-endian machines. Thanks to Wesley Terpstra for the bug report
and fix.

— Added MLton.GC.setRusage.

- Fixed bug in mllex, which had file positions starting at 2. They
now start at zero.

* 2005-08-15
- Fixed bug in LargelInt.scan, which should skip leading "O0x" and
"0X". Thanks to Wesley Terpstra for the bug report and fix.

* 2005-08-06
- Additional revisions of FFI.
Deprecated _export with incomplete annotation.
Added _address for address of C objects.
Eliminated address component of _symbol.
Changed the type of the _symbol* expression.
See documentation for more detail.

* 2005-08-06
- Annotation changes.
Deprecated: sequenceUnit
Added: sequenceNonUnit

* 2005-08-03
- Annotation changes.
Deprecated: allowExport, allowImport, warnMatch
Added: allowFFI, nonexhaustiveExnMatch, nonexhaustiveMatch,
redundantMatch

* 2005-08-01
- Update mllex and mlyacc with SML/NJ 110.55+ versions. This
incorporates a small number of minor bug fixes.

* 2005-07-23
- Fixed bug in pass to flatten refs into containing data structure.

* 2005-07-23
— Overhaul of FFI.
Deprecated _import of C base types.
Added _symbol for address, getter, and setter of C base types.
See documentation for more detail.

* 2005-07-21

- Update mllex and mlyacc with SML/NJ 110.55 versions. This
incorporates a small number of minor bug fixes.

55



MLton Guide (20070826) Changelog

* 2005-07-20
- Fixed bug in front end that allowed unary constructors to be used
without an argument in patterns.

* 2005-07-19
— Eliminated _ffi, which has been deprecated for some time.

* 2005-07-14
- Fixed bug in runtime that caused getrusage to be called on every
GC, even if timing info isn't needed.

* 2005-07-13
- Fixed bug in closure conversion tickled by making a weak pointer
to a closure.

* 2005-07-12
— Changed {0S,Posix}.Process.sleep to call nanosleep() instead of
sleep() .
- Added MLton.ProcEnv.setgroups.

* 2005-07-11
— InetSock.{any,toAddr} raise SysErr if port is not in [0, 2716).

* 2005-07-02
- Fixed bug in Socket.recvVecFrom{,',NB,NB'}. The type was too
polymorphic and allowed the creation of a bogus sock_addr.

* 2005-06-28
— The front end now reports errors on encountering undefined or
cyclicly defined MLB path variables.

* 2005-05-22
- Fixed bug in Posix.IO.{getlk,setlk,setlkw} that caused a link-time
error: undefined reference to Posix_IO_FLock_typ.
- Improved exception history so that the first entry in the history
is the source position of the raise, and the rest is the call
stack.

* 2005-05-19
— Improved exception history for Overflow exceptions.

* 2005-04-20
- Fixed a bug in pass to flatten refs into containing data structure.

* 2005-04-14
- Fixed a front-end bug that could cause an internal bug message of the
form "missing flexInst".

* 2005-04-13
- Fixed a bug in the representation of flat arrays/vectors that
caused incorrect behavior when the element size was 2 or 4 bytes
and there were multiple components to the element (e.g. (char *
char) vector).

* 2005-04-01
- Fixed a bug in GC_arrayAllocate that could cause a segfault.

* 2005-03-22
— Added structures Intl, Wordl.

* 2005-03-19

56



MLton Guide (20070826) Changelog

- Fixed a bug that caused Socket.Ctl.{get,set}LINGER to raise
Subscript. The problem was in the use of PackWord32Little.update,
which scales the supplied index by bytesPerElem.

* 2005-03-13
- Fixed a bug in CML mailboxes.

* 2005-02-26
- Fixed an off-by-one error in mkstemp defined in mingw.c.

* 2005-02-13
— Added mlnlffigen tool (heavily adapted from SML/NJ) .

* 2005-02-12
- Added MLNLFFI Library (heavily adapted from SML/NJ) to standard
distribution.

* 2005-02-04
- Fixed a bug in OS.path.toString, which did not raise InvalidArc
when needed.

* 2005-02-03
- Fixed a bug in O0S.Path.joinDirFile, which did not raise InvalidArc
when passed a file that was not an arc.

* 2005-01-26
- Fixed a front end bug that incorrectly rejected expansive valbinds
with useless bound type variables.

* 2005-01-22
- Fixed x86 codegen bug which failed to account for the possibility that
a 64-bit move could interfere with itself (as simulated by 32-bit
moves) .

* 2004-12-22
- Fixed Real32.fmt StringCvt.EXACT, which had been producing too
many digits of precision because it was converting to a
Real64d.real.

* 2004-12-15
- Replaced MLB path variable MLTON_ROOT with SML_LIB, to use a more
compiler—-independent name. We will keep MLTON_ROOT aliased to
SML_LIB until after the next release.

* 2004-12-02
— Unix.create now works on all platforms (including Cygwin and MinGW) .

* 2004-11-24
- Added support for MLton.Process.create, which works on all
platforms (including Windows-based ones like Cygwin and MinGW) and
allows better control over std{in,out,err} for child process.

Here are the changes from version 20040227 to 200411009.

Summary:
+ New platforms:
o x86: FreeBSD 5.x, OpenBSD
o PowerPC: Darwin (MacOSX)
+ Support for MLBasis files.

57



MLton Guide (20070826) Changelog

Support for dynamic libraries.
Support for Concurrent ML (CML).
New structures: Int2, Int3, ..., Int31 and Word2, Word3, ..., Word3l.
A new form of profiling, -profile count.
A bytecode generator.
Data representation improvements.
MLton structure changes.
o Added: share, shareAll
o Changed: Exn, IntInf, Signal, Thread.
+ Command-line switch changes.
o Deprecated:
-native (use -codegen)
—-sequence-unit (use -default-ann)
-warn—-match (use —-default-ann)
-warn—-unused (use —-default—ann)
o Removed:
—detect-overflow
—exn-history (use —const)
-safe
-show-basis-used
o Added:
—codegen
—const
—default—-ann
—disable-ann
-profile-branch
—-target-link-opt

+ o+ o+ o+ o+ +

* 2004-09-22
- Extended _import to support indirect function calls.

* 2004-09-13
— Made Date.{fromString, scan} accept a space (treated as zero) in
the first character of the day of the month.

* 2004-09-12
- Fixed bug in IntInf that could cause a seg fault.
- Remove MLton.IntInf.size.

* 2004-09-05
- Made -detect-overflow and -safe expert options.

* 2004-08-30
- Added wval MLton.share: 'a -> unit, which maximizes sharing in a
heap object.

* 2004-08-27
- Fixed bug in Real.tolargeInt. It would incorrectly raise Option
instead of Overflow in the case when the real was not an INF, but
rounding produced an INF.

- Fixed bugs in Date.{fmt, fromString, scan,toString}. They
incorrectly allowed a space for the first character in the day of
the month.

* 2004-08-18
- Changed MLton.{Thread, Signal,World} to distinguish between
implicitly and explicitly paused threads.

* 2004-07-28

— Added support for programming in the large using the ML Basis
system.

58



MLton Guide (20070826) Changelog

* 2004-07-11
- Fixed bugs in ListPair.*Eqg functions, which incorrectly raised
the Unequallengths exception.

* 2004-07-01
— Added val MLton.Exn.addExnMessager: (exn —-> string option) -> unit

* 2004-06-23
- Runtime system options that take memory sizes now accept a "g"

suffix indicating gigabytes. They also now take a real instead of
an integer, e.g. fixed-heap 0.5g. They also now accept uppercase,
e.g. 150M.

* 2004-06-12
— Added support for OpenBSD.

* 2004-06-10
— Added support for FreeBSD 5.x.

* 2004-05-28
— Deprecated the -native flag. Instead, use the new flag
—-codegen {native|bytecode|C}. This is in anticipation of adding a
bytecode compiler.

* 2004-05-26
- Fixed a front-end bug that could cause cascading error to print a
very large and unreadable internal bug message of the form
"datatype ... realized with scheme Unknown".

* 2004-05-17
— Automatically restart functions in the Basis Library that correspond
directly to interruptable system calls.

* 2004-05-13
— Added -profile count, for dynamic counts of function calls and branches.
- Equate the types Posix.Signal.signal and Unix.signal.

* 2004-05-11
- Fixed a bug with -basis 1997 that would cause type errors due to
differences between types in the MLton structure and types in the
rest of the basis library.

* 2004-05-01
- Fixed a bug with sharing constraints in signatures that would
sometimes mistakenly treat two structures as identical when they
shouldn't have been. This would cause some programs to be
mistakenly rejected.

* 2004-04-30
— Added MLton.Signal. {handled, restart}.

* 2004-04-23
— Added Timer.checkCPUTimes, and updated the Timer structure to
match the latest basis spec. Also fixed totalCPUTimer and

totalRealTimer, which were wrong.

* 2004-04-13
— Added MLton.Signal.Mask.{getBlocked, isMember}.

* 2004-04-12

59



MLton Guide (20070826) Changelog

- Fix bug that mistakenly generalized variable types containing
unknown types when matching against a signature.

— Reasonable front-end error message when unification causes
recursive (circular) type.

* 2004-04-03
- Fixed bug in sharing constraints so that A = B = C means that all
pairs AB, AC, BC are shared, not just AB and BC. This matters in
some situations.

* 2004-03-20
- Fixed Time.now which was treating microseconds as nanoseconds.

* 2004-03-14
— Fixed SSA optimizer bug that could cause the error "<type> has no
tyconInfo property".

* 2004-03-11
- Fixed Time.fromReal to raise Time, not Overflow, on
unrepresentable times.

* 2004-03-04
- Added structures Word2, Word3, ..., Word3l.

* 2004-03-03
— Added structures Int2, Int3, ..., Int31.
- Fixed bug in elaboration of "and" with signatures, structures, and
functors so that it now evaluates all right-hand sides before
binding any left-hand sides.

Here are the changes from version 20030716 to 20040227.

Summary:

+ The front end now follows the Definition of SML and produces
readable error messages.
Added support for NetBSD.
Basis library changes tracking revisions to the specification.
Added structures: Int64, Real32, Wordb64d.
File positions use Int64.

+ 4+ + + o+

Major improvements to -show-basis, which now displays the basis in
a very readable way with full type information.
+ Command-line switch changes.
o Deprecated: -basis.
o Removed: -lib-search, -1link, -may-load-world, -static.
o Added: -link-opt, -runtime, -sequence-unit, -show-def-use,
-stop tc, —-warn-match, -warn-unused.
o Changed: -export-header, -show-basis, -show-basis-used.
o Renamed: -host to -target.
+ FFI changes.
o Renamed _ffi as _import.
o Added cdecl and stdcall attributes to _import and _export
expressions.
+ MLton structure changes.
o Added: Pointer.
o Removed: Ptrace.
o Changed: Finalizable, IntInf, Platform, Random, Signal, Word.

* 2004-02-16

- Changed -export-header, -show-basis, -show-basis-used to take a
file name argument, and they no longer force compilation to halt.

60



MLton Guide (20070826) Changelog

- Added -show-def-use and -warn-unused, which deal with def-use
information.

* 2004-02-13
- Added flag -sequence-unit, which imposes the constraint that in
the sequence expression (el; e2), el must be of type unit.

* 2004-02-10
- Lots of changes to MLton.Signal: name changes, removal of
superfluous functions, additional functions.

* 2004-02-09
- Extended -show-basis so that when used with an input program, it
shows the basis defined by the input program.
— Added "stop" runtime argument.
- Made -call-graph {false|true} an option to mlprof that determines
whether or not a call graph file is written.

* 2004-01-20

- Fixed a bug in IEEEReal.{fromString, scan}, which would improperly
return INF instead of ZERO for things like "0.0000e123456789012345".

- Fixed a bug in Real.{fromDecimal, fromString,scan}, which didn't
return an appropriately signed zero for ~0.0.

- Fixed a bug in Real.{toDecimal, fmt}, which didn't correctly handle
~0.0.

- Report a compile-time error on unrepresentable real constants.

* 2004-01-05
- Removed option -may-load-world. You can now use -runtime
no-load-world instead.
- Removed option —-static. You can now use -link-opt -static
instead.
— Changed MLton.IntInf.size to return 0 instead of 1 on small ints.

* 2003-12-28
- Fixed horrible bug in MLton.Random.alphaNumString that caused it
to return 0 for all characters beyond position 11.

* 2003-12-17
- Removed -basis as a normal flag. It is still available as an
expert flag, but its use is deprecated. It will almost certainly
disappear after the next release.

* 2003-12-10
— Allow multiple @MLton -- runtime args in sequnce. This makes it
easier for scripts to prefix @MLton args without having to splice
them with other ones.

* 2003-12-04
- Added support for files larger than 2G. This included changing
Position from Int32 to Int64.

* 2003-12-01
— Added structure MLton.Pointer, which includes a type t for
pointers (memory addresses, not SML heap pointers) and operations
for loading from and storing to memory.

* 2003-11-03

- Fixed Timer.checkGCTime so that only the GC user time is included,
not GC system time.

61



MLton Guide (20070826)

*

2003-10-13

- Added -warn-match to control display nonexhaustive and redundant
match warnings.

— Fixed space leak in StreamIO causing the entire stream to be
retained. Thanks to Jared Showalter for the bug report and fix.

2003-10-10
- Added "-stop tc" switch to stop after type checking.

2003-09-25

- Fixed Posix.IO.getfl, which had mistakenly called fcntl with
F_GETFD instead of F_GETFL.

- Tracking basis library changes:

o Socket module datagram functions no longer return amount
written, since they always write the entire amount or fail. So,
send{Arr,Vec}To{, '} now return unit instead of int.

o Added nonblocking versions of all the send and recv functions,
as well as accept and connect. So, we now have:
acceptNB, connectNB, recv{Arr,Vec}{,From}NB{, "'},
send{Arr,Vec}{,To}NB{, '}

2003-09-24
- Tracking basis library changes:
o TextIO.inputLine now returns a string option.
o Slices used in Byte, PRIM_IO, PrimIO, Posix.IO, StreamIO
o Posix.IO.readVec raises Size, not Subscript, with negative

argument.
2003-09-22
- Fixed Real.toManExp so that the mantissa is in [0.5, 1),
not [1l, 2). The spec says that 1.0 <= man * radix < radix, which

since radix is 2, implies that the mantissa is in [0.5, 1).
— Added Time. {from,to}Nanoseconds.

2003-09-11
— Added Real.realRound.
- Added Char{Array,Vector}Slice to Text.

2003-09-11

- 0S.I0.poll and Socket.select now raise errors on negative
timeouts.

— Time.time is now implemented using IntInf instead of Int, which
means that a much larger range of time values is representable.

2003-09-10
- Word64 is now there.

2003-09-09

- Replaced Pack32{Big,Little} with PackWord32{Big,Little}.

- Fixed bug in OS.FileSys.fullPath, which mistakenly stopped as soon
as it hit a symbolic link.

2003-09-08

- Fixed @MLton max—-heap, which was mistakenly ignored. Cleaned up
@MLton fixed-heap. Both fixed-heap and max-heap can use copying
or mark-compact collection.

2003-09-06

- Int64 is completely there.

- Fixed OS.FileSys.tmpName so that it creates the file, and doesn't
use tmpnam. This eliminates an annoying linker warning message.

Changelog

62



MLton Guide (20070826) Changelog

* 2003-09-05
- Added structures {LargeInt,LargeReal,LargeWord, Word}
{Array,Array2,ArraySlice,Vector,VectorSlice}
- Fixed bug in Real.toDecimal, which return class NORMAL for
subnormals.
— Fixed bug in Real.tolargeInt, which didn't return as precise an
integer as possible.

* 2003-09-03
— Lots of fixes to Real functions.

o Real32 is now completely in place, except for Real32.nextAfter
on SunOS.

o Fixed Real.Math.exp on x86 to return the right value when
applied to posInf and negInf.

o Changed Real.Math.{cos,sin,tan} on x86 to always use a call to
the C math library instead of using the x86 instruction. This
eliminates some anomalies between compiling -native false and
-native true.

o Change Real.Math.pow to handle exceptional cases in the SML
code.

o Fixed Real.signBit on Sparcs.

* 2003-08-28

- Fixed PackReal{,64}Little to work correctly on Sparc.

— Added PackReal{,64}Big, PackReal32{Big,Little}.

- Added -runtime switch, which passes arguments to the runtime via
@MLton. These arguments are processed before command line
switches.

- Eliminated MLton switch -may-load-world. Can use -runtime
combined with new runtime switch -no-load-world to disable load
world in an executable.

* 2003-08-26
— Changed -host to —-target.
- Split MLton.Platform.{arch,os} into MLton.Platform.{Arch,OS}.t.

* 2003-08-21
- Fixed bug in C codegen that would cause undefined references to
Real {fetch,move, store} when compiling on Sparcs with -align 4.

* 2003-08-17
- Eliminated -link and -lib-search, which are no longer needed.
Eliminated support for passing -1*, -L*, and *.a on the command
line. Use -link-opt instead.

* 2003-08-16
— Added -link-opt, for passing options to gcc when linking.

* 2003-07-19
— Renamed _ffi as _import. The old _ffi will remain for a while,
but is deprecated and should be replaced with _import.
- Added attributes to _export and _import. For now, the only
attributes are "cdecl" and "stdcall".

Here are the changes from version 20030711 to 20030716.

Summary:
+ Fixed several serious bugs with the 20030711 release.

63



MLton Guide (20070826)

* 2003-07-15
- Fixed bug that caused a segfault when attempting to create an
array that was too large, e.g
1 + Array.sub (Array.tabulate (valOf Int.maxInt, fn i => i), 0)
mlton now checks the command line arguments following the file to
compile that are passed to the linker to make sure they are
reasonable.

* 2003-07-14
— Fixed packaging for Cygwin and Sparc to include libgmp.a.
Eliminated bootstrap target. The Makefile automatically
determines whether to bootstrap or not.
- Fixed XML type checker bug that could cause error: empty tyvars in
PolyVal dec.

* 2003-07-12
— Turned off FORCE_GENERATIONAL in gc. It had been set, which
caused the gc to always use generational collection. This could
seriously slow apps down that don't need it.

Here are the changes from version 20030312 to 20030711.

Summary:
+ Added support for Sparc/SunOS using the C code generator.
+ Completed the basis library implementation. At this point, the
only missing basis library function is "use".
+ Added _export, which allows one to call SML functions from C.
+ Added weak pointers (via MLton.Weak) and finalization (via
MLton.Finalizable) .
+ Added new integer modules: Int8, Intlé6.
Better profiling call graphs
+ Fixed conversions between reals and their decimal representations
to be correct using the gdtoa library.

+

* 2003-07-07
— Profiling improvements

o Eliminated mlton -profile-split. Added mlprof -split. Now the
profiling infrastructure keeps track of the splits and allows
one to decide which splits to make (if any) when mlprof is run,
which is much better than having to decide at compile time.

o Changed mlprof —-graph to mlprof -keep, and changed the behavior
so that -keep also controls which functions are displayed in the
table.

o Eliminated mlprof -ignore: it's behavior is now subsumed by
-keep, whose meaning has changed to be more like -ignore on
nodes that are not kept.

— When calling gcc for linking, put -link args in same order as they
appeared on the MLton command line (they used to be reversed).

* 2003-07-03
- Making OS.Process.{atExit,exit} conform to the basis library spec
in that exceptions raised during cleaners are caught and ignored.
Also, calls to exit from cleaners cause the rest of cleaners to
run.

* 2003-07-02
- Fixed bug with negative IntInf constants that could cause compile
time error message:
"x86Translate.translateChunk ... strange Offset: base: ..."
- Changed argument type of MLton.IntInf.Small from word to int.

Changelog

64



MLton Guide (20070826) Changelog

- Added fix to profiling so that the mlmon.out file is written even
when the program terminates due to running out of memory.

* 2003-06-25
- Added {Int{8,16},Word8}{,Array,ArraySlice,Vector,VectorSlice,Array2}
structures.

* 2003-06-25
- Fixed bug in IntInf.sign, which returned the wrong value for zero.

* 2003-06-24
- Added _export, for calling from C to SML.

* 2003-06-18
- Regularization of options.
-diag --> -diag-pass
—drop-pass takes a regexp

* 2003-06-06
- Fixed bug in 0S.IO.poll that caused it to return the input event
types polled for instead of what was actually available.

* 2003-06-04
- Fixed bug in known case SSA optimization that could case incorrect
results in compiled programs.

* 2003-06-03
— Fixed bug in SSA optimizer that could cause the error message
Type error: Type.equals
{from = char vector, to = unit vector}
Type error: analyze raised exception loopStatement:
unhandled exception: TypeError

* 2003-06-02
- Fixed Real.rem to work correctly on infs and nans.
- Fixed bug in profiling that caused the function name to be omitted
on functions defined by wval rec.

* 2003-05-31
- Fixed Real.{fmt, fromString, scan,toString} to match the basis
library spec.
- Added IEEEReal.{fromString,scan}.
— Added Real.{from,to}Decimal.

* 2003-05-25
— Added Real.nextAfter.
- Added 0OS.Path.{from,to}UnixPath, which are the identity function
on Unix.

* 2003-05-20
— Added type MLton.pointer, the type of C pointers, for use with the
FFI.

* 2003-05-18
- Fixed two bugs in type inference that could cause the compiler to
raise the TypeError exception, along with a lot of XML IL.
The type-check.sml regression contains simple examples of what
failed.
- Fixed a bug in the simplifier that could cause the message:
shrinker raised Prim.apply raised assertion failure: SmallIntInf.fromWord

65



MLton Guide (20070826) Changelog

*

2003-05-15

- Fixed bug in Real.class introduced on 04-28 that cause many
regression failures with reals when using newer gccs.

- Replaced MLton.Finalize with MLton.Finalizable, which has a more
robust approach to finalization.

2003-05-13
- Fixed bug in MLton.FFI on Cygwin that caused Thread_returnToC to
be undefined.

2003-05-12
— Added support for finalization with MLton.Finalize.

2003-05-09

- Fixed a runtime system bug that could cause a segfault. This bug
would happen after a GC during heap resizing when copying a heap,
if the heap was allocated at a very low (<10M) address. The bug
actually showed up on a Cygwin system.

2003-05-08

- Fixed bug in HashType that raised "Vector.forall2" when the
arity of a type constructor is changed by simplifyTypes, but
a newly constructed type has the same hash value.

2003-05-02
- Switched over to new layered IO implementation, which completes
the implementation of the BinIO and TextIO modules.

2003-04-28

- Fixed bug that caused an assertion failure when generating a jump
table for a case dispatch on a non-word sized index with non-zero
lower bound on the range.

2003-04-24

- Added -align {48}, which controls alignment of objects. With
—align 8, memory accesses to doubles are guaranteed to be aligned
mod 8, and so don't need special routines to load or store.

2003-04-22
- Fixed bug that caused a total failure of time profiling with
-native false. The bug was introduced with the C codegen

improvements that split the C into multiple files. Now, the C
codegen declares all profile labels used in each file so that they
are global symbols.

2003-04-18
— Added MLton.Weak, which supports weak pointers.

2003-04-10
- Replaced the basis library's MLton.hostType with
MLton.Platform.arch and MLton.Platform.os.

2003-04
— Added support for SPARC/SunOS using the C codegen.

2003-03-25
- Added MLton.FFI, which allows callbacks to SML from C.

2003-03-21

- Fixed mlprof so that the default -graph arg for data from
-profile-stack true is ' (thresh-stack x)', not '(thresh x)'.

66



MLton Guide (20070826) Changelog

Here are the changes from version 20020923 to 20030312.

Summary:

+ Added source-level profiling of both time and allocation.

+ Updated basis library to 2002 specification. To obtain the old
library, compile with -basis 1997.

+ Added many modules to basis library:
BinPrimIO, GenericSock, ImperativeIO, INetSock, NetHostDB,
NetProtDB, NetServDB, Socket, StreamIO, TextPrimIO, UnixSock.

+ Completed implementation of IntInf and 0S.IO.

* 2003-02-23
— Replaced -profile-combine wih -profile-split.

* 2003-02-11
- Regularization of options.
-1 ——> -1link

-L --> —-lib-search
-o ——> -—-output
-v ——> —verbose

* 2003-02-10
— Added option to mlton: -profile-combine {false|true}

* 2003-02-09
- Added options to mlprof: —-graph-title, -gray, -ignore, -mlmon,
—-tolerant.

* 2002-11 - 2003-01
— Added source-level allocation and time profiling. This includes
the new options to mlton: -profile and -profile-stack.

* 2002-12-28
— Added NetHostDB, NetProtDB,NetServDB structures.
— Added Socket,GenericSock, INetSock,UnixSock structures.

* 2002-12-19
- Fixed bug in signal check insertion that could cause some signals
to be missed. The fix was to add a signal check on entry to each
function in addition to at each loop header.

* 2002-12-10
- Fixed bug in runtime that might cause the message
Unable to set cardMapForMutator.

* 2002-11-23
— Added support for the latest Basis Library specification.
- Added option -basis to choose Basis Library version. Currently available
basis libraries are 2002, 2002-strict, 1997, and none.
- Added IntInf.{orb, xorb,andb,notb,<<,~>>} values.
— Added 0S.I0.{poll_desc,poll_info} types.
— Added 0S.I0.{pollDesc,pollToIODesc,infoToPollDesc,Poll} values.
- Added 0S.I0.{polllIn,pollOut,pollPri,poll,isIn,isOut,isPri} wvalues.
— Added BinPrimIO, TextPrimIO structures.
— Added StreamIO, ImperativeIO functors.

* 2002-11-22

- Fixed bug that caused time profiling to fail (with a segfault) when resuming
a saved world.

67



MLton Guide (20070826) Changelog

* 2002-11-07
- Fixed bug in MLton.eqg that could arise when using eg on functions.

* 2002-11-05
- Improvements to polymorphic equality. Equality on IntInfs, vectors,
and dataypes all do an eq test first before a more expensive comparison.

* 2002-11-01
— Added allocation profiling. Now, can compile with either -profile alloc
or -profile time. Renamed MLton.Profile as MLton.ProfileTime. Added
MLton.ProfileAlloc. Cleaned up and changed most mlprof option names.

* 2002-10-31
- Eliminated MLton.debug.
- Fixed bug in the optimizer that affected IntInf.fmt. The optimizer
had been always using base 10, instead of the passed in radix.

* 2002-10-22
- Fixed Real.toManExp so that the mantissa is in [1, 2), not [0.5, 1).
— Added Real.fromLargeInt, Real.tolargelnt.
- Fixed Real.split, which would return an incorrect whole part due to
the underlying primitive, Real_modf, being treated as functional instead
of side-effecting.

* 2002-09-30
- Fixed rpath problem with packaging. All executables in packages previously
made had included a setting for RPATH.

Here are the changes from version 20020410 to 20020923.

Summary:

+ MLton now runs on FreeBSD.

+ Major runtime system improvements. The runtime now implements
mark—compact and generational collection, in addition to the copying
collection that was there before. It automatically switches between
the the collection strategies to improve performance and to try to avoid
paging.

+ Performance when compiling "-exn-history true" has been improved.

+ Added IntInf.log2, MLton.GC.pack, MLton.GC.unpack.

+ Fixed bug in load world that could cause "sread failed" on Cygwin.

+ Fixed optimizer bug that could cause "no analyze var value property"
message.

* 2002-09

- Integrated Sam Rushing's changes to port MLton to FreeBSD.

* 2002-08-25
— Changed the implementation of exception history to be completely functional.

Now, the extra field in exceptions (when compiling —-exn-history true) is a
string list instead of a string list ref, and raise conses a new exception
with a new element in the list instead of assigning to the list. This
changes the semantics of exception history (for the better) on some
programs. See regression/exnHistory3.sml for an example. It also
significantly improves performance when compiling -exn-history true.

* 2002-07 and 2002-08

— Added generational GC, and code to the runtime that automatically turns it
on and off.

68



MLton Guide (20070826) Changelog

* 2002-08-20
- Fixed SSA optimizer bug that could cause the following error message
x_0 has no analyze var value property

* 2002-07-28
- Added MLton.GC. {pack,unpack}. pack shrinks the heap so that other processes
can use the RAM, and its dual, unpack, resizes the heap to the desired size.

* 2002-06 and 2002-07
— Added mark compact GC.
- Changed array layout so that arrays have three, not two header words.
The new word is a counter word that preceeds the array length and header.
— Changed all header words to be indices into an array of object descriptors.

* 2002-06-27
— Added patches from Michael Neumann to port runtime to FreeBSD 4.5.

* 2002-06-05
— Output file and intermediate file are now saved in the current directory
instead of in the directory containing the input file.

* 2002-05-31
- Fixed bug in overloading of / so that the following now type checks:
fun £ (x, y) = x +y /¥y

* 2002-04-26
— Added back max-heap runtime option.

* 2002-04-25

- Fixed load/save world so that they use binary mode. This should fix the
"sread failed" problem that Byron Hale saw on Cygwin that caused mlton to
fail to start.

— Added IntInf.log2.

— Changed call to linker to use libgmp.a (if it exists) instead of libgmp.so.
This is because the linker adds a dependency to a shared library even if
there are no references to it

* 2002-04-23
— Rewrote heap resizing code. This fixed bug that was triggered with large
heaps and could cause a spurious out of memory error.
- Removed gmp from MLton sources (again :-).

Here are the changes from version 20011006 to version 20020410.

* 2002-03-28
— Added BinIO.

* 2002-03-27
- Regularization of options

-g -——> —-degug {false]|true}
-h n ——> —-fixed-heap n
-p -——> -profile {falsel|true}

* 2002-03-22
- Set up the stubs so that MLton can be compiled in the standard basis

library, with no MLton structure. Thus it is now easy to compile MLton
with an older (or newer) version of itself that has a different MLton
structure.

69



MLton Guide (20070826) Changelog

* 2002-03-17
- Added MLton.Process. {spawn, spawne, spawnp}, which use primitives when
running on Cygwin and fork/exec when running on Linux.

* 2002-02 - 2002-03
- Added the ability to cross-compile to Cygwin/Windows.

* 2002-02-24
— Added gmp back for use with Cygwin.

* 2002-02-10
— Reworked object header words so that Array.maxLen = valOf Int.maxInt.
Also fixed a long-standing minor bug in MLton, where
Array.array (Array.maxlLen, ...) would raise Size instead of attempting
to allocate the array. It was an off-by-one error in the meaning of
Array.maxLen.

* 2002-02-08
- Modifications to runtime to behave better in situations where the amount of
live data is a signifant fraction of the amount of RAM, based on code from
PolySpace. MLton executables by default can now use more than the
available amount of RAM. Executables will still respect the max-heap
runtime arg if it is set.

* 2002-02-04
- Improvements to runtime so that it fails to get space, it attempts to get
less space instead of failing. Based on PolySpace's modifications.
- Added MLton.eq.

* 2002-02-03
- Added MLton.IntInf.gcd.
- Removed gmp from MLton sources. We now link with /usr/lib/gmp.a.
— Added TextIO.getPosOut.
— Renamed type MLton.Itimer.which to MLton.Itimer.t and
MLton.Itimer.whichSignal to MLton.Itimer.signal.
- Added -coalesce flag, for use with the C backend.

* 2002-01-26
- Added -show-basis-used, which prints out the parts of the basis library
that the input program uses.
— Changed several other flags (-print-at-fun-entry, -show-basis, -static)
to follow the {false|true} convention.

* 2002-01-22
- Improved MLton.profile so that multiple profile arrays can exist
simultaneously and so that the current one being used can be set from
the SML side.

* 2002-01-18

— The MACHINE IL has been replaced with an RSSA (representation explicit SSA)
IL and an improved MACHINE IL.

* 2002-01-16
— Added known case SSA optimization

* 2002-01-14
— Added rudimentary profiling control from with a MLton compile program via the

MLton.Profile structure.

* 2002-01-09

70



MLton Guide (20070826) Changelog

- Fixed bug in match compiler that caused case expressions on datatypes
with redundant cases to be compiled incorrectly.

* 2002-01-08
— Added redundant tuple construction elimination to SSA shrinker.

- Improved flatten SSA optimization.

* 2001-12-06

— Changed the interface for MLton.Signal. There is no longer a separate
Handler substructure. This was done so that programs that just use
default and ignore signal handlers don't bring in the entire thread
mechanism.

* 2001-12-05
— Added local ref elimination SSA optimization.

* 2001-11-19
— The CPS IL has been replaced with an SSA (static-single assignment) IL.
All of the optimizations have been ported from CPS to SSA.

* 2001-10-24
- Fixed bug in Thread_atomicEnd -- limit was mistakenly set to base instead of
to 0. This caused assertion failures when for executables compiled -g
because GC_enter didn't reset the limit.
- Fixed bug in register allocation of byte registers.

* 2001-10-23
- Added -D option to cmcat for preprocessor defines. Thanks to Anog for
sending the code.
— Changed limit check insertion so that limit checks are only coalesced within
a single basic block —- not across blocks. This slows many benchmarks down,

but is needed to fix a bug in the way that limit checks were coalesced across

blocks. Hopefully we will figure out a better fix soon.

* 2001-10-18
— Fixed type inference of flexrecord so that it now follows the Definition.
Many programs containing flexrecords were incorrectly rejected. Added many
new tests to regression/flexrecord.sml.
— Changed the behavior of -keep dot combined with -keep pass for SSA passes.
Dot files are now saved for the program before and after, instead of just
after.

* 2001-10-11
- Fixed a bug in the type inference that caused type variables to be
mistakenly generalized. The bug was exposed in Norman Ramsey's sled.sml.
Added a test to regression/flexrecord.sml to catch the problem.

Here are the changes from version 20010806 to version 20011006.

Summary:
+ Added MLton.Exn.history, which is similar to SMLofNJ.exnHistory.
+ Support for #line directives of the form (*#line line.col "file"¥*).
+ Performance improvements in native codegenerator.
+ Bug fixes in front-end, optimizer, register allocator,

Real.{maxFinite, minPos, toManExp}, and in heap save and restore.

* 2001-10-5
- Fixed a bug in polymorphic layered patterns, like
val 'a a as b = []

71



MLton Guide (20070826)

* 20

* 20

* 20

* 20

* 20

These would always fail due to the wvariable "a" not being handled correctly.
Fixed the syntax of "val rec" so that a pattern is allowed on the left-hand

side of the =. Thus, we used to reject, but now accept, the following.
val rec a as b as ¢ = fn _ => ()
val rec a : unit —-> unit : unit -> unit = fn () => ()

Thanks again to Andreas Rossberg's test files. This is now tested for in
valrec.sml.

Fixed dynamic semantics of "val rec" so that if "val rec" is used to
override constructor status, then at run time, the Bind exception is raised

as per rule 126 of the Definition. So, for example, the following program
type checks and compiles, but raises Bind at run time.

val rec NONE = fn () => ()

val = NONE ()

Again, this is checked in valrec.sml.
Added '\r\n' to ml.lex so that Windows style newlines are acceptable in
input files.

01-10-4

Fixed bug in the implementation of "open" declarations, which in the case of
"open A B" had opened A and then looked up B in the resulting environment.
The correct behaviour (see rule 22 of the Definition) is to lookup each
longstrid in the current environment, and then open them all in sequence.
This is now checked for in the open.sml regression test. Thanks to Andreas
Rossberg for pointing this bug out.

Fixed bug that caused tyvars of length 1 (i.e. ') to be rejected. This is
now checked in the id.sml regression test. Again, thanks to Andreas
Rossberg for the test.

01-10-2

Fixed bugs in Real.toManExp (which always returned the wrong result because
the call to frexp was not treated as side-effecting by the optimizer) and
in Real.minPos, which was zero because of a mistake with extra precision
bits.

01-10-1

Added MLton.Exn.history.

Fixed register allocation bug with fucom instruction. Was

allowing fucomp when the first source was not removable.

Changed Real.isFinite to use the C math.h finite function. This fixed the
nontermination bug which occurred in any program that used Real.maxFinite.

01-9-22
Bug fixes found from Ramsey's lrtl in contify.fun and unused-args.fun, both
of which caused compile-time exceptions to be raised.

01-9-21

Fixed MLton.World. {load, save} so that the saved world does not store the
max heap size. Instead, the max heap size is computed upon load world in
exactly the same way as at program startup. This fixes a long-standing (but
only recently noticed) problem in which mlton (which uses a saved world)
would attempt to use as much memory as was on the machine used to build
world.mlton.

* 2001-8-29

Overlow checking is now on by default in the C backend. This is a huge
performance hit, but who cares, since we never use the C backend except for
testing anyways.

* 2001-8-22

Added support for #line directives of the form
(*#1line line.col "file"¥*)

Changelog

72



MLton Guide (20070826) Changelog

These directives only affect error messages produced by the parser and
elaborator.

* 2001-8-17
- Fixed bug in removeUnused optimzation that caused the following program to
fail to compile.
fun £ 1 = case 1 of [] => £ 1 | _ :: 1 =>f 1
val _ = f [13]

* 2001-8-14
- New x86-codegen infrastructure.

o support for tracking liveness of stack slots and carrying them
in registers across basic blocks

o more specific Entry and Transfer datatypes to make calling convention
distinctions more explicit

o new heuristic for carrying values in registers across basic blocks
(look Ma, no Overflows!)

o new "predict" model for generating register allocation hints

o additional bug fixes

* 2001-8-7
- MLton.Socket.shutdownWrite flushes the outstream.

Here are the changes from version 20010706 to version 20010806.

Summary:
+ Word.andb (w, OxFF) now works correctly
+ MLton.Rusage.rusage has a patch to work around a linux kernel bug
+ Programs of the form "exp ; program" are now accepted
+ Added the "MLton.Rlimit" structure
+ Added the "-keep dot" flag, which produces call graphs,
intraprocedural control-flow graphs, and dominator trees

* 2001-8-6
— Added simple common block elimination CPS optimization.

* 2001-8-2
- Took out -keep il.

* 2001-7-31
— Performance improvements to TextIO.{input, output, outputl}

* 2001-7-25
— Added redundant-test elimination CPS optimization.

* 2001-7-21
— Added common-subexpression elimination CPS optimization.

* 2001-7-20

- Bug fix to x86 codegen. The commuteBinALMD peephole optimization would
rewrite mov 2,Y; add Y,Y as mov Y,Y; add 2,Y. Now the appropriate
interference checks are made.

— Added intraprocedural unused argument removal.

- Added intraprocedural flattener. This avoids some stupid tuple
allocations in loops. Decent speedup on a few benchmarks
(count-graphs, psdes-random, wc-scanStream) and no noticeable
slowdowns.

— Added -keep dot flag.

73



MLton Guide (20070826) Changelog

* 2001-7-17

- Modified grammar to properly handle val rec. There were several problems.
o MLton had accepted "val rec 'a ..." instead of "val 'a rec ..."
o MLton had not accepted "val x = 13 and rec £ = fn () => ()"
o MLton had not accepted "val rec rec £ = fn () => ()"
o MLton had not accepted "val rec £ = fn () => () and rec g = fn () => ()"

* 2001-7-16

— Workaround for Linux kernel bug that can cause getrusage to return a wrong
system time value (low by one second). See fixedGetrusage in gc.c.

- Bug fix to x86 codegen. The register allocator could get confused when
doing comparisons of floating point numbers and use the wrong operand.
The bug seems to have never been detected because it only happens when both
of the operands are already on the floating point stack, which is rare,
since one is almost always in memory since we don't carry floating point
values in the stack across basic blocks.

- Added production to the grammar on page 58 of the Definition that had been
missing from MLton since day one.

program ::= exp ; <program>

Also updated docs to reflect change.

— Modified grammar to accept the empty program.

- Added -type-check expert flag to turn on type checking in ILs.

* 2001-7-15
- Bug fix to the algebraic simplifier. It had been rewriting
Word32.andb (w, OwxFF) to w
instead of Word32.andb (w, OwxFFFFFFFF) to w.

* 2001-7-13
— Improved CPS shrinker so that if-tests where the then and else branch jump
to the same label is turned into a direct jump.
— Improved CPS shrinker (Prim.apply) to handle constructors
A = A ——> true
A =B —-—> false
A x =By ——> false
- Rewrote a lot of loops in the basis library to use inequalities instead of
equality for the loop termination test so that the (forthcoming) overflow
detection elimination will work on the loop index variable.

* 2001-7-11

- Fixed minor bugs in Array?2.{array,tabulate}, Substring.{slice} that caused
the Overflow exception to be raised instead of Size or Subscript

- Fixed bug in Pack32Big.update that caused the wrong location to be updated.

- Fixed several bugs in Pack32{Big,Little}.{subArr, subVec,update} that caused
Overflow to be raised instead of Subscript. Also, improved the
implementation so that bounds checking only occurs once per call (instead of
four times, which was sometimes happening.

- Fixed bugs in Time.{toMilliseconds,toMicroseconds} that could cause
a spurious Overflow exception.

- Fixed bugs in Time.{fromMilliseconds, fromMicroseconds} that could cause
a spurious Time exception.

- Improved Pack32.sub* by reordering the orbs.

— Improved {Int,IntInf}.mod to increase chances of constant folding.

- Switched many uses of +, -, * in basis library to the non-overflow checked
versions. Modules changed were: Array, Array2, Byte, Char, Int, IntInf,
List, Pack32{Big,Little}, Util, String, StringCvt, Substring, TextIO, Time,
Vector.

- Added regression tests for Array2, Int (overflow checking), Pack32,
Substring, Time.

- Changed CPS output so that it includes a dot graph for each CPS function.

74



MLton Guide (20070826) Changelog

* 2001-7-9
— Change OS.Process.exit so that it raises an exception if the exit status
is not in [0, 256).
— Added MLton.Rlimit to provide access to getrlimit and setrlimit.

Here are the changes from the 20000906 version to the 20010706 version.

Summary:
+ Native X86 code generator (instead of using gcc)
Significantly improved compile times
Significantly improved run times for generated executables
Many bug fixes
Correct raising of the Overflow exception for integer arithmetic
New modules in the MLton structure

+ 4+ + + o+

* 2001-7-6
- GC mods from Henry. Mostly adding inline declarations.

* 2001-7-5
- Fixed several runtime bugs involving threads, critical sections, and
signals.

* 2001-6-29
- Fixed performance bug in cps/two-point-lattice.fun that caused quadratic
behavior. This affects the raise-to-jump and useless analayses. In
particular, the useless analysis was blowing up when compiling fxp.

* 2001-6-27
— Henry improved wordAlign —-- this sped up GC by 27% (during a self compile).

* 2001-6-20
- Moved MLton.random to MLton.Random.rand and added other stuff to
MLton.Random
— Added MLton.TextIO.mkstemp.
- Made Int.{div,quot} respect the -detect-overflow switch.

* 2001-6-20
- Added MLton.Syslog.

* 2001-6-7
- Fixed bug in MLton.Socket.accept that was in the runtime implementation
Socket_accept. It did a setsockopt SO_REUSEADDR after the accept. It
should have been after the call to socket in Socket_listen. Thanks to
Doug Bagley for the fix.

* 2001-5-30
- Fixed bug in remove-unused that caused polymorphic equality to return
true sometimes when constructors were never used in a pattern match.
For example, the following (in which A and B are not used as patterns):
datatype t = A | B
datatype u C of t
val _ = if C A = C B then raise Fail "bug" else ()

* 2001-3-27
- Fixed bug that caused all of the following to fail
{LargeWord, Word, SysWord} . {toLargeInt,tolLargeIntX, fromLargeInt}
The problem was the basis library file integer/patch.sml which fixed Word32
but not the other structures that are the same.

75



MLton Guide (20070826) Changelog

* 2001-2-12

- Fixed bug in match compiler that caused it to spend a lot of extra time in
deep patterns. It still could be exponential however. Hopefully this
will get fixed in the release after next.
This bug could cause very slow compile times in some cases.
Anyways, this fix cut the "finish infer" time of a self compile down
from 22 to under 4 seconds. I.E. most of the time used to be spent due
to this bug.

* 2001-2-6
- Fixed bug in frontend that caused the wrong file and line number to be
reported with errors in functor bodys.

* 2001-1-3 - 2000-2-5
- Changes to CoreML, XML, SXML, and CPS ILs to replace lists by vectors in
order to decrease space usage.

* 2001-1-16
- Fixed a bug in constant propagation where the length of vectors was not
propagated properly.

* 2000-12-11 - 2001-1-3
- Major rewrite of elaborator to use a single hash table for each namespace
instead of a hash table for every environment.

* 2000-12-20
- Fixed some bugs in the SML/NJ compatibility library,
src/lib/mlton-subs-in-smlnj.

* 2000-12-8
— More careful removal of tracing code when compiling MLton_debug=0.
This cut down self compile data size by 100k and compile time by a few
seconds.
- Added built in character and word cases propagated throughout all ILs.

* 2000-12-6
— Added max stack size information to gc-summary.

* 2000-12-5
- Added src/benchmark, which contains an SML program that benchmarks all of
the SML compilers I have my hands on. The script has lots of hardwired
paths for now.

* 2000-12-4

- Fixed bug in Posix.ProcEnv.environ, which did not work correctly in a saved
world (the original environ was saved). In fact, it did not work at all
because the ML primitive expected a constant and the C was a nullary
function. This caused a segfault with any program using
Posix.ProcEnv.environ.

- Added MLton.ProcEnv.setenv, since there doesn't seem to be any setenv in
the basis library.

* 2000-11-29
— Changed backend so that it should no longer generate machine programs with
void operands.
— Added -detect-overflow and -safe flags.

* 2000-11-27 - 2000-11-28

— Changes in many places to use List.revMap instead of List.map to cut down
on allocation.

76



MLton Guide (20070826) Changelog
* 2000-11-21

- Added MLton.Word.~ and MLton.Word8.~ to the MLton basis library structure.
* 2000-11-20

- Fixed a bug in the CPS shrinker that could cause a compile-time failure.
It was maintaining occurrence counts incorrectly.

* 2000-11-15

- Fixed a (performance) bug in constant propagation that caused the hashing
to be bad.

- Improved translation to XML so that the match compiler isn't called on
tuple or if expressions. This should speed up the translation and
make the output smaller.

- Fixed a bug in the match compiler that caused it to not generate integer
case statements. This should speed up the mlyacc benchmark and the
MLton front end.

* 2000-11-9
— Added IntInf_equal and IntInf_ compare primitives.
- Took out the automatic -keep ¢ when compiling -g.
* 2000-11-8

- Added a whole bunch of algebraic laws to the CPS shrinker, including

some specifically targeted to IntInf primitives.
* 2000-11-3

— Improved implementation of properties so that sets don't allocate.

— Improved implementation of type homomorphism in type inference. What
was there before appears to have been a bug —-- it didn't use the property
on types.

* 2000-11-2
- Fixed timers used with -v option to use user + sys time.
* 2000-10-27

— Split the runtime basis library C files into many separate files so that
only the needed code would be included by the linker.

- Fixed several bugs in the front end grammar and elaborator that caused
type specifications to be handled incorrectly. The following three programs
used to be handled incorrectly, but are now handled correctly.

signature S = sig type t and u = int end (* reject *)
signature S = sig type t = int and u = t end (* accept *)

signature S = sig egtype t and u = int end (* reject *)

2000-10-25
— Changes to main.sml to run complete compiles with -native switch.

2000-10-24
- Removed defunctorizer.

2000-10-20

- Fixed bug in cps-tree.fun PrimExp.maySideEffect. This bug could cause
no operand failures in the backend.

- Fixed bug in the runtime implementation of MLton.size. The size for stack
objects was using the used instead of reserved, and so was too low.

2000-10-19
- Replaced automatically generated dependencies in src/runtime/Makefile with
hand generated ones. Took out make depend from src/Makefile. makedepend

was behaving really badly on RHAT 7.0.
- Tweaked compiler to shorten width of C output lines to work around

77



MLton Guide (20070826) Changelog

bug in RHAT 7.0 cpp which silently truncates (very) long lines.
- Fixed bug in grammar that didn't allow "op" to occur in datatype and
exception bindings, causing the following to fail
datatype t = op T
exception op E = op Fail
- Improved error messages in CM processor. Fixed bug in CM Alias handling.

* 2000-10-18

- Fixed two bugs in the gc that did comparisons with (s->1limit - s->frontier),
which of course doesn't work if frontier is beyond limit, since these are
unsigned. This could have caused segfaults, except that the mutator

checks the frontier upon return from the GC.

* 2000-10-17

- Fixed bug in backend in the calculation of maxFrameSize. It could be
wrong (low) in some situations.
— Improved CPS inliner's estimate of function sizes. The size of a function

now takes into account other inlined functions that the function calls.
This also changed the meaning of the size argument to the —-inline switch.
It now corresponds (roughly) to the product of the size of the function
and the number of calls. In general, it should be larger than before.

* 2000-10-13
— Made some calls to Array.sub unsafe in the implementation of Array2.
- Integrated Matthew's new x86 backend with floating point support.

* 2000-10-9
— Fixed CM file processor so that MLton works if it is run from a different
directory than the main CM file.

* 2000-10-4
— Changed LimitCheck so it loops on the frontier > limit check. This fixed
a potential bug in threads caused when there is enough space available for
a thread, t, before switching to another thread but not enough space when it
resumes. This could have caused a segfault.

* 2000-10-3
— More rewrites of TextIO.StreamIO to improve speed.
— Changed TextIO so that only TextIO.stdErr is unbuffered.
— Changed TextIO so that FIFOs and sockets are buffered.

* 2000-10-2
— Combined remove—-unused-constructors, remove-unused-functions, and
remove-unused-globals into a single pass that runs to fixed-point and
produces results at least as good as running the previous three in (any)
sequence.

* 2000-9-29
— Added GC_FIRST_CHECK, which does a gc at each limit check the first time it
reached.
— Reimplemented TextIO.StreamIO (from 2000-9-12) to use lists of strings
instead of lists of characters so that the per char space overhead is small.

* 2000-9-21
- Fixed bug in profiling labels in C code. The label was always the basic
block label instead of the cps function label.
— Added -b switch to mlprof to gather data at the basic block level.
— Improved performance of TextIO.inputl by about 3X.

* 2000-9-15 - 2000-9-19
— Added overflow exceptions to CPS and Machine ILs.

78



MLton Guide (20070826) Changelog

* 2000-9-12
- Fixed TextIO.scanStream. It was very broken.
— Added TextIO.{getInstream,mkInstream, setInstream}
TextIO.StreamIO. {canInput,closeln,endOfStream, inputl, input, inputAll,
inputLine, inputN}

* 2000-9-11
- Fixed Real_gequal in mlton-lib.h. It was missing a paren that caused
code using it to not even compile. It was also semantically incorrect.
- Noted that Real_{equal,lt,le,gt,ge} may not follow basis library spec, since
ANSI does not require IEEE compliance, and hence these could return wrong
results when nans are involved.

Here are the changes from the 20000712 version to the 20000906 version.

Version 20000906 is mostly a bugfix release over 20000712. The other major
changes are that mllex and mlyacc are now included and
that mlton can now process a limited subset of CM files as input.

* 2000-9-6
— Fixed Socket_listen in mlton-lib.c so that it closes the socket if the
bind, listen, or getsockname fails. This could have caused a file
descriptor leak.

* 2000-9-5
- Added -static commandline switch.
— Changed default max heap size to .85 RAM from .95 RAM.
— Added PackReallittle structure to basis library.

* 2000-8-25
- Added cases on integers to ILs (instead of using sequences of tests) so that
backend can emit more efficient test (jump table, binary tree, ...).

* 2000-8-24
- Fixed bug in gc.c. dfsInitializeStack would smummap a NULL pointer whenver
toSpace was NULL. This could gause MLton.size to segfault.
- Fixed bug in Popt that caused -k to fail with no keeps.

* 2000-8-22 - 2000-8-23
- Ported mllex and mlyacc from SML/NJ

* 2000-8-20 - 2000-8-21
— Added ability to us a .cm file as input to MLton.

* 2000-8-16
- Ported mlprof to SML.
- Fixed bug in library/basic/assert.sml that caused asserts to be run even
when MLton.debug = false.

* 2000-8-15

- Fixed bug in backend -- computation of maxFrameSize was wrong. It didn't
count slots in frames that didn't make nontail calls. This could lead to
the stack being overwritten because a stack limit check didn't guarantee
enough space, and lead to a seg fault.

- Fixed bug in gc.c newThreadOfSize. If the thread allocation caused a gc,
then the stack wasn't forwarded, leading to a seg fault. The solution was
to ensure enough memory all at once, and then fill in both objects.

79



MLton Guide (20070826) Changelog

* 2000-8-14

— Changed limit checks so that checks < 512 bytes are replaced by a check for
0. The runtime also moves the limit down by 512. This is done so that the
common case, a small limit check, has less code and is faster.

- Fixed bug in cps/cps-tree.fun Program.hasPrim returned true for any program
that had *any* primapp, not just programs satisfying the predicate. This
caused cps/once.fun to be overly conservative, since it thought that every
program used continuations.

* 2000-8-10

- Fixed bug in CPS typechecker. It didn't enforce that handlers should be
defined before any reference to them -- including implicit references in
HandlerPops. This caused an evil bug in the liveness analysis where a
variable that was only live in the handler was missed in a continuation
because the liveness for the handler wasn't computed yet.

- Limited the size for moving up limit checks for arrays whose size is known
at compile time to avoid huge limit checks getting moved into loops.

- added -indent, -kp, -show-types switches.

— Put optimization in CPS IL suggested by Neal Glew. It determines for each
toplevel function if it can raise an exception to its caller. Also, it
removes HanderPush and HandlerPop for handlers that are not on top of the
stack for any nontail call.

* 2000-8-8
- Changed register allocator so that continuation formals can be allocated in
pseudo registers —-- they aren't necessarily forced to the stack.
* 2000-8-3

- Fixed bug in constant folding.

Word8.>> had been used to implement Word8.~>>.

- Fixed bug in allocate registers that was not forcing the size argument to
Primitive.Array.array to be a stack slot. This could cause problems if
there was a thread switch in the limit check, since upon return the size
pseudo register would have a bogus value.

* 2000-8-1
— Turned back on Xml simplification after monomorphisation.

* 2000-7-31

— Fixed bug in MLton.Itimer.set that caused the time to be doubled.

- Fixed bug in MLton.Thread that made it look like asynchronous exceptions
were allowed by throw'ing an exception raising thunk to an interrupted
thread obtained via a signal handler. Attempting asynchronous exceptions
will now cause process death, with a helpful error message.

* 2000-7-27
— Updated docs to include structure World: MLTON_WORLD in MLton structure.
— Added toplevel signatures MLTON_{CONT, ..., WORLD} to basis library.
- Fixed broken link in docs to CM in cmcat section.

* 2000-7-26
- Eliminated GC_switchToThread and Thread_switchTol, since the inlined
version Thread_switchTo is all that's needed, and Matt's X86 backend
now handles it.
- Added MLton.Signal.vtalrm, needed for
Itimer.Set{which = Itimer.Virtual, ...}

* 2000-7-25
Added MLton.Socket.shutdownWrite.

* 2000-7-21

80



MLton Guide (20070826)

Updated mlton-lib.c MLton_bug with new email (MLton@sourcelight.com).

* 2000-7-19
Fixed Posix.Process.kill to check for errors.

* 2000-7-18
Fixed the following Posix.ProcEnv functions to check for errors:
setgid, setpgid, setsid, setuid.
Fixed doc/examples/callcc.sml.

Here are the changes from the 1999-7-12 to the 20000712 version.

* 2000-6-10 - 2000-7-12
Too many changes to count: bug fixes, new basis library modules,
optimizer improvements.
* 2000-6-30
Fixed bug in monomorphiser that caused programs with non-value

carrying exception declarations in polymorphic functions to have a

compile-time error because of a duplicate label. The problem was
that the exception constructor wasn't duplicated.
* 2000-5-22 - 2000-6-10
Finished the changes for the new Cps IL.
* 2000-1-1
Fixed some errors in the basis library.
Real.copySign
Posix.FileSys.fpathconf
Posix.IO.{lseek, getlk, setlk, setlkw}
Posix.ProcEnv.setpgid
Posix.TTY.getattr
System.FileSys.realPath
*1999-12-22
Fixed bug in src/closure-convert/abstract-value.fun that caused a

compiler failure whenever a program had a vector where the element

type contained an ->.
* 1999-12-10
- Changed dead code elimination in core-ml/dead-code.fun so that
wildcard declarations (val = ...) in the basis are kept.

Changed places in the basis library to take advantage of this

— Added setToplLevelHander primitive so that the basis library code

can define the toplevel handler.

- Changed basis-library/misc/suffix.sml to call OS.Process.exit.
Took out Halt transfer from Cps, since the program never should
reach it.

- Cleaned up basis-library/system/{process.sml, unix.sml} to use
the new signal handling stuff.

* 1999-11-28 - 1999-12-20

Added support for threads and cleaned up signal handling.

This involved a number of changes.

— The stack is now allocated as just another kind of heap object.

— Limit checks are inserted at all loop headers, whether or not there

is any allocation. This is to ensure that the signal handler
always has a chance to get called.

— The register allocator puts more variables in stack slots. The new

rule is that a variable goes in a stack slot if it is ever live
across a nontail call, in a handler, or (this is the new part)
across a limit check.

- Arguments are passed on the stack, with the convention determined by

argument types.

- The "locals" array of pointers that was copied to/from for GC is now

Changelog

81



MLton Guide (20070826) Changelog

gone, because no registers (in particular no pointer valued
registers) can be live at a limit check point.
*1999-11-21

- Runtime system

o Fixed a bug introduced by the signal code
(presumably on 1999-8-9) that caused a gc to *not* be performed when
doing a save world. This caused the heaps created by save world to
be the same size as the heap —-- not the live data. This was quite
bad.

o Cleaned up the Makefile. Add make depend.

o Added max gc pause to gc-summary info.

o Move heap translation variables that had been file statics into
the GC_state.

- Made structure Position available at toplevel.

- Basis Library
o Added MLton.loadWorld

— Added Primitive.usesCallcc

— Added Primitive.safe

- Removed special size functions from cps/save-world —-- they are no
longer necessary since size doesn't do a gc.

- Fixed another (sigh) bug in cps/simplify-types.fun that could
cause it to not terminate.

* 1999-11-16

— Cleaned up backend/machine.fun a bit so that it spits out macros
for allocation of objects and bumping of frontier. Added macros
MLTON_object and MLTON_incFrontier to include/mlton-lib.h.

- Fixed a bug in backend/limit-check.fun that caused loops to not be
detected if they were only reached by a case branch. This could
cause there to be loop that allocates with no limit check.
Needless to say, this could cause a segfault if the loop ran for
long enough.

* 1999-10-18
Added basis library function Array2.copy.
* 1999-8-15

Turned off globalization of ref cells

(closure-convert/globalize.fun) because it interacts badly with

serialization.

* 1999-8-13
Fixed bug in mlton-lib.h in MLTON_allocArrayNoPointers that was

triggered when bytesPerElt == 0. The problem was that it wasn't
reserving space for the forwarding pointer. This could cause a seg
fault.

* 1999-8-8 and 1999-8-9
Added support for signal handling.

* 1999-8-7
Fixed bugs in Array.tabulate (and other tabulate variants) caused if
the function argument used callcc.

* 1999-8-1
Added serialization, which was mostly code in src/runtime/gc.c.
GC_serialize converts an object to a Word8Vector.vector.
GC_deserialize undoes the conversion.
(de) Serialization should work for all objects except for functions,
because I haven't yet added the support in the flow analysis.

* 1999-7-31
— Cleaned up the GC. Changed headers, by stealing a bit from the

number of non pointers and making it a mark bit (used in GC_size).

— Rewrote GC_size so that it runs in time proportional to the number

of pointers in the object. It does a depth-first-search now,
using toSpace to hold the stack.
* 1999-7-30

- Fixed bug in SUBSTRING. getc had the wrong type. This bug wasn't

82



MLton Guide (20070826)

noticed because MLton doesn't do enough type checking.
- Fixed bug (seg fault) caused when a GC immediately followed a throw.

* 1999-7-29

Fixed bug in Date.fmt (basis-library/system/date.sml). It was not

setting Tm.buf, and hence the time was always 0 unless there had

been a previous call to setTmBuf.

1999-7-28

- Fixed bugs in Posix.IO.FLock.{getlk,setlk,setlkw}, which would
cause compilation to fail because FLock.toInt was defined as the C
castInt, which no longer exists. Instead, expand FLock.toInt to
MLTON_pointerToInt, which was added to include/mlton-lib.h.

- Changed Posix.Primitive.Flock to Posix.Primitive.FLock.

- Added MLTON_chown, MLTON_ftruncate to include/mlton-posix.h. They were
missing. This would cause compilation of any program using
Posix.FileSys. {chown, ftruncate} to fail. Also made it so all of the
primitives in basis-library/posix/primitive.sml use MLTON_ versions
of functions, even if a wrapper is unnecessary.

1999-7-25

Added some other missing signature definitions to toplevel.

1999-7-24

Added missing OS_* signature definitions to

basis-library/top-level/top-level.sml.

1999-7-19

Fixed bug in basis-library/arrays—-and-vectors/mono—-array.sml. Used

:> instead of : so that the monomorphic array types are abstract.

Here are the changes from the 1999-3-19 version to the 1999-7-12 version.

1999-7-12

Changed src/backend/machine.fun so that the 'pointer locals' array is
only as large as neccessary in order to copy all pointer-valued
locals, not as large as the number of pointer-valued locals.
1999-7-11

Rewrote src/backend/allocate-registers.fun so that it does a better

job of sharing "registers" (i.e. C local variables) and stack slots.
This should cut down on the amount of copying that has to happen
before and after a gc. It should also cut down on the size of stack
slots.

1999-7-10

Fixed a bug in src/backend/parallel-move.fun that should have been
triggered on most any parallel move. I guess parallel moves almost

never happened due to the old register allocation strategy -- but,
with the new one (see note for 1999-7-12) parallel moves will be
frequent.

1999-6-27

Fixed src/main.sml so that when compiling -p, the .c file is compiled
-g and the .o is linked -p.

In bakend/machine.fun, added profiling comments before chunkswitches
and put in an optimization to avoid printing repeated profiling

comments. Also, profiling comments are only output when
compiling -p.
1999-6-17

Changed -i to —-inline, -f to -flatten, -np to -no-polyvariance,
-u to -unsafe.
Added -i, -I, -1, -L flags for includes and libraries.
Updated documentation for these options and for ffi.
1999-6-16
Hardwired version number in src/control/control.sml. As it stood,
the version number was computed when MLton was built after someone

Changelog

83



MLton Guide (20070826) Changelog

downloaded it, which was clearly wrong.
1999-6-16
Fixed undefined variable time in GC_done in src/runtime/gc.c.
1999-6-8
in include/mlton-lib.h,
removed #include <huge_val.h>
added #include <math.h>
and deleted all of the function signatures I had copied from math.h
Changed Real.{minNormalPos, minPos, maxFinite} so that they are
computed in real.sml instead of appearing as constants in the C.
1999-6-7
IntInf.pow added to basis library.

1999-6-4

bin/mlton changed to use .arch-n-opsys if it exists.

1999-6-3

src/Makefile changed to use sml-cm instead of sml

1999-5-10

Patch to src/atoms/small-int-inf.fun to work around a bug in the SML/NJ
implementation of bignums. This bug was causing some hex bignum
constants to be lexed incorrectly.

1999-4-15

Comments emitted in C code for profiling. The comments identify the
Cps function responsible for each C statement.

1999-4-15

callcc and throw added.

1999-4-15

Bug in src/cps/simplify-types fixed. The bug caused nontermination

whenever there was a circular datatype with a vector on the rhs.
E.g. datatype t = T of t vector

Here are the changes from the 1998-8-26 version to the 1999-3-19 version.

* % o

* % ok ok %

Compile time and code size have decreased.

Runtime performance of executables has improved.

Large programs can now be compiled.

MLton is self hosting.

The basis library is mostly complete and many bugs have been fixed.
The monomorphiser (-m) is no longer available.

The heap and stack are automatically resized.

There are now facilities for heap checkpointing (MLton.saveWorld)
and object size computation (MLton.size).

MLton uses the GNU multiprecision library to provide a fast
implemenation of IntInf.

Last edited on 2007-08-21 04:50:41 by MatthewFluet.

84



MLton Guide (20070826) ChrisClearwater

ChrisClearwater

Last edited on 2005-11-30 23:18:55 by StephenWeeks.

85



MLton Guide (20070826) Chunkify

Chunkify

Chunkify is an analysis pass for the RSSA Intermediatel anguage, invoked from ToMachine.

Description

It partitions all the labels (function and block) in an RSSA program into disjoint sets, referred to as chunks.
Implementation

[Sichunkify.sig Bichunkify.fun

Details and Notes

Breaking large RSSA functions into chunks is necessary for reasonable gcc compile times with the
CCodegen.

Last edited on 2006-11-02 17:32:41 by MatthewFluet.

86


http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/backend/chunkify.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/backend/chunkify.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/backend/chunkify.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/backend/chunkify.fun?view=markup

MLton Guide (20070826) Closure
Closure

A closure is a data structure that is the run-time representation of a function.

Typical Implementation

In a typical implementation, a closure consists of a code pointer (indicating what the function does) and an
environment containing the values of the free variables of the function. For example, in the expression

let

val x = 5
in

fny => x + vy
end

the closure for fn y => x + y contains a pointer to a piece of code that knows to take its argument and
add the value of x to it, plus the environment recording the value of x as 5.

To call a function, the code pointer is extracted and jumped to, passing in some agreed upon location the
environment and the argument.

MLton's Implementation

MLton does not implement closures traditionally. Instead, based on whole-program higher-order control-flow
analysis, MLton represents a function as an element of a sum type, where the variant indicates which function
it is and carries the free variables as arguments. See ClosureConvert and CejtinEtAIO0 for details.

Last edited on 2005-11-30 23:25:36 by StephenWeeks.

87



MLton Guide (20070826)

ClosureConvert

ClosureConvert is a translation pass from the SXML Intermediatel anguage to the SSA
Intermediatel .anguage.

Description

It converts an SXML program into an SSA program.

Defunctionalization is the technique used to eliminate Closures (see CejtinEtAIQ0Q).

Uses Globalize and LambdaFree analyses.

Implementation

@closure—convert.sig [Blclosure-convert.fun

Details and Notes

ClosureConvert

Last edited on 2006-11-02 17:57:14 by MatthewFluet.

88


http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/closure-convert/closure-convert.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/closure-convert/closure-convert.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/closure-convert/closure-convert.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/closure-convert/closure-convert.fun?view=markup

MLton Guide (20070826) CommonArg

CommonArg

CommonArg is an optimization pass for the SSA Intermediatel.anguage, invoked from SSASimplify.

Description

It optimizes instances of Goto transfers that pass the same arguments to the same label; e.g.

L_3 (x, y, zl)
L2 ()
z2 = 7

L_3 (x, y, z2)
L_3 (a, b, c)

This code can be simplified to:

L1 ()

zl =7

L_3 (z1)
L2 ()

z2 = 7

L_3 (z2)
L_3 (c)

a = x

b =1y

which saves a number of resources: time of setting up the arguments for the jump to L_ 3, space (either stack
or pseudo-registers) for the arguments of I_ 3, etc. It may also expose some other optimizations, if more
information is known about x or y.

Implementation
@common—arg . Sig @common—arg fun

Details and Notes

Three analyses were originally proposed to drive the optimization transformation. Only the Dominator
Analysis is currently implemented. (Implementations of the other analyses are available in the Subversion
repository.)

89


http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/common-arg.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/common-arg.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/common-arg.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/common-arg.fun?view=markup

MLton Guide (20070826) CommonArg

Syntactic Analysis

The simplest analysis I could think of maintains
varInfo: Var.t -> Var.t option list ref
initialized to [].

For each variable v bound in a Statement .t orin the Function.t args, then

List.push(varInfo v, NONE).ForeachlL (x1, ..., =xn) transfer where (al, ..., an)
are the formals of I, then List .push (varInfo ai, SOME xi). For each block argument a used in an
unknown context (e.g., arguments of blocks used as continuations, handlers, arith success, runtime return, or
case switch labels), then List .push (varInfo a, NONE).

Now, any block argument a such that varInfo a = xs, where all of the elements of xs are equal to
SOME x, can be optimized by setting a = x at the beginning of the block and dropping the argument from
Goto transfers.

That takes care of the example above. We can clearly do slightly better, by changing the transformation
criteria to the following: any block argument a such that varInfo a = xs, where all of the elements of xs
are equal to SOME x or are equal to SOME a, can be optimized by setting a = x at the beginning of the
block and dropping the argument from Got o transfers. This optimizes a case like:

ce. 22 =2 ...
L_3(x, y, z2)
L_3 (a, b, )
.ow =7
case w of
true => L_4 | false => L_5
L_4 ()
L_3 (a, b, w)
L_5 ()

where a common argument is passed to a loop (and is invariant through the loop). Of course, the
Looplnvariant optimization pass would normally introduce a local loop and essentially reduce this to the first
example, but I have seen this in practice, which suggests that some optimizations after LoopInvariant do
enough simplifications to introduce (new) loop invariant arguments.

Fixpoint Analysis

However, the above analysis and transformation doesn't cover the cases where eliminating one common
argument exposes the opportunity to eliminate other common arguments. For example:

L_1 ()
L_3 (x)

L_2 ()
L_3 (x)

90



MLton Guide (20070826) CommonArg
L_3 (a)

L;é (a)
_4

L )

One pass of analysis and transformation would eliminate the argument to I_3 and rewrite the L_5 (a)
transfer to L_5 (x), thereby exposing the opportunity to eliminate the common argument to L_ 5.

The interdependency the arguments to L__3 and L_5 suggest performing some sort of fixed-point analysis.
This analysis is relatively simple; maintain

varInfo: Var.t -> VarLattice.t
where
VarLattice.t ~=~ Bot | Point of Var.t | Top

(but is implemented by the FlatLattice functor with a lessThan list and value ref under the hood),
initialized to Bot.

For each variable v bound in a Statement .t orin the Function.t args, then

VarLattice.<= (Point v, varInfo v) ForeachL (x1, ..., xn) transfer where

(al, ..., an) arethe formals of L}, then VarLattice.<= (varInfo xi, varInfo ai).For
each block argument a used in an unknown context, then VarLattice.<= (Point a, varInfo a).

Now, any block argument a such that varInfo a = Point x can be optimized by setting a = x at the
beginning of the block and dropping the argument from Got o transfers.

Now, with the last example, we introduce the ordering constraints:

varInfo x <= varInfo a
varInfo a <= varInfo b
varInfo x <= varInfo b

Assuming that varInfo x = Point x,thenwegetvarInfo a = Point xand
varInfo b = Point x,and we optimize the example as desired.

But, that is a rather weak assumption. It's quite possible for varInfo x = Top. For example, consider:

G_1 ()

91



MLton Guide (20070826) CommonArg

L_3 (x)
L_3 (a)

L_5 (b)

Now varInfo x = varInfo a = varInfo b = Top. What went wrong here? When varInfo x
went to Top, it got propagated all the way through to a and b, and prevented the elimination of any common
arguments. What we'd like to do instead is when varInfo x goesto Top, propagate on Point x-- we
have no hope of eliminating x, but if we hold x constant, then we have a chance of eliminating arguments for
which x is passed as an actual.

Dominator Analysis

Does anyone see where this is going yet? Pausing for a little thought, MatthewFluet realized that he had once
before tried proposing this kind of "fix" to a fixed-point analysis -- when we were first investigating the
Contify optimization in light of John Reppy's CWS paper. Of course, that "fix" failed because it defined a
non-monotonic function and one couldn't take the fixed point. But, StephenWeeks suggested a dominator
based approach, and we were able to show that, indeed, the dominator analysis subsumed both the previous
call based analysis and the cont based analysis. And, a moment's reflection reveals further parallels: when
varInfo: Var.t —-> Var.t option list ref, we have something analogous to the call analysis,
and when varInfo: Var.t —-> VarLattice.t, we have something analogous to the cont analysis.
Maybe there is something analogous to the dominator approach (and therefore superior to the previous
analyses).

And this turns out to be the case. Construct the graph G as follows:

nodes (G) = {Root} U Var.t
edges (G) = {Root -> v | v bound in a Statement.t or
in the Function.t args} U
{xi -> ai | L(x1l, ..., xn) transfer where (al, ..., an)
are the formals of L} U
{Root => a | a is a block argument used in an unknown context}

Let idom (x) be the immediate dominator of x in G with root Root. Now, any block argument a such that
idom(a) = x <> Root can be optimized by setting a = x at the beginning of the block and dropping
the argument from Got o transfers.

Furthermore, experimental evidence suggests (and we are confident that a formal presentation could prove)
that the dominator analysis subsumes the "syntactic" and "fixpoint" based analyses in this context as well and
that the dominator analysis gets "everything" in one go.

Final Thoughts
I must admit, I was rather surprised at this progression and final result. At the outset, I never would have
thought of a connection between Contify and CommonArg optimizations. They would seem to be two

completely different optimizations. Although, this may not really be the case. As one of the reviewers of the
ICFP paper said:

92



MLton Guide (20070826) CommonArg

I understand that such a form of CPS might be convenient in some cases, but when we're talking
about analyzing code to detect that some continuation is constant, I think it makes a lot more sense to
make all the continuation arguments completely explicit.

I believe that making all the continuation arguments explicit will show that the optimization can be
generalized to eliminating constant arguments, whether continuations or not.

What I think the common argument optimization shows is that the dominator analysis does slightly better than
the reviewer puts it: we find more than just constant continuations, we find common continuations. And I
think this is further justified by the fact that I have observed common argument eliminate some env_X
arguments which would appear to correspond to determining that while the closure being executed isn't
constant it is at least the same as the closure being passed elsewhere.

At first, I was curious whether or not we had missed a bigger picture with the dominator analysis. When we
wrote the contification paper, I assumed that the dominator analysis was a specialized solution to a specialized
problem; we never suggested that it was a technique suited to a larger class of analyses. After initially finding
a connection between Contify and CommonArg (and thinking that the only connection was the technique), I
wondered if the dominator technique really was applicable to a larger class of analyses. That is still a question,
but after writing up the above, I'm suspecting that the "real story" is that the dominator analysis is a solution to
the common argument optimization, and that the Contify optimization is specializing CommonArg to the case
of continuation arguments (with a different transformation at the end). (Note, a whole-program,
inter-procedural common argument analysis doesn't really make sense (in our SSA Intermediatel .anguage),
because the only way of passing values between functions is as arguments. (Unless of course in the case that
the common argument is also a constant argument, in which case ConstantPropagation could lift it to a
global.) The inter-procedural Contify optimization works out because there we move the function to the
argument.)

Anyways, it's still unclear to me whether or not the dominator based approach solves other kinds of problems.
Phase Ordering

On the downside, the optimization doesn't have a huge impact on runtime, although it does predictably saved
some code size. I stuck it in the optimization sequence after Flatten and (the third round of) LocalFlatten,
since it seems to me that we could have cases where some components of a tuple used as an argument are
common, but the whole tuple isn't. I think it makes sense to add it after Introducel.oops and Looplnvariant
(even though CommonArg get some things that Looplnvariant gets, it doesn't get all of them). I also think that
it makes sense to add it before CommonSubexp, since identifying variables could expose more common
subexpressions. I would think a similar thought applies to RedundantTests.

Last edited on 2007-08-15 22:05:26 by MatthewFluet.

93



MLton Guide (20070826) CommonBlock

CommonBlock

CommonBlock is an optimization pass for the SSA Intermediatel.anguage, invoked from SSASimplify.

Description

It eliminates equivalent blocks in a SSA function. The equivalence criteria requires blocks to have no
arguments or statements and transfer via Raise, Return, or Goto of a single global variable.

Implementation

@common—block.sig [Bcommon-block.fun

Details and Notes

® Rewrites

I_X ()
raise (global_Y)

to

and adds

L_Y" ()
raise (global_Y)

to the SSA function.
® Rewrites

L_X ()
return (global_Y)

to

and adds

L.Y' ()
return (global_Y)

to the SSA function.
® Rewrites

L_Z (global_Y)

94


http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/common-block.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/common-block.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/common-block.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/common-block.fun?view=markup

MLton Guide (20070826) CommonBlock

to

L X ()
L.Y" ()

and adds

L_Y" ()
L_Z (global_Y)

to the SSA function.
The Shrink pass rewrites all uses of I_X to L_Y "' and drops L_X.

For example, all uncaught Over f1low exceptions in a SSA function share the same raising block.

Last edited on 2006-11-02 17:56:13 by MatthewFluet.

95



MLton Guide (20070826) CommonSubexp

CommonSubexp

CommonSubexp is an optimization pass for the SSA Intermediatel.anguage, invoked from SSASimplify.

Description

It eliminates instances of common subexpressions.

Implementation
@common—subexp.sig @common—subexp.fun

Details and Notes

In addition to getting the usual sorts of things like

°
(w + Owxl) + (w + Owxl)

rewritten to
let val w' = w + Owxl in w' + w' end

it also gets things like

val a Array_array n
val b = Array_length a

rewritten to

val a
val b

Array_array n
n

Arith transfers are handled specially. The result of an Arith transfer can be used in common Arith
transfers that it dominates:

val 1 = (n +m) + (n + m)

val k

(L + n) + ((1 + m) handle Overflow => (
handle Overflow => 1 + n))

is rewritten so that (n + m) is computed exactly once, asare (1 + n) and (1 + m).

Last edited on 2007-08-23 03:59:21 by MatthewFluet.

96


http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/common-subexp.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/common-subexp.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/common-subexp.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/common-subexp.fun?view=markup

MLton Guide (20070826) CompilationManager

CompilationManager

The BiCompilation Manager (CM) is SML/NJ's mechanism for supporting programming-in-the-very-large. To
aid in porting code from SML/NJ and in developing code simultaneously with MLton and SML/NJ, MLton
supports a very limited subset of CM files. From MLton's point of view, a CM file foo . cm defines a list of
SML source files. The call

mlton foo.cm

is equivalent to compiling an SML program consisting of the concatenation of these files. As always with
MLton, the concatenation must be the whole program you wish to compile.

In its simplest form, a CM file contains the keywords Group is followed by an explicit list of sml files. For
example, if foo . cm contains

Group 1is
bar.sig
bar.fun
main.sml

thenacallmlton foo.cmisequivalent to concatenating the three files together and calling MLton on that
SML file. The list of files defined by a CM file is the same as the order in which the filenames appear in the
CM file. Thus, to MLton, order in a CM file matters. In the above example, if main . sml refers to a structure
defined in bar . fun, then main. sml must appear after bar . fun in the file list.

CM files can also refer to other CM files. A reference to bar . cm from within foo . cm means to include all
of the SML files defined by bar . cm before any of the subsequent files in foo . cm. For example if foo.cm
contains

Group 1is
bar.cm
main.sml

and bar . cm contains

Group 1is
bar.sig
bar.fun

then a call tomlton foo.cm is equivalent to compiling the concatenation of bar.sig, bar. fun, and
main.sml.

CM also has a preprocessor mechanism that allows files to be conditionally included. This can be useful when
developing code with SML/NJ and MLton. In SML/NJ, the preprocessor defines the symbol
SMLNJ_VERSION. In MLton, no symbols are defined. So, to conditionally include foo . sm1 when
compiling under SML/NJ, one can use the following pattern.

# 1if (defined (SMLNJ_VERSION))
foo.sml
# endif

To conditionally include foo.sml when compiling under MLton, one can negate the test.

97


http://www.smlnj.org/doc/CM/index.html
http://www.smlnj.org/doc/CM/index.html

MLton Guide (20070826) CompilationManager

# 1f (! defined (SMLNJ_VERSION))
foo.sml
# endif

The filenames listed in a CM file can be either absolute paths or relative paths, in which case they are
interpreted relative to the directory containing the CM file. If a CM file refers either directly or indirectly to an
SML source file in more than one way, only the first occurrence of the file is included. Finally, the only valid
file suffixes in a CM file are .cm, . fun, .sig, and .sml.

Comparison with CM

If you are unfamiliar with CM under SML/NJ, then you can skip this section.

MLton supports the full syntax of CM as of SML/NJ version 110.9.1. Extensions since then are unsupported.
Also, many of the syntactic constructs are ignored. The most important difference between the two is that
order in CM files matters to MLton but not to SML/NIJ, which performs automatic dependency analysis. Also,
CM supports export filters, which restricts the visibility of modules. MLton ignores export filters. As a
consequence, it is possible that a program that is accepted by SML/NJ's CM might not be accepted by
MLton's CM. In this case, you will have to manually reorder the files and possibly rename modules so that the
concatenation of the files is the program you intend.

CM performs cutoff recompilation to avoid recompiling the entire program, while MLton always compiles the
entire program. CM makes a distinction between groups and libraries, which MLton does not. CM supports
other tools like lex and yacc, while MLton does not. MLton relies on traditional makefiles to use other tools.

Porting SML/NJ CM files to MLton

If you have already created large projects using SML/NJ and CM, there may be a large number of file
dependencies implicit in your sources that are not reflected in your CM files. Because MLton relies on
ordering in CM files, your CM files probably will not work with MLton. To help in porting CM files to
MLton, the MLton distribution includes the sources for a utility, cmcat, that will print an ordered list of files
corresponding to a CM file. See util/cmcat/cmcat . sml for details. Building cmcat requires that you
have already installed a recent version of SML/NJ.

Alternatively, you can convert your CM files to .m1b files. The MLton distribution includes the sources for a
utility, cm2mlb, that will print an ML Basis file with essentially the same semantics as the CM file --
handling the full syntax of CM supported by your installed SML/NJ version and correctly handling export
filters. When cm2m1b encounters a . cm import, it attempts to convert it to a corresponding .mlb import.
CM anchored paths are translated to paths according to a default configuration file (cm2m1b-map). For
example, the default configuration includes

Sbasis.cm/basis.cm $(SML_LIB) /basis/basis.mlb

to ensure that a $/basis.cm import is translated to a $ (SML_LIB) /basis/basis.mlb import. See
util/cm2mlb for details. Building cm2mlb requires that you have already installed a recent version of
SML/NJ.

Last edited on 2005-11-30 23:40:40 by StephenWeeks.

98



MLton Guide (20070826) CompileTimeOptions
CompileTimeOptions

MLton's compile-time options control the name of the output file, the verbosity of compile-time messages,
and whether or not certain optimizations are performed. They also can specify which intermediate files are
saved and can stop the compilation process early, at some intermediate pass, in which case compilation can be
resumed by passing the generated files to MLton. MLton uses the input file suffix to determine the type of
input program. The possibilities are .c, .cm, .mlb, .0, .S, and . sml.

With no arguments, MLton prints the version number and exits. For a usage message, run MLton with an
invalid switch, e.g. m1ton -z. In the explanation below and in the usage message, for flags that take a
number of choices (e.g. {true|false}), the first value listed is the default.

Options

e —-align {418}
Aligns object sizes and doubles in memory by the specified alignment. The default varies depending
on architecture.
® —as-opt option
Pass option to gcc when assembling.
® —cc-opt option
Pass option to gcc when compiling C code.
® —codegen {native|x86|amd64|c|bytecode}
Generate native code, byte code, or C code. With ~codegen native (-codegen x86 or
—codegen amdé64), MLton typically compiles more quickly and generates better code.
® —const 'name value'
Set the value of a compile-time constant. Here is a list of available constants, their default values, and
what they control.
¢ Exn.keepHistory {false|true}
Enable MLton.Exn.history. See MLtonExn for details. There is a performance cost to
setting this to t rue, both in memory usage of exceptions and in run time, because of
additional work that must be performed at each exception construction, raise, and handle.
¢ —default-ann ann
Specify default ML Basis annotations. For example, ~-default-ann 'warnUnused true'
causes unused variable warnings to be enabled by default. A default is overridden by the
corresponding annotation in an ML Basis file.
—default-type type
Specify the default binding for a primitive type. For example, ~default-type wordé4 causes
the top-level type word and the top-level structure Word in the Basis Library to be equal to
Word64 .word and Word64 : WORD, respectively. Similarly, ~-default-type intinf causes
the top-level type int and the top-level structure Int in the Basis Library to be equal to
IntInf.int and IntInf:INTEGER, respectively.
® —disable-ann ann
Ignore the specified ML Basis annotation in every ML Basis file. For example, to see all match and
unused warnings, compile with

—-default-ann 'warnUnused true'
—disable-ann forceUsed
—disable—-ann nonexhaustiveMatch
—disable—-ann redundantMatch
—disable-ann warnUnused

99



MLton Guide (20070826) CompileTimeOptions

® —export-header file
Write C prototypes to file for all of the functions in the program gxported from SML to C.
¢ —icee—fp {falseltrue}
Cause the native code generator to be pedantic about following the IEEE floating point standard. By
default, it is not, because of the performance cost. This only has an effect with ~codegen x86.
e—-inline n
Set the inlining threshold used in the optimizer. The threshold is an approximate measure of code size
of a procedure. The default is 320.
® —keep {glo|sml}
Save intermediate files. If no —keep argument is given, then only the output file is saved.
g generated . S and . c files passed to gcc and the assembler
o object (. o) files
sml SML file

e —link-opt option
Pass option to gcc when linking. You can use this to specify library search paths, e.g.
-link-opt -Lpath, and libraries to link with, e.g. -1ink-opt -1foo, or even both at the same
time, e.g. —link-opt '-Lpath -1foo'.If you wish to pass an option to the linker, you must use
gcc's W1, syntax,e.g., —link—-opt '-Wl,-—-export-dynamic’'.

¢ —mlb-path-map file
Use file as an ML Basis path map to define additional MLB path variables. Multiple uses of
-mlb-path-map are allowed, with variable definitions in later path maps taking precedence over earlier
ones.

e —output file
Specify the name of the final output file. The default name is the input file name with its suffix removed
and an appropriate, possibly empty, suffix added.

¢ profile {nolalloc|count|time}
Produce an executable that gathers Profiling data. When such an executable is run, it produces an
mlmon.out file.

¢ profile-branch {false|true}
If true, the profiler will separately gather profiling data for each branch of a function definition, case
expression, and if expression.

e profile-stack {falsel|true}
If t rue, the executable will gather profiling data for all functions on the stack, not just the currently
executing function. See ProfilingTheStack.

e profile-val {false|true}
If t rue, the profiler will separately gather profiling data for each (expansive) val declaration.

® —runtime arg
Pass argument to the runtime system via @MLton. See RunTimeOptions. The argument will be processed
before other @MLt on command line switches. Multiple uses of —runt ime are allowed, and will pass all
the arguments in order. If the same runtime switch occurs more than once, then the last setting will take
effect. There is no need to supply the leading @MLt on or the trailing ——; these will be supplied
automatically.

An argument to —runt ime may contain spaces, which will cause the argument to be treated as a sequence
of words by the runtime. For example the command line:

mlton —-runtime 'ram-slop 0.4' foo.sml

will cause foo to run as if it had been called like:

100



MLton Guide (20070826) CompileTimeOptions

foo @MLton ram-slop 0.4 —-

An executable created with —runtime stop doesn't process any @MLt on arguments. This is useful to
create an executable, e.g. echo, that must treat @MLt on like any other command-line argument.

% mlton -runtime stop echo.sml
% echo @MLton —--—
@MLton --

¢ —show-basis file
Pretty print to file the basis defined by the input program. See ShowBasis.
¢ —show-def-use file
Output def-use information to file. Each identifier that is defined appears on a line, followed on subsequent
lines by the position of each use.
e —stop {flglo|lsml|tc}
Specify when to stop.
f list of files on stdout (only makes sense when input is foo.cmor foo.mlb)

g generated . S and . c files

o object (. o) files

sml SML file (only makes sense when input is foo.cmor foo.mlb)
tc  after type checking

If you compile with -stop gor —stop o, you can resume compilation by running MLton on the
generated .c and . S or . o files.
® —target {self]..}
Generate an executable that runs on the specified platform. The default is se1 £, which means to compile
for the machine that MLton is running on. To use any other target, you must first install a _cross compiler.
® —target—-as-opt target option
Like —as—-opt, this passes option to gcc when assembling, except it only passes option when the target
architecture or operating system is tfarget. Valid values for farget are: amd64, hppa, powerpc, sparc,
x86, cygwin, darwin, freebsd, hpux, l1inux, mingw, netbsd, openbsd, solaris.
® —target-cc-opt target option
Like —cc-opt, this passes option to gcc when compiling C code, except it only passes option when the
target architecture or operating system is target. Valid values for target are as for -target-as—-opt.
® —target-link-opt target option
Like —1ink-opt, this passes option to gcc when linking, except it only passes option when the target
architecture or operating system is farget. Valid values for target are as for -target—-as—-opt.
e —verbose {01123}
How verbose to be about what passes are running. The default is O.
0 silent

1 calls to compiler, assembler, and linker
2 1, plus intermediate compiler passes
3 2, plus some data structure sizes

Last edited on 2007-08-23 04:01:06 by MatthewFluet.

101



MLton Guide (20070826) CompilerOverview

CompilerOverview

The following table shows the overall structure of the compiler. Intermediatel.anguages are shown in the
center column. The names of compiler passes are listed in the left and right columns.

Compiler Overview
Translation Passes Intermediatel.anguage Optimization Passes

Source
FrontEnd
AST
Elaborate
CoreML CoreML Simplify
Defunctorize
XML XMLSimplify
Monomorphise
SXML SXMLSimplify
ClosureConvert
SSA SSASimplify
ToSSA2
SSA2 SSA2Simplify
ToRSSA
RSSA RSSASimplify
ToMachine
Machine

The Compile functor (@compile.sig,@compile.fun), controls the high-level view of the compiler passes,
from FrontEnd to code generation.

Last edited on 2006-11-02 17:44:37 by MatthewFluet.

102


http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/main/compile.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/main/compile.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/main/compile.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/main/compile.fun?view=markup

MLton Guide (20070826) CompilerPassTemplate

CompilerPassTemplate

An analysis pass for the ZZZ Intermediatel.anguage, invoked from ZZZOtherPass. An implementation pass
for the ZZZ Intermediatel.anguage, invoked from ZZZSimplify. An optimization pass for the ZZZ
Intermediatel.anguage, invoked from ZZZSimplify. A rewrite pass for the ZZZ Intermediatel.anguage,
invoked from ZZZOtherPass. A translation pass from the ZZA Intermediatel anguage to the ZZB
Intermediatel.anguage.

Description

A short description of the pass.

Implementation

[Blz77 sig Bl777 fun

Details and Notes

Relevant details and notes.

Last edited on 2006-11-02 17:39:45 by MatthewFluet.

103


http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ZZZ.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ZZZ.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ZZZ.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ZZZ.fun?view=markup

MLton Guide (20070826) CompilingWithSMLNJ
CompilingWithSMLNJ

You can compile MLton with SML/NJ, however the resulting compiler will run much more slowly than
MLton compiled by itself. We don't recommend using SML/NJ as a means of porting MLton to a new
platform or bootstrapping on a new platform.

If you do want to build MLton with SML/NJ, it is best to have a binary MLton package installed. If you don't,
here are some issues you may encounter when you run make nj-mlton.

You will get (many copies of) the error message:
/bin/sh: mlton: not found
The Makefile calls ml1ton to determine dependencies, and can proceed in spite of this error.
If you don't have a m1ton executable, you will get the error message:
Error: cannot upgrade basis because the compiler doesn't work
We use upgrade-basis.sml to work around basis library differences, allowing a version of MLton
written for a newer basis library to be compiled by an older version of MLton. The file isn't necessary when
building with SML/NJ, but is listed in $ (SOURCES), so the Makefile is attempting to build it. Building
upgrade-basis. sml requires the old version of MLton to be around so that the right stubs can be built.
To work around this problem, do one of the following.

e Manually tweak sources to remove $(UP) until you're finished building MLton with SML/NJ and

have a working MLton.

¢ Build upgrade-basis.sml on some other machine with a working MLton and copy it over.
If you don't have an m11ex executable, you will get the error message:
mllex: Command not found
Building MLton requires m11lex and m1lyacc executables, which are distributed with a binary package of

MLton. The easiest solution is to copy the front-end lexer/parser files from a different machine
(ml.grm.sml,ml.grm.sig,ml.lex.sml,mlb.grm.sig,mlb.grm.sml).

Last edited on 2006-10-19 17:06:01 by StephenWeeks.

104



MLton Guide (20070826) ConcurrentML

ConcurrentML

[BiConcurrent ML is an SML concurrency library based on synchronous message passing. MLton has an initial
port of CML from SML/NJ, but is missing a thread-safe wrapper around the Basis Library and event-based
equivalents to IO and OS functions.

All of the core CML functionality is present.

structure CML: CML

structure SyncVar: SYNC_VAR
structure Mailbox: MAILBOX
structure Multicast: MULTICAST
structure SimpleRPC: SIMPLE_RPC
structure RunCML: RUN_CML

The RUN_CML signature is minimal.

signature RUN_CML =

sig
val isRunning: unit -> bool
val doit: (unit -> unit) * Time.time option —-> OS.Process.status
val shutdown: OS.Process.status -> 'a

end

MLton's RunCML structure does not include all of the cleanup and logging operations of SML/NJ's RunCML
structure. However, the implementation does include the CML . t imeOutEvt and CML.atTimeEvt
functions, and a preemptive scheduler that knows to sleep when there are no ready threads and some threads
blocked on time events.

Because MLton does not wrap the Basis Library for CML, the "right" way to call a Basis Library function that
is stateful is to wrap the call with MLton.Thread.atomically.

Usage

® You can import the CML Library into an MLB file with:
MLB file Description

S (SML_LIB)/cml/cml.mlb

e If you are porting a project from SML/NJ's CompilationManager to MLton's ML Basis system using
cm2mlb, note that the following map is included by default:

Scml/cml.cm  $(SML_LIB)/cml/cml.mlb

This will automatically convert a $cml/cml . cm import in an input . cm file into a
$ (SML_LIB) /cml/cml.mlb importin the output .mlb file.

Also see

e ConcurrentMIImplementation
e eXene

105


http://cml.cs.uchicago.edu/
http://cml.cs.uchicago.edu/

MLton Guide (20070826) ConcurrentML
Last edited on 2007-08-23 17:24:44 by MatthewFluet.

106



MLton Guide (20070826) ConcurrentMLImplementation

ConcurrentMLImplementation

Here are some notes on MLton's implementation of ConcurrentML..

Concurrent ML was originally implemented for SML/NIJ. It was ported to MLton in the summer of 2004. The
main difference between the implementations is that SML/NJ uses continuations to implement CML threads,
while MLton uses its underlying thread package. Presently, MLton's threads are a little more heavyweight
than SML/NJ's continuations, but it's pretty clear that there is some fat there that could be trimmed.

The implementation of CML in SML/NJ is built upon the first-class continuations of the SMLofNJ.Cont
module.

type 'a cont

val callcc: ('a cont -> 'a) -> 'a
val isolate: ('a -> unit) -> 'a cont
val throw: 'a cont -> 'a -> 'b

The implementation of CML in MLton is built upon the first-class threads of the MLtonThread module.

type 'a t

val new: ('a -> unit) -> 'a t

val prepare: 'a t * 'a -> Runnable.t
val switch: ('a t -> Runnable.t) -> 'a

The port is relatively straightforward, because CML always throws to a continuation at most once. Hence, an
"abstract” implementation of CML could be built upon first-class one-shot continuations, which map equally
well to SML/NJ's continuations and MLton's threads.

The "essence" of the port is to transform:

callcc (fn k => ... throw k' v'")
to
switch (fn t => ... prepare (t', v'))

which suffices for the vast majority of the CML implementation.

There was only one complicated transformation: blocking multiple base events. In SML/NJ CML, the
representation of base events is given by:

datatype 'a event_status
= ENABLED of {prio: int, doFn: unit -> 'a}
| BLOCKED of ({
transId: trans_id ref,
cleanUp: unit -> unit,
next: unit -> unit
} —> 'a
type 'a base_evt = unit -> 'a event_status

When synchronizing on a set of base events, which are all blocked, we must invoke each BLOCKED function

with the same transId and cleanUp (the t ransId is (checked and) set to CANCEL by the cleanUp
function, which is invoked by the first enabled event; this "fizzles" every other event in the synchronization

107



MLton Guide (20070826) ConcurrentMLImplementation

group that later becomes enabled). However, each BLOCKED function is implemented by a callcc, so that
when the event is enabled, it throws back to the point of synchronization. Hence, the next function (which
doesn't return) is invoked by the BLOCKED function to escape the callcc and continue in the thread
performing the synchronization. In SML/NJ this is implemented as follows:

fun ext ([], blockFns) = callcc (fn k => let
val throw = throw k
val (transId, setFlg) = mkFlg()
fun log [] = S.atomicDispatch ()
| log (blockFn:: r) =
throw (blockFn ({
transId = transId,
cleanUp = setFlg,
next = £n () => log r
})
in
log blockFns; error "[logl]"
end)

(Note that S.atomicDispatch invokes the continuation of the next continuation on the ready queue.) This
doesn't map well to the MLton thread model. Although it follows the

callcc (fn k => ... throw k v)

model, the fact that blockFn will also attempt to do

callcc (fn k' => ... next ())

means that the naive transformation will result in nested switch-es.

We need to think a little more about what this code is trying to do. Essentially, each bl ockFn wants to
capture this continuation, hold on to it until the event is enabled, and continue with next; when the event is
enabled, before invoking the continuation and returning to the synchronization point, the cleanUp and other
event specific operations are performed.

To accomplish the same effect in the MLton thread implementation, we have the following:

datatype 'a status =
ENABLED of {prio: int, doitFn: unit -> 'a}
| BLOCKED of {transId: trans_id,
cleanUp: unit -> unit,
next: unit -> rdy_thread} -> 'a

type 'a base = unit -> 'a status

fun ext ([], blockFns): 'a =
S.atomicSwitch
(fn (t: 'a S.thread) =>
let
val (transId, cleanUp) = TransID.mkFlg ()
fun log blockFns: S.rdy_thread =
case blockFns of
[] => S.next ()
| blockFn::blockFns =>
(S.prep o S.new)
(En _ => £n () =>
let

108



MLton Guide (20070826) ConcurrentMLImplementation

val () = S.atomicBegin ()
val x = blockFn {transId = transId,
cleanUp = cleanUp,
next = fn () => log blockFns}
in S.switch(fn _ => S.prepval (t, x))
end)
in
log blockFns
end)

To avoid the nested switch-es, I run the blockFn in it's own thread, whose only purpose is to return to the
synchronization point. This corresponds to the throw (blockFn {...}) inthe SML/NJ
implementation. I'm worried that this implementation might be a little expensive, starting a new thread for
each blocked event (when there are only multiple blocked events in a synchronization group). But, I don't see
another way of implementing this behavior in the MLton thread model.

Note that another way of thinking about what is going on is to consider each blockFn as prepending a
different set of actions to the thread t. It might be possible to give aMLton.Thread.unsafePrepend.

fun unsafePrepend (T r: 'a t, f: 'b -=> 'a): 'b t =
let
val t =
case !r of
Dead => raise Fail "prepend to a Dead thread"
| New g => New (g o f)
| Paused (g, t) => Paused (fn h => g (f o h), t)
in (* r := Dead; *)
T (ref t)
end

I have commented out the r := Dead, which would allow multiple prepends to the same thread (i.e., not
destroying the original thread in the process). Of course, only one of the threads could be run: if the original
thread were in the Paused state, then multiple threads would share the underlying runtime/primitive thread.
Now, this matches the "one-shot" nature of CML continuations/threads, but I'm not comfortable with
extending MLton . Thread with such an unsafe operation.

Other than this complication with blocking multiple base events, the port was quite routine. (As a very
pleasant surprise, the CML implementation in SML/NJ doesn't use any SML/NJ-isms.) There is a slight
difference in the way in which critical sections are handled in SML/NJ and MLton; since
MLton.Thread.switch _always_ leaves a critical section, it is sometimes necessary to add additional
atomicBegin/Ends to ensure that we remain in a critical section after a thread switch.

While looking at virtually every file in the core CML implementation, I took the liberty of simplifying things
where it seemed possible; in terms of style, the implementation is about half-way between Reppy's original
and MLton's.

Some changes of note:

e ut i1/ contains all pertinent data-structures: (functional and imperative) queues, (functional) priority
queues. Hence, it should be easier to switch in more efficient or real-time implementations.

® core-cml/scheduler. sml: in both implementations, this is where most of the interesting action
takes place. I've made the connection between MLton.Thread.ts and ThreadId.thread_ids
more abstract than it is in the SML/NJ implementation, and encapsulated all of the MLt on. Thread
operations in this module.

109



MLton Guide (20070826) ConcurrentMLImplementation

e climinated all of the "by hand" inlining

Future Extensions

The CML documentation says the following:

CML. joinEvt: thread_id -> unit event
joinEvt tid

creates an event value for synchronizing on the termination of the thread with the ID tid. There are three ways
that a thread may terminate: the function that was passed to spawn (or spawnc) may return; it may call the exit
function, or it may have an uncaught exception. Note that joinEvt does not distinguish between these cases;
it also does not become enabled if the named thread deadlocks (even if it is garbage collected).

I believe that the MLton.Finalizable might be able to relax that last restriction. Upon the creation of a
'a Scheduler.thread, we could attach a finalizer to the underlying 'a MLton.Thread.t that
enables the joinEvt (in the associated ThreadID.thread_id) whenthe 'a MLton.Thread.t
becomes unreachable.

I don't know why CML doesn't have
CML.kill: thread_id -> unit

which has a fairly simple implementation -- setting a kill flag in the thread_id and adjusting the scheduler
to discard any killed threads that it takes off the ready queue. The fairness of the scheduler ensures that a
killed thread will eventually be discarded. The semantics are little murky for blocked threads that are killed,
though. For example, consider a thread blocked on Syncvar.mTake mv and a thread blocked on
SyncVar .mGet mv. If the first thread is killed while blocked, and a third thread does

SyncVar.mPut (mv, x),then we mightexpect that we'll enable the second thread, and never the first.
But, when only the ready queue is able to discard killed threads, then the SyncVar .mPut could enable the
first thread (putting it on the ready queue, from which it will be discarded) and leave the second thread
blocked. We could solve this by adjusting the TransID.trans_id types and the "cleaner" functions to
look for both canceled transactions and transactions on killed threads.

John Reppy says that MarlowEtAlO1 and FlattFindler04 explain why CML . k111 would be a bad idea.

Between CML. timeOutEvt and CML.ki11, one could give an efficient solution to the recent
comp.lang.ml post about terminating a function that doesn't complete in a given time.

fun timeOut (f: unit -> 'a, t: Time.time): 'a option =

let
val iv = SyncVar.iVar ()
val tid = CML.spawn (fn () => SyncVar.iPut (iv, f ()))

in
CML.select
[CML.wrap (CML.timeOutEvt t, £n () => (CML.kill tid; NONE)),
CML.wrap (SyncVar.iGetEvt iv, £n x => SOME x) ]

end

110



MLton Guide (20070826) ConcurrentMLImplementation
Space Safety

There are some CML related posts on the MLton mailing list

@http://mlton.org/pipermail/mlton/2004-May/

that discuss concerns that SML/NJ's implementation is not space efficient, because multi-shot continuations
can be held indefinitely on event queues. MLton is better off because of the one-shot nature -- when an event
enables a thread, all other copies of the thread waiting in other event queues get turned into dead threads (of
Zero size).

Last edited on 2007-08-15 22:05:31 by MatthewFluet.

111


http://mlton.org/pipermail/mlton/2004-May/
http://mlton.org/pipermail/mlton/2004-May/

MLton Guide (20070826) ConstantPropagation
ConstantPropagation

Constant propagation is an optimization pass for the SSA Intermediatel.anguage, invoked from SSASimplify.

Description

This is whole-program constant propagation, even through data structures. It also performs globalization of
(small) values computed once.

Uses Multi.
Implementation
@constant—propagation. sig @constant—propagation.fun

Details and Notes

Last edited on 2006-11-02 17:30:40 by MatthewFluet.

112


http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/constant-propagation.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/constant-propagation.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/constant-propagation.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/constant-propagation.fun?view=markup

MLton Guide (20070826) Contact

Contact

Mailing lists
There are two mailing lists available.

o EIMLton @mlton.org (Bsubscribe, Blarchive) MLton developers
o ML ton-user@mlton.org (@subscribe, Marchive) MLton user community

In addition to the pipermail archive at mlton.org, there are archives of both [MLton and ML ton-user that
use E|Lurker.

Mailing list policy

¢ Both mailing lists are unmoderated. However, we use a whitelist to prevent spam. So, the first time
you send to the list, your mail will be delayed until we add you to the whitelist.

¢ Large messages (over 256K) should not be sent. Rather, please send an email containing the
discussion text and a link to any large files. You may use our EfTemporaryUpload page for uploading
these files.

® Very active MLton@mlton. org list members who might otherwise be expected to provide a fast
response should send a message when they will be offline for more than a few days. The convention
is to put "userid offline until date" in the subject line to make it easy to scan.

e Discussions started on the mailing lists should stay on the mailing lists. Private replies may be
bounced to the mailing list for the benefit of those following the discussion.

IRC

e Some MLton developers and users are in channel #sm1 on http:/freenode.net.

Last edited on 2007-03-17 18:41:33 by MatthewFluet.

113


mailto:MLton@mlton.org
mailto:MLton@mlton.org
http://mlton.org/mailman/listinfo/mlton
http://mlton.org/mailman/listinfo/mlton
http://mlton.org/pipermail/mlton
http://mlton.org/pipermail/mlton
mailto:MLton-user@mlton.org
mailto:MLton-user@mlton.org
http://mlton.org/mailman/listinfo/mlton-user
http://mlton.org/mailman/listinfo/mlton-user
http://mlton.org/pipermail/mlton-user
http://mlton.org/pipermail/mlton-user
http://terpstra.ca/lurker/list/mlton.en.html
http://terpstra.ca/lurker/list/mlton.en.html
http://terpstra.ca/lurker/list/mlton-user.en.html
http://terpstra.ca/lurker/list/mlton-user.en.html
http://lurker.sourceforge.net/
http://lurker.sourceforge.net/
http://mlton.org/TemporaryUpload
http://mlton.org/TemporaryUpload
http://freenode.net
http://freenode.net

MLton Guide (20070826) Contify

Contify

Contify is an optimization pass for the SSA Intermediatel anguage, invoked from SSASimplify.

Description
Contification is a compiler optimization that turns a function that always returns to the same place into a

continuation. This exposes control-flow information that is required by many optimizations, including
traditional loop optimizations.

Implementation
@contify.sig @contify.fun

Details and Notes

See Contification Using Dominators. The intermediate language described in that paper has since evolved to
the SSA Intermediatel .anguage; hence, the complication described in Section 6.1 is no longer relevant.

Last edited on 2006-11-02 17:35:17 by MatthewFluet.

114


http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/contify.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/contify.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/contify.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/contify.fun?view=markup

MLton Guide (20070826)

CorelML

CoreML

Core ML is an Intermediatel anguage, translated from AST by Elaborate, optimized by CoreMLSimplify, and

translated by Defunctorize to XML.

Description

CoreML is polymorphic, higher-order, and has nested patterns.

Implementation

@core—ml.sig [Blcore-ml.fun

Type Checking

The CoreML Intermediatel.anguage has no independent type checker.

Details and Notes

Last edited on 2006-11-02 17:56:39 by MatthewFluet.

115


http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/core-ml/core-ml.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/core-ml/core-ml.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/core-ml/core-ml.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/core-ml/core-ml.fun?view=markup

MLton Guide (20070826) CoreMLSimplify

CoreMLSimplify

The single optimization pass for the CoreML Intermediatel.anguage is controlled by the Compi 1 e functor
(Elcompile fun).

The following optimization pass is implemented:

e DeadCode

Last edited on 2006-11-02 17:56:03 by MatthewFluet.

116


http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/main/compile.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/main/compile.fun?view=markup

MLton Guide (20070826) CreatingPages

CreatingPages

To create a page on this WebSite, edit an existing page, and add the name of the new page, like FooBar, to
the page contents. When you view the new version of the existing page, a link will have been automatically
created, and if you click on it, you will be given the option to create the new page.

You can also go directly to a new page by entering the page name as a URL into your browser, like
http://mlton.org/FooBar.

You can also type in the page name here to go directly to that page.

Last edited on 2005-12-01 03:02:19 by StephenWeeks.

117



MLton Guide (20070826) Credits

Credits

MLton was designed and implemented by HenryCejtin, MatthewFluet, SureshJagannathan, and
StephenWeeks.

¢ HenryCeijtin wrote the Int Inf implementation, the original profiler, the original man pages, the
. spec files for the RPMs, and lots of little hacks to speed stuff up.

e MatthewFluet implemented the X86 and AMD64 native code generators, ported mlprof to work
with the native code generator, did a lot of work on the SSA optimizer, both adding new
optimizations and improving or porting existing optimizations, updated the Basis Library
implementation, ported ConcurrentMIL. and ML-NLFFI to MLton, implemented the ML Basis
system, and ported MLton to 64-bit platforms.

¢ SureshJagannathan implemented some early inlining and uncurrying optimizations.

¢ StephenWeeks implemented most of the original version of MLton, and continues to keep his fingers
in most every part.

Many people have helped us over the years. Here is an alphabetical list.

e JesperLouisAndersen sent several patches to improve the runtime on FreeBSD and ported MLton to
run on NetBSD and OpenBSD.

e JohnnyAndersen implemented BinIO, modified MLton so it could cross compile to MinGW, and
provided useful discussion about cross-compilation.

e Alain Deutsch and BPolySpace Technologies provided many bug fixes and runtime system
improvements, code to help the Sparc/Solaris port, and funded a number of improvements to MLton.

e Martin Elsman provided helpful discussions in the development of the ML Basis system.

¢ Brent Fulgham ported MLton most of the way to MinGW.

e AdamGoode provided the script to build the PDF MLton Guide.

¢ Simon Helsen provided bug reports, suggestions, and helpful discussions.

¢ Joe Hurd provided useful discussion and feedback on source-level profiling.

¢ VesaKarvonen contributed esml-mode. el (see Emacs) and patches for improving match warnings.

¢ Richard Kelsey provided helpful discussions.

e Ville Laurikari ported MLton to HPPA/HP-UX.

¢ Geoffrey Mainland helped with FreeBSD packaging.

® Eric McCorkle ported MLton to Intel Mac.

e TomMurphy wrote the original version of MLton.Syslog as part of his m1 ftpd project, and has
sent many useful bug reports and suggestions.

® Michael Neumann helped to patch the runtime to compile under FreeBSD.

e Barak Pearlmutter built the original Debian package for MLton, and helped us to take over the
process.

e Filip Pizlo ported MLton to (PowerPC) Darwin.

¢ John Reppy assisted in porting MLton to Intel Mac.

e Sam Rushing ported MLton to FreeBSD.

e Jeffrey Mark Siskind provided helpful discussions and inspiration with his Stalin Scheme compiler.

e WesleyTerpstra added support for MLton.Process.create, made a number of contributions to
the ForeignFunctionlnterface, and contributed a number of other runtime system patches.

e Luke Ziarek assisted in porting MLton to (PowerPC) Darwin.

We have also benefited from other software development tools and used code from other sources.

® MLton was developed using Standard ML of New Jersey and the Compilation Manager (CM)

118


http://www.polyspace.com/
http://www.polyspace.com/
http://packages.debian.org/mlton
http://packages.debian.org/mlton

MLton Guide (20070826) Credits

® MLton's lexer (m1ton/frontend/ml. lex), parser (mlton/frontend/ml.grm), and
precedence-parser (mlton/elaborate/precedence-parse. fun) are modified versions of
code from SML/NJ.

e The MLton Basis Library implementation of conversions between binary and decimal representations
of reals uses David Gay's Blgdtoa library.

e The MLton Basis Library implementation uses modified versions of portions of the the SML/NJ Basis
Library implementation modules OS. IO, Posix.IO,Process, and Unix.

® The MLton Basis Library implementation uses modified versions of portions of the ML Kit Version
4.1.4 Basis Library implementation modules Path, Time, and Date.

® Many of the benchmarks come from the SML/NJ benchmark suite.

® Many of the regression tests come from the ML Kit Version 4.1.4 distribution, which borrowed them
from the BiMoscow ML distribution.

® MLton uses the [http://www.gnu.org/software/gmp/gmp.html GNU multiprecision library] for its
implementation of IntInf.

® MLton's implementation of mllex, mlyacc, the ckit Library, Concurrent ML, and ML-NLFFI are
modified versions of code from SML/NJ.

Last edited on 2007-08-23 04:04:00 by MatthewFluet.

119


http://www.netlib.org/fp/
http://www.netlib.org/fp/
http://www.dina.kvl.dk/~sestoft/mosml.html
http://www.dina.kvl.dk/~sestoft/mosml.html
http://www.gnu.org/software/gmp/gmp.html

MLton Guide (20070826) CrossCompiling

CrossCompiling

MLton's —target flag directs MLton to cross compile an application for another platform. By default,
MLton is only able to compile for the machine it is running on. In order to use MLton as a cross compiler, you
need to do two things.

1. Install the GCC cross-compiler tools on the host so that GCC can compile to the target.
2. Cross compile the MLton runtime system to build the runtime libraries for the target.

To make the terminology clear, we refer to the host as the machine MLton is running on and the farget as the
machine that MLton is compiling for.

To build a GCC cross-compiler toolset on the host, you can use the script bin/build-cross-gcc,
available in the MLton sources, as a template. The value of the target variable in that script is important,
since that is what you will pass to MLton's —target flag. Once you have the toolset built, you should be
able to test it by cross compiling a simple hello world program on your host machine.

)

% gcc -b 1386-pc-cygwin -o hello-world hello-world.c
You should now be able to run hello-world on the target machine, in this case, a Cygwin machine.

Next, you must cross compile the MLton runtime system and inform MLton of the availability of the new
target. The script bin/add-cross from the MLton sources will help you do this. Please read the comments
at the top of the script. Here is a sample run adding a Solaris cross compiler.

)

% add-cross sparc-sun-solaris sun blade
Making runtime.

Building print-constants executable.
Running print-constants on blade.

Running add-cross uses ssh to compile the runtime on the target machine and to create
print—-constants, which prints out all of the constants that MLton needs in order to implement the Basis
Library. The script runs print—constants on the target machine (b1lade in this case), and saves the
output.

Once you have done all this, you should be able to cross compile SML applications. For example,
mlton -target i386-pc-cygwin hello-world.sml

will create hello-wor1ld, which you should be able to run from a Cygwin shell on your Windows machine.

Cross-compiling alternatives

Building and maintaining cross-compiling gcc's is complex. You may find it simpler to use
mlton -keep g to generate the files on the host, then copy the files to the target, and then use gcc or
mlton on the target to compile the files.

Last edited on 2005-12-02 04:19:16 by StephenWeeks.

120



MLton Guide (20070826) DeadCode

DeadCode

Dead-code elimination is an optimization pass for the CoreML Intermediatel.anguage, invoked from
CoreML Simplify.

Description

This pass eliminates declarations from the Basis Library not needed by the user program.

Implementation

@dead—code.sig [@ldead-code.fun

Details and Notes

In order to compile small programs rapidly, a pass of dead code elimination is run in order to eliminate as
much of the Basis Library as possible. The dead code elimination algorithm used is not safe in general, and
only works because the Basis Library implementation has special properties:

e it terminates
¢ it performs no I/O

The dead code elimination includes the minimal set of declarations from the Basis Library so that there are no
free variables in the user program (or remaining Basis Library implementation). It has a special hack to
include all bindings of the form:

val = ...

There is an ML Basis annotation, deadCode true, that governs which code is subject to this unsafe
dead-code elimination.

Last edited on 2006-11-02 17:56:56 by MatthewFluet.

121


http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/core-ml/dead-code.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/core-ml/dead-code.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/core-ml/dead-code.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/core-ml/dead-code.fun?view=markup

MLton Guide (20070826) DeepFlatten
DeepFlatten
Deep flatten is an optimization pass for the SSA2 Intermediatel.anguage, invoked from SSA2Simplify.

Description

This pass flattens into mutable fields of objects and into vectors.

For example, an (int * int) ref isrepresented by a2 word object, and an (int * int) array
contains pairs of ints, rather than pointers to pairs of ints.

Implementation
@deep—ﬂatten.sig @deep—ﬂatten.fun

Details and Notes

Last edited on 2006-11-02 17:43:24 by MatthewFluet.

122


http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/deep-flatten.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/deep-flatten.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/deep-flatten.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/deep-flatten.fun?view=markup

MLton Guide (20070826) DefineTypeBeforeUse

DefineTypeBeforeUse

Standard ML requires types to be defined before they are used. Because of type inference, the use of a type
can be implicit; hence, this requirement is more subtle than it might appear. For example, the following
program is not type correct, because the type of ris t option ref, butt is defined after r.

val r = ref NONE
datatype t = A | B
val () = r := SOME A

MLton reports the following error, indicating that the type defined on line 2 is used on line 1.

Error: z.sml 1.1.
Type escapes the scope of its definition at z.sml 2.10.
type: t
in: val r = ref NONE

While the above example is benign, the following example shows how to cast an integer to a function by
(implicitly) using a type before it is defined. In the example, the ref cell r is of type t option ref, where
t is defined after r, as a parameter to functor F. This example causes PolyML 4.1.3 to seg fault.

val r = ref NONE
functor F (type t

val x: t) =
struct
val () = r := SOME x
fun get () = valOf (!r)
end
structure S1 = F (type t = unit -> unit
val x = £fn () => ())
structure S2 = F (type t = int
val x = 13)
val () = Sl.get () ()

MLton reports the following error.

Warning: z.sml 1.1.
Unable to locally determine type of variable: r.
type: ??? option ref
in: val r = ref NONE
Error: z.sml 1.1.
Type escapes the scope of its definition at z.sml 2.17.
type: t
in: val r = ref NONE

Last edited on 2005-12-01 03:38:39 by StephenWeeks.

123



MLton Guide (20070826) DefinitionOfStandardML

DefinitionOfStandardML

The Definition of Standard ML (Revised) is a terse and formal specification of Standard ML's syntax and
semantics. The language specified by this book is often referred to as SML 97.

There is an _older version of the definition, published in 1990, which has an accompanying commentary that
introduces and explains the notation and approach. The same notation is used in the SML 97 definition, so it is
worth purchasing the older definition and commentary if you intend a close study of the definition.

Last edited on 2004-12-28 19:55:24 by StephenWeeks.

124



MLton Guide (20070826) Defunctorize

Defunctorize

Defunctorize is a translation pass from the CoreML Intermediatel.anguage to the XML
Intermediatel .anguage.

Description

This pass converts a CoreML program to an XML program by performing:

¢ linearization

¢ MatchCompile

¢ polymorphic val dec expansion

e datatype lifting (to the top-level)

Implementation

[Bldefunctorize. sig [Bldefunctorize.fun

Details and Notes

This pass is grossly misnamed and does not perform defunctorization.
Datatype Lifting
This pass moves all datatype declarations to the top level.

Standard ML, datatype declarations can contain type variables that are not bound in the declaration itself.
For example, the following program is valid.

fun 'a £ (x: 'a) =
let
datatype 'b t = T of 'a * 'b
val y: int t = T (x, 1)
in
13
end

Unfortunately, the datatype declaration can not be immediately moved to the top level, because that would
leave ' a free.

datatype 'b t = T of 'a * 'b

fun 'a £ (x: 'a) =
let
val y: int t = T (x, 1)
in
13
end

In order to safely move datatypes, this pass must close them, as well as add any free type variables as extra
arguments to the type constructor. For example, the above program would be translated to the following.

125


http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/defunctorize/defunctorize.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/defunctorize/defunctorize.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/defunctorize/defunctorize.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/defunctorize/defunctorize.fun?view=markup

MLton Guide (20070826) Defunctorize

datatype ('a, 'b) t =T of 'a * 'b

fun 'a £ (x: 'a) =
let
val y: ('a, int) t =T (x, 1)
in
13
end

Historical Notes

The Defunctorize pass originally eliminated Standard ML functors by duplicating their body at each
application. These duties have been adopted by the Elaborate pass.

Last edited on 2007-07-08 22:40:00 by MatthewFluet.

126



MLton Guide (20070826) Developers

Developers

Here is a picture of the MLton team at a meeting in Chicago in August 2003. From left to right we have:
StephenWeeks MatthewFluet HenryCejtin SureshJagannathan
Yimage

Also see the Credits for a list of specific contributions.

Developers list

A number of people read the developers mailing list, EIMI ton @mlton.org, and make contributions there.
Here's a list of those who have a page here.

e AndreiFormiga

e Jesperl ouisAndersen
e JohnnyAndersen

e MichaelNorrish

e MikeThomas

¢ RayRacine

® WesleyTerpstra
e VesaKarvonen

Last edited on 2007-08-23 04:24:19 by MatthewFluet.

127


http://mlton.org/pages/Developers/attachments/team.jpg?ts=1098901016
mailto:MLton@mlton.org
mailto:MLton@mlton.org

MLton Guide (20070826)

Development

This page is the central point for MLton development.

e Access the Sources.
® Check the latest Changelog.
e Ideas for Projects to improve MLton.

¢ Developers that are or have been involved in the project.

¢ Help maintain and improve the WebSite.

Notes

e CompilerOverview

¢ CompilingWithSMINJ

¢ CrossCompiling
e [icense

e PortingMI ton
e ReleaseChecklist
e SelfCompilin

Development

Last edited on 2007-08-23 12:56:56 by MatthewFluet.

128



MLton Guide (20070826) Documentation

Documentation

Documentation is available on the following topics.

e Standard ML

¢ Basis Library

¢ Additional libraries
e Installing M1 ton
e Using MLton

¢ Poreign function interface (FFI)
¢ Manual page (compile-time options run-time options)
¢ ML Basis system
¢ MLton structure
¢ Platform-specific notes
¢ Profiling
¢ Type checking
¢ Help for porting from SMIL/NJ to MLton.
e About MLton
¢ Credits
¢ Drawbacks
¢ Features
¢ History
¢ License
¢ Talk
¢ Wishlist
o MLLex [@pdf
* ML Yacc [@lpdf
e References

Last edited on 2007-07-08 22:59:04 by MatthewFluet.

129


http://mlton.org/pages/Documentation/attachments/mllex.pdf
http://mlton.org/pages/Documentation/attachments/mllex.pdf
http://mlton.org/pages/Documentation/attachments/mlyacc.pdf
http://mlton.org/pages/Documentation/attachments/mlyacc.pdf

MLton Guide (20070826) Drawbacks

Drawbacks

MLton has several drawbacks due to its use of whole-program compilation.

e Large compile-time memory requirement.
Because MLton performs whole-program analysis and optimization, compilation requires a large
amount of memory. For example, compiling MLton (over 140K lines) requires at least 512M RAM.
® Long compile times.
Whole-program compilation can take a long time. For example, compiling MLton (over 140K lines)
on a 1.6GHz machine takes five to ten minutes.
¢ No interactive top level.

Because of whole-program compilation, MLton does not provide an interactive top level. In particular, it does
not implement the optional Basis Library function use.

Last edited on 2005-12-02 04:19:39 by StephenWeeks.

130



MLton Guide (20070826) Eclipse

Eclipse
[BEclipse is an open, extensible IDE.
[BIML-Dev is a plug-in for Eclipse, based on SML/NJ.

There has been some talk on the MLton mailing list about adding support to Eclipse for MLton/SML, and in
particular, using http://eclipsefp.sourceforge.net/. We are unaware of any progress along those lines.

Last edited on 2006-02-09 19:33:33 by StephenWeeks.

131


http://eclipse.org/
http://eclipse.org/
http://www.cse.iitd.ernet.in/~csu02132/mldev/
http://www.cse.iitd.ernet.in/~csu02132/mldev/
http://eclipsefp.sourceforge.net/

MLton Guide (20070826) EditingPages
EditingPages
You can help maintain this WebSite and improve a page's contents by using the "Edit" link found at the

bottom of that page. Pages are written using MoinMoin's Blwiki markup language. You can practice editing in
the EWikiSandBox.

Before you begin editing, you must [lcreate a user account. When you do so, please also create a home page
(like StephenWeeks) so we know who you are. See our AccessControl policy for who is allowed to edit what.

By contributing to this web site, you agree to dedicate your contribution to the public domain. For more
details, please see our License.

Last edited on 2005-12-01 20:16:41 by StephenWeeks.

132


http://moinmoin.wikiwikiweb.de/HelpOnEditing
http://moinmoin.wikiwikiweb.de/HelpOnEditing
http://mlton.org/WikiSandBox
http://mlton.org/WikiSandBox
http://mlton.org/Preferences
http://mlton.org/Preferences

MLton Guide (20070826) Elaborate

Elaborate

Elaborate is a translation pass from the AST Intermediatel anguage to the CoreML Intermediatel.anguage.

Description

This pass performs type inference and type checking according to the Definition. It also defunctorizes the
program, eliminating all module-level constructs.

Implementation

[Blelaborate. sig [Blelaborate.fun

[Blclaborate-env. sig [Blelaborate-env.fun
@elaborate—modules.sig [Ble]aborate-modules.fun
@elaborate—core.sig [Blelaborate-core.fun
[Blelaborate

Details and Notes

At the modules level, the Elaborate pass:

e elaborates signatures with interfaces (see linterface.sig and Blinterface fun).
The main trick is to use disjoint sets to efficiently handle sharing of tycons and of structures and then
to copy signatures as dags rather than as trees.

e checks functors at the point of definition, using functor summaries to speed up checking of functor
applications.
When a functor is first type checked, we keep track of the dummy argument structure and the dummy
result structure, as well as all the tycons that were created while elaborating the body. Then, if we
later need to type check an application of the functor (as opposed to defunctorize an application), we
pair up tycons in the dummy argument structure with the actual argument structure and then replace
the dummy tycons with the actual tycons in the dummy result structure, yielding the actual result
structure. We also generate new tycons for all the tycons that we created while originally elaborating
the body.

¢ handles opaque signature constraints.

This is implemented by building a dummy structure realized from the signature, just as we would for a functor
argument when type checking a functor. The dummy structure contains exactly the type information that is in
the signature, which is what opacity requires. We then replace the variables (and constructors) in the dummy
structure with the corresponding variables (and constructors) from the actual structure so that the translation to
CoreML uses the right stuff. For each tycon in the dummy structure, we keep track of the corresponding type
structure in the actual structure. This is used when producing the CoreML types (see expandOpague in

@ty_pe—env.sig and @type—env.fun).

Then, within each st ructure or functor body, for each declaration (<dec> in the Standard ML,
grammar), the Elaborate pass does three steps:

1. Scopelnference
2. ¢ PrecedenceParse

¢ _{ex,im}port expansion

133


http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/elaborate/elaborate.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/elaborate/elaborate.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/elaborate/elaborate.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/elaborate/elaborate.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/elaborate/elaborate-env.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/elaborate/elaborate-env.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/elaborate/elaborate-env.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/elaborate/elaborate-env.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/elaborate/elaborate-modules.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/elaborate/elaborate-modules.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/elaborate/elaborate-modules.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/elaborate/elaborate-modules.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/elaborate/elaborate-core.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/elaborate/elaborate-core.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/elaborate/elaborate-core.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/elaborate/elaborate-core.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/elaborate
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/elaborate
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/elaborate/interface.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/elaborate/interface.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/elaborate/interface.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/elaborate/interface.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/elaborate/type-env.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/elaborate/type-env.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/elaborate/type-env.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/elaborate/type-env.fun?view=markup

MLton Guide (20070826) Elaborate

¢ profiling insertion
4 unification
3. Overloaded {constant, function, record pattern} resolution

Defunctorization
The Elaborate pass performs a number of duties historically assigned to the Defunctorize pass.

As part of the Elaborate pass, all module level constructs (open, signature, structure, functor,
long identifiers) are removed. This works because the Elaborate pass assigns a unique name to every type and
variable in the program. This also allows the Elaborate pass to eliminate 1ocal declarations, which are
purely for namespace management.

Examples

Here are a number of examples of elaboration.

e All variables bound in val declarations are renamed.

val x = 13
val y = x

val x_0 = 13
val yv_0 = x_0
All variables in fun declarations are renamed.

fun f x =
and g y =

Hh Q
<X

fun £.0 x 0 = g_0 x_0

and g_ 0 y_0 = £_0 y_0
Type abbreviations are removed, and the abbreviation is expanded wherever it is used.

type 'a u = int * 'a
type 'b t = 'b u * real
fun £ (x : bool t) = x

fun £ 0 (x_0 : (int * bool) * real) = x_0
Exception declarations create a new constructor and rename the type.

type t = int
exception E of t * real

exception E_0 of int * real
The type and value constructors in datatype declarations are renamed.

datatype t = A of int | B of real * t

datatype t_0 = A_0 of int | B_0 of real * t_0
Local declarations are moved to the top-level. The environment keeps track of the variables in scope.

val x = 13
local val x = 14
in val y = x

134



MLton Guide (20070826)

end
val z

val
val
val y_
val z_0

xX_
xX_

O = O

13
14
x_1
x_0

Elaborate

Structure declarations are eliminated, with all declarations moved to the top level. Long identifiers are

renamed.

structure S =
struct
type t =

val x

end
val y

val x_0
val y_0O

S.

t

int
int

int

= 13

13
x_0

Open declarations are eliminated.

Functor declarations are eliminated, and the body of a functor is duplicated wherever the functor is

Signature constraints are eliminated. Note that signatures do affect how subsequent variables are

val x = 13
val y = 14
structure S =

struct

val x = 15

end
open S
val z = x + y
val x_0 = 13
val y_0 = 14
val x_1 = 15
val z_0 = x_1 + y_O
applied.
functor F (val x int)

struct

val y = x

end
structure Fl1 = F(val x
structure F2 = F(val x
val z = Fl.y + F2.y
val x_0 = 13
val y_ 0 = x 0
val x_1 = 14
val y_1 = x_1
val z_ 0 =y 0 + y_1
renamed.
val y = 13

structure S

struct

sig

val x

end =

int

135



MLton Guide (20070826) Elaborate

val x = 14
val v = x
end

open S

val z = x + vy

val y_0 = 13

val x_0 = 14

val yv_1 = x_0

val z_0 = x_0 + yv_0O

Last edited on 2007-08-15 22:05:40 by MatthewFluet.

136



MLton Guide (20070826) Emacs

Emacs
SML Modes

There are a few Emacs modes for SML.

® sml-mode

¢ @http://WWW.xemacs.org/Documentation/packages/html/sml—mode 3.html

¢ Bhttp://www.smlnj.org/doc/Emacs/sml-mode.html
o @imlton.el contains the Emacs lisp that StephenWeeks uses to interact with MLton (in addition to

using sml-mode).
o [Bihttp://primate.net/~itz/mindent.tar, developed by Ian Zimmerman, who writes:

Unlike the widespread sm1-mode.el it doesn't try to indent code based on ML syntax. I gradually got
skeptical about this approach after writing the initial indentation support for caml mode and watching it bloat
insanely as the language added new features. Also, any such attempts that I know of impose a particular
coding style, or at best a choice among a limited set of styles, which I now oppose. Instead my mode is based
on a generic package which provides manual bindable commands for common indentation operations
(example: indent the current line under the n-th occurrence of a particular character in the previous non-blank
line).

MLB modes

There is a mode for editing ML Basis files.

e [Blesml-mlb-mode.el (+ other files)

Definitions and uses

There is a mode that supports the precise def-use information that MLton can output. It highlights definitions
and uses and provides commands for navigation (e.g. jump-to-def, jump-to-next, list-all-refs). It can be handy,
for example, for navigating in the MLton compiler source code. See EmacsDefUseMode for further
information.

Building on the background

Tired of manually starting/stopping/restarting builds after editing files? Now you don't have to. See
EmacsBgBuildMode for further information.

Error messages

MLton's error messages are not in the format that the Emacs next—error parser natively understands.
There are a couple of ways to fix this. The easiest way is to add the following to your .emacs to cause
Emacs to recognize MLton's error messages.

(require 'compile)
(add-to-list 'compilation-error-regexp-alist
(" Error: A\ ([™NEANTFAN) AN (LO0=9T+\\)ANNAN([0=9T+\\)\\. 8"
12 3))

137


http://www.xemacs.org/Documentation/packages/html/sml-mode_3.html
http://www.xemacs.org/Documentation/packages/html/sml-mode_3.html
http://www.smlnj.org/doc/Emacs/sml-mode.html
http://www.smlnj.org/doc/Emacs/sml-mode.html
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/ide/emacs/mlton.el?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/ide/emacs/mlton.el?view=markup
http://primate.net/~itz/mindent.tar
http://primate.net/~itz/mindent.tar
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/ide/emacs/esml-mlb-mode.el?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/ide/emacs/esml-mlb-mode.el?view=markup

MLton Guide (20070826) Emacs

Alternatively, you could use a sed script to rewrite MLton's errors. Here is one such script:

sed —e "s/"\([WIET.*\): N ([~ 1*\) N([0-91[0-91*\)\.\([0-9]1[0-91*\)\./\2:\3:\1:\4/"

Last edited on 2007-08-15 22:05:44 by MatthewFluet.

138



MLton Guide (20070826) EmacsBgBuildMode

EmacsBgBuildMode

Do you really want to think about starting a build of you project? What if you had a personal slave that would
restart a build of your project whenever you save any file belonging to that project? The bg-build mode does
just that. Just save the file, a compile is started (silently!), you can continue working without even thinking
about starting a build, and if there are errors, you are notified (with a message), and can then jump to errors.

This mode is not specific to MLton per se, but is particularly useful for working with MLton due to the longer
compile times. By the time you start wondering about possible errors, the build is already on the way.

Functionality and Features

e Each time a file is saved, and after a user configurable delay period has been exhausted, a build is
started silently in the background.

® When the build is finished, a status indicator (message) is displayed non-intrusively.

e At any time, you can switch to a build process buffer where all the messages from the build are
shown.

e After a build has finished, you can jump to locations of warnings and errors from the build process
buffer or by using the first-error and next-error commands.

® When a build fails, bg-build mode can optionally execute a user specified command. By default,
bg-build mode executes first—error.

® When starting a build of a particular project, a possible previous live build of the same project is
interrupted first.

¢ A project configuration file specifies the commands required to build a project.

e Multiple projects can be loaded into bg-build mode and bg-build mode can build a given maximum
number of projects concurrently.

e Supports both EGnu Emacs and X Emacs.

Download

There is no package for the mode at the moment. To install the mode you need to fetch the Emacs lisp, * .e1,
files from the MLton repository: Bemacs.

Setup
The easiest way to load the mode is to first tell Emacs where to find the files. For example, add
(add-to-list 'load-path (file-truename "path-to-the-el-files"))

to your ~/ .emacs or ~/ .xemacs/init.el. You'll probably also want to start the mode automatically by
adding

(require 'bg-build-mode)
(bg-build-mode)

to your Emacs init file. Once the mode is activated, you should see the BGB indicator on the mode line.

139


http://www.gnu.org/software/emacs/
http://www.gnu.org/software/emacs/
http://www.xemacs.org
http://www.xemacs.org
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/trunk/ide/emacs/
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/trunk/ide/emacs/

MLton Guide (20070826) EmacsBgBuildMode
MLton and Compilation-Mode

At the time of writing, neither Gnu Emacs nor XEmacs contain an error regexp that would match MLton's
messages.

If you use Gnu Emacs, insert the following code into your . emacs file:

(require 'compile)

(add-to-1list

'compilation-error-regexp-alist

"("M\\ (Warning\\ |Exror\\) : \\ (.+\\) \\([0-9T+\\)\N AN ([0-9T+\\) \\. s
2 3 4))

If you use XEmacs, insert the following code into your init .el file:

(require 'compile)

(add-to-1list

'compilation-error-regexp-alist-alist

'(mlton
(""\\ (Warning\\ |Error\\) : \\ (.+\\) \\([0-9T+\\)\\. AN ([0-91+\\)\\. "
2.3 4)))

(compilation-build-compilation-error-regexp-alist)

Usage

Typically projects are built (or compiled) using a tool like Elmake, but the details vary. The bg-build mode
needs a project configuration file to know how to build your project. A project configuration file basically
contains an Emacs Lisp expression calling a function named bg-bui1d that returns a project object. A
simple example of a project configuration file would be the (@Build.bgb) file used with smlbot:

(bg-build
:name "SML-Bot"
:shell "nice —-n5 make all")

The bg—build function takes a number of keyword arguments:

¢ :name specifies the name of the project. This can be any expression that evaluates to a string or to a
nullary function that returns a string.

¢ :shell specifies a shell command to execute. This can be any expression that evaluates to a string, a
list of strings, or to a nullary function returning a list of strings.

¢ :build? specifies a predicate to determine whether the project should be built after some files have
been modified. The predicate is given a list of filenames and should return a non-nil value when the
project should be built and nil otherwise.

All of the keyword arguments, except : shell, are optional and can be left out.

Note the use of the nice command above. It means that background build process is given a lower priority
by the system process scheduler. Assuming your machine has enough memory, using nice ensures that your
computer remains responsive. (You probably won't even notice when a build is started.)

Once you have written a project file for bg-build mode. Use the bg-build-add-project command to

load the project file for bg-build mode. The bg-build mode can also optionally load recent project files
automatically at startup.

140


http://www.gnu.org/software/make/
http://www.gnu.org/software/make/
http://mlton.org/cgi-bin/viewsvn.cgi/mltonlib/trunk/com/ssh/async/unstable/example/smlbot/Build.bgb?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mltonlib/trunk/com/ssh/async/unstable/example/smlbot/Build.bgb?view=markup

MLton Guide (20070826) EmacsBgBuildMode

After the project file has been loaded and bg-build mode activated, each time you save a file in Emacs, the
bg-build mode tries to build your project.

The bg-build-status command creates a buffer that displays some status information on builds and
allows you to manage projects (start builds explicitly, remove a project from bg-build, ...) as well as visit
buffers created by bg-build. Notice the count of started builds. At the end of the day it can be in the hundreds
or thousands. Imagine the number of times you've been relieved of starting a build explicitly!

Last edited on 2007-07-07 04:01:31 by VesaKarvonen.

141



MLton Guide (20070826) EmacsDefUseMode

EmacsDefUseMode

MLton provides an option, —show—def—-use file, to output precise and accurate whole-program def-use
information to a file. Unlike typical tags facilities, the information includes local variables and distinguishes
between different definitions even when they have the same name. The def-use Emacs mode uses the
information to provide navigation support, which can be particularly useful while reading SML programs
compiled with MLton (such as the MLton compiler itself).

Features

¢ Highlighting of definitions and uses.

¢ Navigation: jump-to-def, jump-to-next, and jump-to-prev.

e Listing, visiting and marking of all references to a definition (within a program).
® [oads def-use files in the background.

¢ Automatically reloads updated def-use files.

e Supports both EGnu Emacs and B{XEmacs.

Download

There is no package for the def-use mode at the moment. To install the mode you need to fetch the Emacs
lisp, * . e1, files from the MLton repository: [@lemacs.

Setup

The easiest way to load def-use mode is to first tell Emacs where to find the files. For example, add
(add-to-list 'load-path (file-truename "path-to-the-el-files"))

to your ~/ .emacs or ~/ .xemacs/init.el. You'll probably also want to start def-use-mode
automatically by adding

(require 'esml-du-mlton)
(def-use—-mode)

to your Emacs init file. Once the def-use mode is activated, you should see the DU indicator on the mode line.
Usage

To use def-use mode one typically first sets up the program's makefile or build script so that the def-use
information is saved each time the program is compiled. In addition to the —~show—-def-use file option,
the -prefer—-abs-paths true expert option is required. Note that the time it takes to save the
information is small (compared to type-checking), so it is recommended to simply add the options to the
MLton invocation that type-checks or compiles the program.

Finally, one needs to tell the mode where to find the def-use information. This is done with the
esml-du-mlton command. The esml-du package can also load recently used def-use files automatically at
startup.

After doing all of the above, find an SML file covered by the def-use information, and place the cursor at
some variable (definition or use, it doesn't matter).

142


http://www.gnu.org/software/emacs/
http://www.gnu.org/software/emacs/
http://www.xemacs.org
http://www.xemacs.org
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/trunk/ide/emacs/
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/trunk/ide/emacs/

MLton Guide (20070826) EmacsDefUseMode

Last edited on 2007-08-23 04:24:24 by MatthewFluet.

143



MLton Guide (20070826) Enscript

Enscript

BIGNU Enscript converts ASCII files to PostScript, HTML, and other output languages, applying language
sensitive highlighting (similar to Emacs's font lock mode). Here are a few states files for highlighting
Standard ML.

e Wsml simple.st -- Provides highlighting of keywords, string and character constants, and (nested)
comments.

(* Comments (* can be nested *) *)
structure S = struct
val x = (1, 2, "three")

end

o [Blsml verbose.st -- Supersedes the above, adding highlighting of numeric constants. Due to the
limited parsing available, numeric record labels are highlighted as numeric constants, in all contexts.
Likewise, a binding precedence separated from infix or infixr by a newline is highlighted as a
numeric constant and a numeric record label selector separated from # by a newline is highlighted as
a numeric constant.

structure S = struct
(* These look good *)
val x = (1, 2, "three")
val z = #2 x

(* Although these look bad (not all the numbers are constants), *
* they never occur in practice, as they are equivalent to the above. *)
val x = {1 =1, 3 = "three", 2 = 2}
val z = #
2 x
end

e Wsml fancy.st -- Supersedes the above, adding highlighting of type and constructor bindings,
highlighting of explicit binding of type variables at val and fun declarations, and separate
highlighting of core and modules level keywords. Due to the limited parsing available, it is assumed
that the input is a syntactically correct, top-level declaration.

structure S = struct
val x = (1, 2, "three")
datatype 'a t = T of 'a
and u = Uof v * v
withtype v = {left: int t, right: int t}
exception El1 of int and E2
fun 'a id (x: 'a) : 'a = x

(* Although this looks bad (the explicitly bound type variable 'a is *
* not highlighted), it is unlikely to occur in practice. *)
val
'a id = £fn (x : 'a) => x
end
e Wism] gaudy.st -- Supersedes the above, adding highlighting of type annotations, in both expressions
and signatures. Due to the limited parsing available, it is assumed that the input is a syntactically

correct, top-level declaration.

signature S = sig
type t
val x : t

144


http://people.ssh.com/mtr/genscript
http://people.ssh.com/mtr/genscript
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/ide/enscript/sml_simple.st?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/ide/enscript/sml_simple.st?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/ide/enscript/sml_verbose.st?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/ide/enscript/sml_verbose.st?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/ide/enscript/sml_fancy.st?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/ide/enscript/sml_fancy.st?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/ide/enscript/sml_gaudy.st?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/ide/enscript/sml_gaudy.st?view=markup

MLton Guide (20070826) Enscript

val £f : £t * int -> int
end
structure S : S = struct
datatype t = T of int
val x : £t =T O

fun £ (T x, 1 : int) : int = x + vy
fun 'a id (x: 'a) : 'a = x
end

Install and use

e Version 1.6.3 of BIGNU Enscript
¢ Copy all filesto /usr/share/enscript/hl/ or .enscript/ in your home directory.
¢ Invoke enscript with ——highlight=sml_simple (or
——highlight=sml_verbose or ——highlight=sml_fancy or
—-highlight=sml_gaudy).
e Version 1.6.1 of BIGNU Enscript
¢ Append Blsml allstto /usr/share/enscript/enscript.st
¢ Invoke enscript with ——pretty-print=sml_simple (or
——pretty-print=sml_verbose or ——pretty-print=sml_fancy or
—-—pretty-print=sml_gaudy).

This WebSite uses sm1__fancy to pretty-print Standard ML source code. Comments and suggestions should
be directed to MatthewFluet.

Last edited on 2006-11-02 17:41:43 by MatthewFluet.

145


http://people.ssh.com/mtr/genscript
http://people.ssh.com/mtr/genscript
http://people.ssh.com/mtr/genscript
http://people.ssh.com/mtr/genscript
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/ide/enscript/sml_all.st?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/ide/enscript/sml_all.st?view=markup

MLton Guide (20070826) EqualityType
EqualityType

An equality type is a type to which PolymorphicEquality can be applied. The Definition and the Basis Library
precisely spell out which types are equality types.

®bool, char, IntInf.int, Int<N>.int, string, and Word<N>.word are equality types.
e forany t,botht arrayandt ref are equality types.
¢ if ¢ is an equality type, thent 1list,and t vector are equality types.

eif t1, .., tn are equality types,thentl * ... * tnand {11: t1, ..., 1ln: tn} are
equality types.
eif £1, .., tn are equality types and t AdmitsEquality, then (t1, ..., tn) t isan equality type.

To check that a type t is an equality type, use the following idiom.

structure S: sig eqtype t end =
struct
type t = ...
end

Notably, exn and real are not equality types. Neitheris t1 -> t2,forany t1 and t2.
Equality on arrays and ref cells is by identity, not structure. For example, ref 13 = ref 13is false.

On the other hand, equality for lists, strings, and vectors is by structure, not identity. For example, the
following equalities hold.

(1, 2, 31 =1 :: [2, 3]
llfooll P COncat [llfll, lloll, llollJ
Vector.fromList [1, 2, 3] = Vector.tabulate (3, fn i => 1 + 1)

Last edited on 2007-08-15 22:05:47 by MatthewFluet.

146



MLton Guide (20070826) EqualityTypeVariable

EqualityTypeVariable

An equality type variable is a type variable that starts with two or more primes, asin ' 'a or ' 'b. The
canonical use of equality type variables is in specifying the type of the PolymorphicEquality function, which
is''a * '"'a —> bool. Equality type variables ensure that polymorphic equality is only used on gquality
types, by requiring that at every use of a polymorphic value, equality type variables are instantiated by
equality types.

For example, the following program is type correct because polymorphic equality is applied to variables of
type ' 'a.

fun £ (x: '"'a, y: '"'a): bool = x =y

On the other hand, the following program is not type correct, because polymorphic equality is applied to
variables of type 'a, which is not an equality type.

fun £ (x: 'a, y: 'a): bool = x =y

MLton reports the following error, indicating that polymorphic equality expects equality types, but didn't get
them.

Error: z.sml 1.32.
Function applied to incorrect argument.

expects: [<equality>] * [<equality>]
but got: [<non-equality>] * [<non-equality>]
in: = (x, y)

As an example of using such a function that requires equality types, suppose that £ has polymorphic type

'"'a -> unit.Then, £ 13 istype correct because int is an equality type. On the other hand, £ 13.0
and f (fn x => x) are not type correct, because real and arrow types are not equality types. We can
test these facts with the following short programs. First, we verify that such an £ can be applied to integers.

functor Ok (val f: ''a -> unit): sig end =
struct
val () = £ 13
val () = £ 14
end

We can do better, and verify that such an f can be applied to any integer.

functor Ok (val f: ''a -> unit): sig end =
struct
fun g (x: int) = f x
end

Even better, we don't need to introduce a dummy function name; we can use a type constraint.

functor Ok (val f: ''a -> unit): sig end =
struct
val _ = f: int -> unit
end

Even better, we can use a signature constraint.

147



MLton Guide (20070826) EqualityTypeVariable

functor Ok (S: sig val f: ''a -> unit end):
sig val f: int -> unit end = S

This functor concisely verifies that a function of polymorphic type ' 'a —> unit can be safely used as a
function of type int -> unit.

As above, we can verify that such an f can not be used at non equality types.

functor Bad (S: sig val f: ''a -> unit end):
sig val f: real -> unit end = S

functor Bad (S: sig wval f: ''a —-> unit end):
sig val f: ('a -> 'a) -> unit end = S

For each of these programs, MLton reports the following error.

Error: z.sml 2.4.
Variable type in structure disagrees with signature.
variable: f
structure: [<equality>] -> _
signature: [<non-equality>] -> _

Equality type variables in type and datatype declarations

Equality type variables can be used in type and datatype declarations; however they play no special role. For
example,

type 'a t = 'a * int

is completely identical to

type ''a t = '"'a * int

In particular, such a definition does not require that t only be applied to equality types.
Similarly,

datatype 'a t = A | B of 'a

is completely identical to

datatype ''a t = A | Bof ''a

Last edited on 2005-12-01 04:00:38 by StephenWeeks.

148



MLton Guide (20070826) EtaExpansion

EtaExpansion

Eta expansion is a simple syntactic change used to work around the ValueRestriction in Standard ML..

The eta expansion of an expression e is the expression fn z => e z, where z does not occur in e. This
only makes sense if e denotes a function, i.e. is of arrow type. Eta expansion delays the evaluation of e until
the function is applied, and will re-evaluate e each time the function is applied.

The name "eta expansion" comes from the eta-conversion rule of the lambda calculus. Expansion refers to the
directionality of the equivalence being used, namely taking e to fn z => e zratherthanfn z => e z
to e (eta contraction).

Last edited on 2006-03-28 00:57:50 by StephenWeeks.

149



MLton Guide (20070826) FAQ

FAQ

Feel free to ask questions and to update answers by editing this page. Since we try to make as much
information as possible available on the web site and we like to avoid duplication, many of the answers are
simply links to a web page that answers the question.

How do you pronounce MLton?

Pronounce

What SML software has been ported to MLton?

Libraries

What graphical libraries are available for MLton?

Libraries

How does MLton's performance compare to other SML
compilers and to other languages?

MLton has excellent performance.

Does MLton treat monomorphic arrays and vectors specially?

MLton implements monomorphic arrays and vectors (e.g. BoolArray, Word8Vector) exactly as
instantiations of their polymorphic counterpart (e.g. bool array, Word8.word wvector). Thus, there is
no need to use the monomorphic versions except when required to interface with the Basis Library or for
portability with other SML implementations.

Why do | get a Segfault/Bus error in a program that uses
Intinf/Largelnt to calculate humbers with several hundred
thousand digits?

GnuMP

How can | decrease compile-time memory usage?

® Compile with —~verbose 3 to find out if the problem is due to an SSA optimization pass. If so,
compile with ~drop-pass pass to skip that pass.

¢ Compile with @MLton hash-cons 0.5 —-, which will instruct the runtime to hash cons the
heap every other GC.

¢ Compile with -polyvariance false, which is an undocumented option that causes less code
duplication.

Also, please Contact us to let us know the problem to help us better understand MLton's limitations.

150



MLton Guide (20070826) FAQ

How do | see what has changed recently in the wiki?

@RecentChanges

How portable is SML code across SML compilers?

StandardMI Portability

Last edited on 2005-12-02 01:19:12 by StephenWeeks.

151


http://mlton.org/RecentChanges
http://mlton.org/RecentChanges

MLton Guide (20070826) Features

Features

MLton has the following features.

Portability

® Runs on a variety of platforms.
¢ AMDO64:
O FreeBSD
¢ Linux (Debian, Red Hat, ...)
+ HPPA:
¢ HPUX (11.00 and above)
¢ Linux (Debian)
¢ PowerPC:
Q¢ AIX (5.1 and above)
¢ Darwin (Mac OS X)
¢ Linux (Debian)

0 Cygwin/Windows

¢ Darwin (Mac OS X)

O FreeBSD

¢ Linux (Debian, Red Hat, ...)
0 MinGW/Windows

O NetBSD

¢ OpenBSD

¢ Sparc
¢ Linux (Debian)

O Solaris

Robustness

¢ Supports the full SML 97 language as given in The Definition of Standard MI. (Revised).
If there is a program that is valid according to The Definition that is rejected by MLton, or a program

that is invalid according to the Definition that is accepted by MLton, it is a bug. For a list of known
bugs, see UnresolvedBugs.

¢ A complete implementation of the Basis Library.
MLton's implementation matches latest Basis Library specification, and includes a complete
implementation of all the required modules, as well as many of the optional modules.

¢ Generates standalone executables.
No additional code or libraries are necessary in order to run an executable, except for the standard
shared libraries. MLton can also generate statically linked executables.

¢ Compiles large programs.
MLton is sufficiently efficient and robust that it can compile large programs, including itself (over
140K lines). The distributed version of MLton was compiled by MLton.

¢ Support for large amounts of memory (up to 4G on 32-bit systems; more on 64-bit systems).

e Array lengths up to 23! - 1, the largest possible twos-complement 32-bit integer.

¢ Support for large files, using 64-bit file positions.

152



MLton Guide (20070826) Features

Performance

¢ Executables have excellent running times.

¢ Generates small executables.
MLton takes advantage of whole-program compilation to perform very aggressive dead-code
elimination, which often leads to smaller executables than with other SML compilers.

¢ Native integers, reals, and words.
In MLton, integers and words are 32 bits and arithmetic does not have any overhead due to tagging or
boxing. Also, reals are stored unboxed, avoiding any overhead due to boxing.

¢ Unboxed native arrays.
In MLton, an array (or vector) of integers, reals, or words uses the natural C-like representation. This
is fast and supports easy exchange of data with C. Monomorphic arrays (and vectors) use the same
C-like representations as their polymorphic counterparts.

e Multiple garbage collection strategies.

e Fast arbitrary precision arithmetic (Int Inf) based on the GnuMP.
For Int Inf intensive programs, MLton can be an order of magnitude or more faster than Poly/ML
or SML/NJ.

Tools

¢ Source-level Profiling of both time and allocation.
e ML I ex lexer generator
¢ MI Yacc parser generator

e ML-NLFFIGEN

Extensions

¢ A simple and fast C ForeignFunctionlnterface that supports calling from SML to C and from C to
SML..
¢ The ML Basis system for programming in the very large, separate delivery of library sources, and
more.
¢ A number of extension libraries that provide useful functionality that cannot be implemented with the
Basis Library. See below for an overview and MLtonStructure for details.
¢ continuations
MLton supports continuations via callcc and throw.
¢ finalization
MLton supports finalizable values of arbitrary type.
¢ interval timers
MLton supports the functionality of the C set it imer function.
¢ random numbers
MLton has functions similar to the C rand and srand functions, as well as support for
access to /dev/random and /dev/urandom.
¢ resource limits
MLton has functions similar to the C getrlimit and setrlimit functions.

¢ resource usage
MLton supports a subset of the functionality of the C get rusage function.

¢ signal handlers
MLton supports signal handlers written in SML. Signal handlers run in a separate MLton

thread, and have access to the thread that was interrupted by the signal. Signal handlers can be

153



MLton Guide (20070826) Features

used in conjunction with threads to implement preemptive multitasking.

¢ size primitive
MLton includes a primitive that returns the size (in bytes) of any object. This can be useful in
understanding the space behavior of a program.

¢ system logging
MLton has a complete interface to the C syslog function.

¢ threads
MLton has support for its own threads, upon which either preemptive or non-preemptive
multitasking can be implemented. MLton also has support for Concurrent ML, (CML).

¢ weak pointers
ML.ton supports weak pointers, which allow the garbage collector to reclaim objects that it
would otherwise be forced to keep. Weak pointers are also used to provide finalization.

¢ world save and restore
MLton has a facility for saving the entire state of a computation to a file and restarting it later.
This facility can be used for staging and for checkpointing computations. It can even be used
from within signal handlers, allowing interrupt driven checkpointing.

Last edited on 2007-08-24 21:51:26 by MatthewFluet.

154



MLton Guide (20070826) FirstClassPolymorphism

FirstClassPolymorphism

First-class polymorphism is the ability to treat polymorphic functions just like other values: pass them as
arguments, store them in data structures, etc. Although Standard ML does have polymorphic functions, it does
not support first-class polymorphism.

For example, the following declares and uses the polymorphic function id.

val id = fn x => x
val _ = id 13
val = id "foo"

If SML supported first-class polymorphism, we could write the following.
fun uselId id = (id 13; id "foo")
However, this does not type check. MLton reports the following error.

Error: z.sml 1.24.
Function applied to incorrect argument.
expects: [int]
but got: [string]
in: id "foo"

The error message arises because MLton infers from 1d 13 that 1d accepts an integer argument, but that
id "foo" is passing a string. Using explicit types sheds some light on the problem.

fun useId (id: 'a -> 'a) = (id 13; id "foo")
On this, MLton reports the following errors.

Error: z.sml 1.29.
Function applied to incorrect argument.

expects: ['a]
but got: [int]
in: id 13

Error: z.sml 1.36.
Function applied to incorrect argument.
expects: ['a]
but got: [string]
in: id "foo"

The errors arise because the argument id is not polymorphic; rather, it is monomorphic, with type
'a —> 'a.ltis perfectly valid to apply id to a value of type 'a, as in the following

fun uselId (id: 'a -> 'a, x: 'a) = id x (* type correct *)
So, what is the difference between the type specification on id in the following two declarations?

val id: 'a —> 'a = fn x => x
fun useId (id: 'a -> 'a) = (id 13; id "foo")

While the type specifications on id look identical, they mean different things. The difference can be made
clearer by explicitly scoping the type variables.

155



MLton Guide (20070826) FirstClassPolymorphism

val 'a id: 'a —> 'a = fn x => x
fun 'a uselId (id: 'a -> 'a) = (id 13; id "foo") (* type error *)

Inval 'a id, the type variable scoping means that for any 'a, id hastype 'a —-> 'a. Hence, id can be
applied to arguments of type int, real, etc. Similarly, in fun 'a useId, the scoping means that useId
is a polymorphic function that for any ' a takes a function of type 'a —> 'a and does something. Thus,
useId could be applied to a function of type int —-> int, real -> real,etc.

One could imagine an extension of SML that allowed scoping of type variables at places other than fun or
val declarations, as in the following.

fun useId (id: ('a).'a -> 'a) = (id 13; id "foo") (* not SML *)

Such an extension would need to be thought through very carefully, as it could cause significant
complications with Typelnference, possible even undecidability.

Last edited on 2005-12-01 04:14:09 by StephenWeeks.

156



MLton Guide (20070826) Fixpoints
Fixpoints

This page discusses a framework that makes it possible to compute fixpoints over arbitrary products of
abstract types. The code is from an Extended Basis library (8IREADME).

First the signature of the framework (@tie.sig):

*

A framework for computing fixpoints.

In a strict language you sometimes want to provide a fixpoint
combinator for an abstract type {t} to make it possible to write
recursive definitions. Unfortunately, a single combinator {fix} of the
type {(t -> t) —-> t} does not support mutual recursion. To support
mutual recursion, you would need to provide a family of fixpoint
combinators having types of the form {(u -> u) -> u} where {u} is a
type of the form {t * ... * t}. Unfortunately, even such a family of
fixpoint combinators does not support mutual recursion over different
abstract types.

%% % ok k% % ok % % % %

*)
signature TIE = sig
type 'a dom and 'a cod
type 'a t = 'a dom -> 'a cod
(**

* The type of fixpoint witnesses.

The type constructors {dom} and {cod} are used to expose the arrow
{—>} type constructor (to allow eta-expansion) while keeping the
domain and codomain abstract.

* % % %

*)

val fix : 'a t -> 'a Fix.t

(**
* Produces a fixpoint combinator from the given witness. For example,
* one can make a mutually recursive definition of functions:
*

*> val isEven & 1s0dd =

x> let open Tie in fix (function *  function) end
*> (fn isEven & 1s0dd =>

*> (fn 0 => true

*> | 1 => false

x> | n => 1is0Odd (n-1)) &

*> (fn 0 => false

*> | 1 => true

*> | n => isEven (n-1)))

*)

(** == Making New Witnesses == *)
val pure : ('a * 'a UnOp.t) Thunk.t -> 'a t
(**
* {pure} is a more general version of {tier}. It is mostly useful for

* computing fixpoints in a non—-imperative manner.

*)

val tier : ('a * 'a Effect.t) Thunk.t -> 'a t

(**
* {tier} is used to define fixpoint witnesses for new abstract types
* by providing a thunk whose instantiation allocates a mutable proxy

157


http://mlton.org/cgi-bin/viewsvn.cgi/mltonlib/trunk/com/ssh/extended-basis/unstable/README?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mltonlib/trunk/com/ssh/extended-basis/unstable/README?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mltonlib/trunk/com/ssh/extended-basis/unstable/public/generic/tie.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mltonlib/trunk/com/ssh/extended-basis/unstable/public/generic/tie.sig?view=markup

MLton Guide (20070826) Fixpoints

* and a procedure for updating it with the result.
*)

val id : 'a -> 'a t
(** {id x} is equivalent to {pure (const (x, 1id))}. *)

(** == Combining Existing Witnesses == *)
val iso : 'b t -> ('a, 'b) Iso.t -> 'a t
(**

* Given an isomorphism between {'a} and {'b} and a witness for {'b},
* produces a witness for {'a}. This is useful when you have a new

* type that is isomorphic to some old type for which you already have
* a witness.

*)

val ** : 'at * 'bt -> ('a, 'b) Product.t t

(**

* Given witnesses for {'a} and {'b} produces a witness for the product

* {('a, 'b) Product.t}. This is used when mutual recursion 1s needed.
*)

val tuple2 : 'a t * 'bt -> ('a * 'b) t

(**

* Given witnesses for {'a} and {'b} produces a witness for the product
* {'a * 'bj.
*)

(** == Particular Witnesses == *)

val function : ('a -> 'b) t
(** Witness for functions. *)
end

fix is a type-indexed function. The type-index parameter to £ix is called a "witness". To compute fixpoints
over products, one uses the ** operator to combine witnesses. To provide a fixpoint combinator for an
abstract type, one implements a witness providing a thunk whose instantiation allocates a fresh, mutable proxy
and a procedure for updating the proxy with the solution. Naturally this means that not all possible ways of
computing a fixpoint of a particular type are possible under the framework. The pure combinator is a
generalization of t ier. The i so combinator is provided for reusing existing witnesses.

Note that instead of using an infix operator, we could alternatively employ an interface using Fold. Also,
witnesses are eta-expanded to work around the value restriction, while maintaining abstraction.

Here is the implementation (Bltie.sml):

structure Tie :> TIE = struct
open Product
infix &
type 'a dom = Unit.t
type 'a cod = ('a * 'a UnOp.t) Thunk.t

type 'a t = 'a dom -> 'a cod
fun fix aT £ = let val (a, ta) = aT () () in ta (f a) end
val pure = Thunk.mk
fun iso bT (iso as (_, b2a)) () () = let
val (b, fB) = bT () ()
in

(b2a b, Fn.map iso £fB)
end

158


http://mlton.org/cgi-bin/viewsvn.cgi/mltonlib/trunk/com/ssh/extended-basis/unstable/detail/generic/tie.sml?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mltonlib/trunk/com/ssh/extended-basis/unstable/detail/generic/tie.sml?view=markup

MLton Guide (20070826) Fixpoints

fun op *° (aT, bT) () () = let
val (a, fA) = aT () ()
val (b, fB) = bT () ()

in

(a & b, Product.map (fA, £B))
end
(* The rest are not primitive operations. *)
fun tuple2 ab = iso (op *  ab) Product.isoTuple2
fun tier th = pure ((fn (a, ua) => (a, Fn.const a o ua)) o th)
fun id x = pure (Fn.const (x, Fn.id))
fun function ? =

pure (fn () => let
val r = ref (Basic.raising Fix.Fix)
in
(fn x => !r x, £n £ => (r := £ ; £f))
end) °?
end
Let's then take a look at a couple of additional examples.
Here is a naive implementation of lazy promises:
structure Promise :> sig
type 'a t
val lazy : 'a Thunk.t -> 'a t
val force : 'a t -> 'a
val Y : 'a t Tie.t
end = struct
datatype 'a t' =
EXN of exn
| THUNK of 'a Thunk.t
| VALUE of 'a
type 'a t = 'a t' Ref.t
fun lazy f = ref (THUNK f)
fun force t =
case !t
of EXN e => raise e
| THUNK f => (t := VALUE (f ()) handle e => t := EXN e ; force t)
| VALUE v => v
fun Y ? = Tie.tier (£n () => let
val r = lazy (raising Fix.Fix)
in
(r, r <\ op := 0 !)
end) *?

end

An example use of our naive lazy promises is to implement equally naive lazy streams:

structure Stream :> sig

type 'a t

val cons : 'a * 'at -> 'a t

val get : 'a t -> ('a * 'a t) Option.t
val Y : 'a t Tie.t

end = struct
datatype 'a t = IN of ('a * 'a t) Option.t Promise.t

fun cons (x, xs) = IN (Promise.lazy (fn () => SOME (x, xs)))
fun get (IN p) = Promise.force p
fun ¥ ? = Tie.iso Promise.Y (fn IN p => p, IN) °?

end

159



MLton Guide (20070826) Fixpoints

Note that above we make use of the i so combinator. Here is a finite representation of an infinite stream of
ones:

val ones = let

open Tie Stream
in

fix Y (fn ones => cons (1, ones))
end

Last edited on 2007-08-25 21:26:24 by VesaKarvonen.

160



MLton Guide (20070826) Flatten

Flatten

Flatten is an optimization pass for the SSA Intermediatel.anguage, invoked from SSASimplify.

Description
This pass flattens arguments to SSA constructors, blocks, and functions.
If a tuple is explicitly available at all uses of a function (resp. block), then:

¢ The formals and call sites are changed so that the components of the tuple are passed.
¢ The tuple is reconstructed at the beginning of the body of the function (resp. block).

Similarly, if a tuple is explicitly available at all uses of a constructor, then:
¢ The constructor argument datatype is changed to flatten the tuple type.

® The tuple is passed flat at each ConApp.
® The tuple is reconstructed at each Case transfer target.

Implementation

Biflatten. sig [Bflatten.fun

Details and Notes

Last edited on 2006-11-02 17:52:58 by MatthewFluet.

161


http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/flatten.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/flatten.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/flatten.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/flatten.fun?view=markup

MLton Guide (20070826) Fold

Fold

This page describes a technique that enables convenient syntax for a number of language features that are not
explicitly supported by Standard ML, including: variable number of arguments, optional arguments and

labeled arguments, array and vector literals, functional record update, and (seemingly) dependently typed
functions like printf and scanf.

The key idea to fold is to define functions fold, step0, and $ such that the following equation holds.

fold (a, f) (stepO hl) (stepO h2) ... (stepO hn) $
= f (hn (... (h2 (hl a))))

The name fold comes because this is like a traditional list fold, where a is the base element, and each step
function, step0 hi, corresponds to one element of the list and does one step of the fold. The name $ is
chosen to mean end of arguments from its common use in regular-expression syntax.

Unlike the usual list fold in which the same function is used to step over each element in the list, this fold
allows the step functions to be different from each other, and even to be of different types. Also unlike the
usual list fold, this fold includes a finishing function, £, that is applied to the result of the fold. The presence
of the finishing function may seem odd because there is no analogy in list fold. However, the finishing
function is essential; without it, there would be no way for the folder to perform an arbitrary computation after
processing all the arguments. The examples below will make this clear.

The functions fold, step0, and $ are easy to define.

fun $ (a, f) = f a
fun id x = x
structure Fold =
struct
fun fold (a, f) g = g (a, f)
fun stepO0 h (a, f) = fold (h a, f)
end

We've placed fold and step0 in the Fold structure but left $ at the toplevel because it is convenient in
code to always have $ in scope. We've also defined the identity function, id, at the toplevel since we use it so

frequently.

Plugging in the definitions, it is easy to verify the equation from above.

fold (a, f) (stepO hl) (stepO h2) ... (stepO hn) $
= step0 hl (a, f) (stepO h2) ... (step0 hn) $

= fold (hl a, f) (stepO h2) ... (stepO0 hn) $

= step0 h2 (hl a, f) ... (stepO hn) $

= fold (h2 (hl a), f) ... (stepO hn) $

= fold (hn (... (h2 (hl a))), f) $

=$ (hn (... (h2 (hl a))), f)

= f (hn (... (h2 (hl a))))

Example: variable number of arguments

The simplest example of fold is accepting a variable number of (curried) arguments. We'll define a function £
and argument a such that all of the following expressions are valid.

162



MLton Guide (20070826) Fold

Fh Fh Hh FhoFh
IR
Lo w»

U VRE 3
Ur

. aaa$ (* as many a's as we want *)

Off-hand it may appear impossible that all of the above expressions are type correct SML -- how can a
function f accept a variable number of curried arguments? What could the type of £ be? We'll have more to
say later on how type checking works. For now, once we have supplied the definitions below, you can check
that the expressions are type correct by feeding them to your favorite SML implementation.

It is simple to define f and a. We define f as a folder whose base element is () and whose finish function
does nothing. We define a as the step function that does nothing. The only trickiness is that we must gta
expand the definition of f and a to work around the ValueRestriction; we frequently use eta expansion for
this purpose without mention.

val base = ()

fun finish () = ()
fun step () = ()
val £f = £fn z => Fold.fold (base, finish) =z
val a = fn z => Fold.step0O step z

One can easily apply the fold equation to verify by hand that £ applied to any number of a's evaluates to ().

fa...as
= finish (step (... (step base)))
finish (step (... ()))

= finish ()
= ()

Example: variable-argument sum

Let's look at an example that computes something: a variable-argument function sum and a stepper a such
that

sum (a il1) (a 1i2) ... (a im) $ = il + 12 + ... + im

The idea is simple -- the folder starts with a base accumulator of 0 and the stepper adds each element to the
accumulator, s, which the folder simply returns at the end.

val sum = £fn z => Fold.fold (0, fn s => s) z
fun a i = Fold.step0 (fn s => i + s3)

Using the fold equation, one can verify the following.

sum (a 1) (a 2) (a 3) $ =6

Step1

It is sometimes syntactically convenient to omit the parentheses around the steps in a fold. This is easily done
by defining a new function, stepl, as follows.

163



MLton Guide (20070826) Fold

structure Fold =

struct

open Fold

fun stepl h (a, f) b = fold (h (b, a), f)
end

From the definition of stepl, we have the following equivalence.

fold (a, f) (stepl h) b
= stepl h (a, f) b
= fold (h (b, a), f)

Using the above equivalence, we can compute the following equation for stepl.

fold (a, f) (stepl hl) bl (stepl h2) b2 ... (stepl hn) bn $
= fold (hl (bl, a), f) (stepl h2) b2 ... (stepl hn) bn $

= fold (h2 (b2, hl (bl, a)), f) ... (stepl hn) bn $

= fold (hn (bn, ... (h2 (b2, hl (bl, a)))), f) s

= f (hn (bn, ... (h2 (b2, hl (bl, a)))))

Here is an example using stepl to define a variable-argument product function, prod, with a convenient
syntax.

val prod = fn z => Fold.fold (1, fn p => p) z
val ° = fn z => Fold.stepl (fn (i, p) => 1 * p) =z

The functions prod and ° satisfy the following equation.
prod "1l "i2 ... "im $ = i1 * i2 * ... * im

Note that in SML, " i1 is two different tokens, * and 1 1. We often use * for an instance of a step1 function
because of its syntactic unobtrusiveness and because no space is required to separate it from an alphanumeric
token.

Also note that there are no parenthesis around the steps. That is, the following expression is not the same as
the above one (in fact, it is not type correct).

prod ("1il1) (7i2) ... (“im) $

Example: list literals

SML already has a syntax for list literals, e.g. [w, x, vy, z].However, using fold, we can define our own
syntax.

val list = £n z => Fold.fold ([], rev) z
val ° = fn z => Fold.stepl (op ::) z

The idea is that the folder starts out with the empty list, the steps accumulate the elements into a list, and then
the finishing function reverses the list at the end.

With these definitions one can write a list like:

list "w "x 'y "z $

164



MLton Guide (20070826) Fold

While the example is not practically useful, it does demonstrate the need for the finishing function to be
incorporated in fold. Without a finishing function, every use of 1ist would need to be wrapped in rev, as
follows.

rev (list "w "x "y "z $)

The finishing function allows us to incorporate the reversal into the definition of 1ist, and to treat 1ist asa
truly variable argument function, performing an arbitrary computation after receiving all of its arguments.

See ArrayLiteral for a similar use of fold that provides a syntax for array and vector literals, which are not
built in to SML.

Fold right

Just as fold is analogous to a fold left, in which the functions are applied to the accumulator left-to-right, we
can define a variant of fo1d that is analogous to a fold right, in which the functions are applied to the
accumulator right-to-left. That is, we can define functions foldr and step0 such that the following
equation holds.

foldr (a, f) (stepO hl) (stepO h2) ... (stepO hn) $
= f (hl (h2 (... (hn a))))

The implementation of fold right is easy, using fold. The idea is for the fold to start with £ and for each step to
precompose the next hi. Then, the finisher applies the composed function to the base value, a. Here is the

code.

structure Foldr =

struct
fun foldr (a, f) = Fold.fold (f, £fn g => g a)
fun step0 h = Fold.stepO (fn g => g o h)

end

Verifying the fold-right equation is straightforward, using the fold-left equation.

foldr (a, f) (Foldr.stepO hl) (Foldr.stepO h2) ... (Foldr.stepO hn) $
= fold (£, £fn g => g a)

(Fold.stepO (fn g => g o hl))

(Fold.stepO (fn g => g o h2))

(Fold.stepO (fn g => g o hn)) $
= (fn g => g a)

((fn g => g o hn) (... ((fn g => g o h2) ((fn g => g o hl) £f))))
= (fn g => g a)
((fn g => g o hn) (... ((fn g => g o h2) (f o hl))))
= (fn g => g a) ((fn g => g o hn) (... (£ o hl o h2)))
= (fn g => g a) (f o hl o h2 o ... o hn)
= (f o hl o h2 o ... o hn) a
= f (hl (h2 (... (hn a))))

One can also define the fold-right analogue of stepl.

structure Foldr =
struct
open Foldr
fun stepl h = Fold.stepl (£fn (b, g) => g o (fn a => h (b, a)))

165



MLton Guide (20070826) Fold

end

Example: list literals via fold right

Revisiting the list literal example from earlier, we can use fold right to define a syntax for list literals that
doesn't do a reversal.

val list = £n z => Foldr.foldr ([], fn 1 => 1) z
val ° = fn z => Foldr.stepl (op ::) z

As before, with these definitions, one can write a list like:
list "w "x 'y "z §

The difference between the fold-left and fold-right approaches is that the fold-right approach does not have to
reverse the list at the end, since it accumulates the elements in the correct order. In practice, MLton will
simplify away all of the intermediate function composition, so the the fold-right approach will be more
efficient.

Mixing steppers

All of the examples so far have used the same step function throughout a fold. This need not be the case. For
example, consider the following.

val n = £fn z => Fold.fold (0, £n 1 => i) z
val I fn z => Fold.step0 (fn i => i * 2) =z
val O fn z => Fold.step0 (fn 1 => i * 2 + 1) z

Here we have one folder, n, that can be used with two different steppers, I and O. By using the fold equation,
one can verify the following equations.

nOS$ =0
nIsS=1
nIoS$-=2
nIOTIS-=
nIITIOS$-=14

That is, we've defined a syntax for writing binary integer constants.

Not only can one use different instances of step0 in the same fold, one can also intermix uses of step0 and
stepl. For example, consider the following.

val n = fn z => Fold.fold (0, £fn i => i) z
val O = fn z => Fold.stepO (fn i => n * 8) =z
val ° fn z => Fold.stepl (fn (i, n) => n * 8 + 1) =z

Using the straightforward generalization of the fold equation to mixed steppers, one can verify the following
equations.

166



MLton Guide (20070826) Fold

That is, we've defined a syntax for writing octal integer constants, with a special syntax, O, for the zero digit
(admittedly contrived, since one could just write * 0 instead of O).

See NumericLiteral for a practical extension of this approach that supports numeric constants in any base and
of any type.

(Seemingly) dependent types

A normal list fold always returns the same type no matter what elements are in the list or how long the list is.
Variable-argument fold is more powerful, because the result type can vary based both on the arguments that
are passed and on their number. This can provide the illusion of dependent types.

For example, consider the following.

val £f = £fn z => Fold.fold ((), id) =z

val a = fn z => Fold.stepO (fn () => "hello") z
val b = fn z => Fold.step0 (fn () => 13) z

val ¢ = £n z => Fold.stepO (fn () => (1, 2)) =z

Using the fold equation, one can verify the following equations.

"hello": string
13: int
(1, 2): int * int

Hh HhoFh
Q O o

v v »
I

That is, £ returns a value of a different type depending on whether it is applied to argument a, argument b, or
argument c.

The following example shows how the type of a fold can depend on the number of arguments.

val grow = £fn z => Fold.fold ([], £fn 1 => 1) =z
val a = fn z => Fold.step0O (fn x => [x]) z

Using the fold equation, one can verify the following equations.

grow $ = []: 'a list
grow a $ = [[]]: 'a list list
grow a a $ = [[[]]]: 'a list list list

Clearly, the result type of a call to the variable argument grow function depends on the number of arguments
that are passed.

As a reminder, this is well-typed SML. You can check it out in any implementation.

(Seemingly) dependently-typed functional results

Fold is especially useful when it returns a curried function whose arity depends on the number of arguments.
For example, consider the following.

val makeSum = fn z => Fold.fold (id, £n £ => £ 0) =z
val I = fn z => Fold.step0 (fn f => fn 1 => fn x => f (x + 1)) z

167



MLton Guide (20070826) Fold

The make Sum folder constructs a function whose arity depends on the number of I arguments and that adds
together all of its arguments. For example, makeSum I $isoftype int —> int andmakeSum I I $
isof type int —> int -> int.

One can use the fold equation to verify that the makeSum works correctly. For example, one can easily check
by hand the following equations.

makeSum I $ 1 =1
makeSum I I $ 1 2 = 3
makeSum I I I $ 12 3 =6

Returning a function becomes especially interesting when there are steppers of different types. For example,
the following makeSum folder constructs functions that sum integers and reals.

val makeSum = £fn z => Foldr.foldr (id, £n f => f 0.0) =z
val I = fn z => Foldr.stepO (fn f => fn x => fn 1 => f (x + real 1i)) =z
val R = fn z => Foldr.step0 (fn f => fn x: real => fn r => f (x + r)) z

With these definitions, makeSum I R $isoftype int -> real -> real andmakeSum R I I $
isof type real -> int -> int -> real. One can use the foldr equation to check the following
equations.

makeSum I $ 1 = 1.0
makeSum I R $ 1 2.5 = 3.5
makeSum R I I $ 1.5 2 3 = 6.5

We used foldr instead of fold for this so that the order in which the specifiers I and R appear is the same
as the order in which the arguments appear. Had we used fold, things would have been reversed.

An extension of this idea is sufficient to define Printf-like functions in SML.

An idiom for combining steps

It is sometimes useful to combine a number of steps together and name them as a single step. As a simple
example, suppose that one often sees an integer follower by a real in the make Sum example above. One can
define a new compound step IR as follows.

val IR = fn u => Fold.fold u I R
With this definition in place, one can verify the following.

makeSum IR IR $ 1 2.2 3 4.4 = 10.6

In general, one can combine steps s1, s2, ... sn as

fn u => Fold.fold u sl s2 ... sn

The following calculation shows why a compound step behaves as the composition of its constituent steps.

fold u (fn u => fold u sl s2 ... sn)
= (fn u => fold u sl s2 ... sn) u
= fold u sl1 s2 ... sn

168



MLton Guide (20070826) Fold

Post composition

Suppose we already have a function defined via fold, w = fold (a, f),and we would like to construct a
new fold function that is like w, but applies g to the result produced by w. This is similar to function
composition, but we can't justdo g o w, because we don't want to use g until w has been applied to all of its
arguments and received the end-of-arguments terminator $.

More precisely, we want to define a post-composition function post that satisfies the following equation.
post (w, g) sl ... sn $ =g (w sl ... sn $)

Here is the definition of post.

structure Fold =

struct
open Fold
fun post (w, g) s =w (fn (a, h) => s (a, g o h))
end
The following calculations show that post satisfies the desired equation, where w = fold (a, f).

post (w, g) s

=w (fn (a, h) => s (a, g o h))

= fold (a, f) (fn (a, h) => s (a, g o h))
= (fn (a, h) => s (a, g o h)) (a, f)

= s (a, g o f)

= fold (a, g o f) s

Now, suppose si = stepO hi for i from 1 to n.

post (w, g) sl s2 ... sn $

= fold (a, g o f) sl s2 ... sn $
(g o f) (hn (... (hl a)))

=g (f (hn (... (hl a))))

= g (fold (a, f) sl ... sn $)

=g (wsl ... sn $)

For a practical example of post composition, see ArrayLiteral.
Lift

We now define a peculiar-looking function, 11 £t 0, that is, equationally speaking, equivalent to the identity
function on a step function.

fun 1ift0 s (a, f) = fold (fold (a, id) s $, f)

Using the definitions, we can prove the following equation.

fold (a, f) (1ift0 (stepO0 h)) = fold (a, f) (stepO h)
Here is the proof.

fold (a, f) (1ift0 (stepO h))
= 1ift0 (stepO0 h) (a, f)

169



MLton Guide (20070826)

= fold (fold (a, id) (stepO h) $, f)
= fold (stepO h (a, id) s, f)

= fold (fold (h a, id) $, f)

= fold ($ (h a, id), f)

= fold (id (h a), f)

= fold (h a, f)

= step0 h (a, f)

= fold (a, f) (stepO h)

Fold

If 11 £t0 is the identity, then why even define it? The answer lies in the typing of fold expressions, which we

have, until now, left unexplained.

Typing

Perhaps the most surprising aspect of fold is that it can be checked by the SML type system. The types
involved in fold expressions are complex; fortunately type inference is able to deduce them. Nevertheless, it is
instructive to study the types of fold functions and steppers. More importantly, it is essential to understand the
typing aspects of fold in order to write down signatures of functions defined using fold and step.

Here is the FOLD signature, and a recapitulation of the entire Fold structure, with additional type

annotations.

signature FOLD =

sig
type ('a, 'b, 'c, 'd) step = 'a * ('b -> 'c) -> 'd
type ('a, 'b, 'e, 'd) t = ('a, 'b, 'c, 'd) step -> 'd
type ('al, 'a2, 'b, 'c, 'd) step0 =
('al, 'b, 'e, ('a2, 'b, 'c, 'd) t) step
type ('all, 'al2, 'a2, 'b, 'c, 'd) stepl =
('al2, 'b, 'c, 'all -> ('a2, 'b, 'c, 'd) t) step
val fold: 'a * ('b -> 'c) -> ('a, 'b, 'c, 'd) t
val 1ift0: ('al, 'az, 'a2, 'a2, 'a2) stepO
-> ('al, 'a2, 'b, 'c, 'd) stepO
val post: ('a, 'b, 'cl, 'd) t * ('cl -> 'c2)
-> ('a, 'b, 'c2, 'd) t
val step0O: ('al -> 'a2) -> ('al, 'a2, 'b, 'c, 'd) stepO
val stepl: ('all * 'al2 -> 'a2)
-> ('all, 'alz, 'a2, 'b, 'c, 'd) stepl
end
structure Fold:> FOLD =
struct
type ('a, 'b, 'c, 'd) step = 'a * ('b -> 'c) -> 'd
type ('a, 'b, 'ec, 'd) t = ('a, 'b, 'c, 'd) step —> 'd
type ('al, 'a2, 'b, 'c, 'd) step0 =
('al, 'b, 'c, ('a2, 'b, 'c, 'd) t) step
type ('all, 'al2, 'a2, 'b, 'c, 'd) stepl =
('al2, 'b, 'c, 'all -> ('a2, 'b, 'c, 'd) t) step
fun fold (a: 'a, f: 'b -> 'c)
(g: ('a, 'b, 'c, 'd) step): 'd =
g (a, f)
fun stepO0 (h: 'al -> 'a2)

170



MLton Guide (20070826) Fold

(al: 'al, f: 'b => '¢): ('a2, 'b, 'c, 'd) t =
fold (h al, £f)

fun stepl (h: 'all * 'al2 -> 'a2)
(al2: 'al2, f: 'b -> 'c)
(all: 'all): ('a2, 'b, 'c, 'd) t =
fold (h (all, alz), f)

fun 1ift0 (s: ('al, 'a2, 'az, 'a2, 'a2) step0)
(a: 'al, f: 'b => '¢): ('a2, 'b, 'c¢c, 'd) t =
fold (fold (a, id) s $, f)

fun post (w: ('a, 'b, 'cl, 'd) t,
g: 'cl -> 'c2)
(s: ('a, 'b, 'c2, 'd) step): 'd =
w (fn (a, h) => s (a, g o h))
end

That's a lot to swallow, so let's walk through it one step at a time. First, we have the definition of type
Fold.step.

type ('a, 'b, 'c, 'd) step = 'a * ('b => 'c) -> 'd

As a fold proceeds over its arguments, it maintains two things: the accumulator, of type ' a, and the finishing
function, of type 'b -> 'c. Each step in the fold is a function that takes those two pieces (i.e.

'a * ('b —-> 'c) and does something to them (i.e. produces ' d). The result type of the step is
completely left open to be filled in by type inference, as it is an arrow type that is capable of consuming the
rest of the arguments to the fold.

A folder, of type Fold.t, is a function that consumes a single step.
type ('a, 'b, 'c, 'd) t = ('a, 'b, 'c, 'd) step —> 'd
Expanding out the type, we have:

type ('a, 'b, 'c, 'd) t = ('a* ('b -> 'c) —> 'd) -> 'd

This shows that the only thing a folder does is to hand its accumulator (' a) and finisher ('b —> 'c) to the
nextstep('a * ('b -> 'c) -> 'd).If SML had first-class polymorphism, we would write the fold
type as follows.

type ('a, 'b, 'e) t = Forall 'd. ('a, 'b, 'ec, 'd) step -> 'd

This type definition shows that a folder had nothing to do with the rest of the fold, it only deals with the next
step.

We now can understand the type of fold, which takes the initial value of the accumulator and the finishing
function, and constructs a folder, i.e. a function awaiting the next step.
val fold: 'a * ('b —> '¢) -—> ('a, 'b, 'c, 'd) t
fun fold (a: 'a, f: 'b -> 'c)
(g: ('a, '"b, 'c, 'd) step): 'd =
g (a, 1)

Continuing on, we have the type of step functions.

171



MLton Guide (20070826) Fold

type ('al, 'a2, 'b, 'c, 'd) step0 =
('al, 'b, 'e, ('a2, 'b, 'c, 'd) t) step

Expanding out the type a bit gives:

type ('al, 'a2, 'b, 'c, 'd) stepO =
'al * ('b —> 'e) —> ('a2, 'b, 'e, 'd) t

So, a step function takes the accumulator ('al) and finishing function ('b —> 'c), which will be passed to
it by the previous folder, and transforms them to a new folder. This new folder has a new accumulator ('a2)
and the same finishing function.

Again, imagining that SML had first-class polymorphism makes the type clearer.

type ('al, 'a2) step0 =
Forall ('b, 'c). ('al, 'b, 'c, ('a2, 'b, 'c) t) step

Thus, in essence, a step0 function is a wrapper around a function of type 'al -> 'a2, which is exactly
what the definition of step0 does.

val stepO: ('al -> 'a2) -> ('al, 'a2, 'b, 'c, 'd) stepO
fun stepO0 (h: 'al -> 'a2)
(al: 'al, f: 'b => '¢): ('a2, 'b, 'c, 'd) t =
fold (h al, f)

It is not much beyond stepO to understand stepl.

type ('all, 'al2, 'a2, 'b, 'c, 'd) stepl =
('al2, 'b, 'c, 'all -> ('a2, 'b, 'c, 'd) t) step

A stepl function takes the accumulator (' a12) and finisher ('b -> 'c) passed to it by the previous
folder and transforms them into a function that consumes the next argument (' a11) and produces a folder
that will continue the fold with a new accumulator (' a2) and the same finisher.

fun stepl (h: 'all * 'al2 -> 'a2)
(al2: 'al2, f: 'b -> 'c)
(all: 'all): ('a2, 'b, 'c, 'd) t =
fold (h (all, al2), f)

With first-class polymorphism, a stepl function is more clearly seen as a wrapper around a binary function
of type 'all * 'al2 -> 'a2.

type ('all, 'al2, 'a2) stepl =
Forall ('b, 'c). ('al2, 'b, 'c, 'all -> ('a2, 'b, 'c) t) step

The type of post is clear: it takes a folder with a finishing function that produces type 'c1, and a function of
type 'cl —> 'c2 to postcompose onto the folder. It returns a new folder with a finishing function that
produces type 'c2.

val post: ('a, 'b, 'cl, 'd) t * ('cl -> 'c2)
-> ('a, 'b, 'c2, 'd) t

fun post (w: ('a, 'b, 'cl, 'd) t,
g: 'cl —> 'c2)
(s: ('a, 'b, 'c2, 'd) step): 'd =

w (fn (a, h) => s (a, g o h))

172



MLton Guide (20070826) Fold

We will return to 11 £t 0 after an example.

An example typing

Let's type check our simplest example, a variable-argument fold. Recall that we have a folder f and a stepper
a defined as follows.

val £f = £fn z => Fold.fold ((),
val a = fn z => Fold.stepO (fn ()

Since the accumulator and finisher are uninteresting, we'll use some abbreviations to simplify things.

type 'd step
type 'd fold

(unit, unit, unit, 'd) Fold.step
'd step —> 'd

With these abbreviations, £ and a have the following polymorphic types.

f: 'd fold
a: 'd step

Suppose we want to type check

faaa $: unit

As a reminder, the fully parenthesized expression is
((((£ a) a) a) a) $

The observation that we will use repeatedly is that for any type z,if f: z foldands: z step,then
f s: z.So,if we want

(f a a a) $: unit
then we must have

f a a a: unit fold
$: unit step

Applying the observation again, we must have

f a a: unit fold fold
a: unit fold step

Applying the observation two more times leads to the following type derivation.

unit fold fold fold fold
unit fold fold fold

a: unit fold fold

a a: unit fold

a a $: unit

unit fold fold fold step
unit fold fold step

unit fold step

unit step

Q0 0w
”n o o w

So, each application is a fold that consumes the next step, producing a fold of one smaller type.

173



MLton Guide (20070826) Fold

One can expand some of the type definitions in f to see that it is indeed a function that takes four curried
arguments, each one a step function.

f: unit fold fold fold step
-> unit fold fold step
-> unit fold step
-> unit step
-> unit

This example shows why we must eta expand uses of fold and step0 to work around the value restriction
and make folders and steppers polymorphic. The type of a fold function like £ depends on the number of
arguments, and so will vary from use to use. Similarly, each occurrence of an argument like a has a different
type, depending on the number of remaining arguments.

This example also shows that the type of a folder, when fully expanded, is exponential in the number of
arguments: there are as many nested occurrences of the fold type constructor as there are arguments, and
each occurrence duplicates its type argument. One can observe this exponential behavior in a type checker
that doesn't share enough of the representation of types (e.g. one that represents types as trees rather than
directed acyclic graphs).

Generalizing this type derivation to uses of fold where the accumulator and finisher are more interesting is
straightforward. One simply includes the type of the accumulator, which may change, for each step, and the
type of the finisher, which doesn't change from step to step.

Typing lift

The lack of first-class polymorphism in SML causes problems if one wants to use a step in a first-class way.
Consider the following double function, which takes a step, s, and produces a composite step that does s
twice.

fun double s = £fn u => Fold.fold u s s

The definition of double is not type correct. The problem is that the type of a step depends on the number of
remaining arguments but that the parameter s is not polymorphic, and so can not be used in two different
positions.

Fortunately, we can define a function, 11 £t 0, that takes a monotyped step function and /ifts it into a
polymorphic step function. This is apparent in the type of 11 £t 0.

val 1ift0: ('al, 'az2, 'a2, 'az, 'a2) stepO
-> ('al, 'a2, 'b, 'c, 'd) stepO
fun 1ift0 (s: ('al, 'a2, 'az, 'a2, 'a2) step0)
(a: 'al, f: 'b => '¢c): ('a2, 'b, 'c, 'd) t =

fold (fold (a, id) s $, f)
The following definition of double uses 11 £t 0, appropriately eta wrapped, to fix the problem.

fun double s =

let

val s = fn z => Fold.1lift0 s z
in

fn u => Fold.fold u s s
end

174



MLton Guide (20070826) Fold

With that definition of double in place, we can use it as in the following example.

val £f = £fn z => Fold.fold ((), £n () => ()) z

val a = fn z => Fold.stepO (£n () => ()) =z
val a2 = f£fn z => double a z
val () = f a a2 a a2 $

Of course, we must eta wrap the call double in order to use its result, which is a step function,
polymorphically.

Hiding the type of the accumulator

For clarity and to avoid mistakes, it can be useful to hide the type of the accumulator in a fold. Reworking the
simple variable-argument example to do this leads to the following.

structure S:>
sig
type ac
val f: (ac, ac, unit, 'd) Fold.t
val s: (ac, ac, 'b, 'c, 'd) Fold.stepO

end =
struct
type ac = unit
val £ = £n z => Fold.fold ((), £fn () => ()) =z
val s = fn z => Fold.step0 (fn () => ()) z
end

The idea is to name the accumulator type and use opaque signature matching to make it abstract. This can
prevent improper manipulation of the accumulator by client code and ensure invariants that the folder and
stepper would like to maintain.

For a practical example of this technique, see ArrayLiteral.

Also see

Fold has a number of practical applications. Here are some of them.

e ArrayLiteral

e FoldOIN

¢ FunctionalRecordUpdate

e NumericLiteral

e Optional Arguments

® Printf

e VariableArityPolvmorphism

Last edited on 2007-08-15 22:06:10 by MatthewFluet.

175



MLton Guide (20070826) FoldO1N
FoldO1N

A common use pattern of Fold is to define a variable-arity function that combines multiple arguments together
using a binary function. It is slightly tricky to do this directly using fold, because of the special treatment
required for the case of zero or one argument. Here is a structure, Fo1d01N, that solves the problem once and
for all, and eases the definition of such functions.

structure FoldO1lN =
struct
fun fold {finish, start, zero} =
Fold.fold ((id, finish, £n () => zero, start),
fn (finish, _, p, _) => finish (p ()))

fun step0 {combine, input} =
Fold.stepO (£fn (_, finish, _, £f) =>
(finish,
finish,
fn () => f input,
fn x' => combine (f input, x')))

fun stepl {combine} z input =

stepO0 {combine = combine, input = input} =z
end

If one has a value zero, and functions start, ¢, and £inish, then one can define a variable-arity function
f and stepper * as follows.

val £f = fn z => FoldOIN.fold {finish = finish, start = start, zero = zero} z
val ° = fn z => FoldOlN.stepl {combine = c} =z

One can then use the fold equation to prove the following equations.

f $ = zero

f al $ = finish (start al)

f "al ‘a2 $ = finish (c (start al, a2))

f “al ‘a2 ‘a3 $ = finish (¢ (¢ (start al, a2), a3))

For an example of Fo1d01N, see VariableArityPolymorphism.

Typing FoldO1N

Here is the signature for Fo1d01N. We use a trick to avoid having to duplicate the definition of some rather
complex types in both the signature and the structure. We first define the types in a structure. Then, we define
them via type re-definitions in the signature, and via open in the full structure.

structure FoldO1lN =
struct
type ('input, 'accuml, 'accum2, 'answer, 'zero,
'a, 'b, 'c, 'd, 'e) t =

(('zero => 'zero)

* ('accum2 -> 'answer)

* (unit -> 'zero)

* ('input -> 'accuml),

('a => 'b) * 'c * (unit -> 'a) * 'd,

176



MLton Guide (20070826) FoldO1N

lb,
'e) Fold.t

type ('inputl, 'accuml, 'input2, 'accum2,
'‘a, 'b, 'e, 'd, 'e, 'f) stepO =
('a * 'b * 'c * ('inputl -> 'accuml),
'b * 'b * (unit -> 'accuml) * ('input2 -> 'accum2),
'd, 'e, 'f) Fold.stepO

type ('accuml, 'input, 'accum2,
'‘a, 'b, 'e, 'd, 'e, '£, 'g) stepl =
('a,
'b * 'e * 'd * ('a —> 'accuml),
'e * 'c¢ * (unit -> 'accuml) * ('input -> 'accum2),
'e, 'f, 'g) Fold.stepl
end

signature FOLD_O01N =
sig

type ('a, 'b, 'e, 'd, 'e, '£, 'g, 'h, 'i, 'j) t =
('a, 'b, 'ec, 'd, 'e, '£, 'g, 'h, 'i, 'j) FoldO1IN.t

type ('a, 'b, 'e, 'd, 'e, '£, 'g, 'h, 'i, 'j) stepO
('a, 'b, 'c, 'd, 'e, '£, 'g, 'h, 'i, 'j) FoldOlN.stepO

type ('a, 'b, 'c, 'd, 'e, '£, 'g, 'h, 'i, 'j) stepl =
('a, 'b, 'ec, 'd, 'e, '£, 'g, 'h, 'i, 'j) FoldOlN.stepl

val fold:
{finish: 'accum2 -> 'answer,
start: 'input -> 'accuml,
zero: 'zero}
-> ('input, 'accuml, 'accum2, 'answer, 'zero,
'a, 'b, 'c, 'd, 'e) t

val stepO:
{combine: 'accuml * 'input2 -> 'accum2,
input: 'inputl}
-> ('inputl, 'accuml, 'input2, 'accum2,
'‘a, 'b, 'c, 'd, 'e, 'f) stepl

val stepl:
{combine: 'accuml * 'input -> 'accum2}
-> ('accuml, 'input, 'accum2,

'a, 'b, 'c, 'd, 'e, 'f, 'g) stepl
end

structure Fold0O1N: FOLD_O0IN =
struct
open FoldO1lN

fun fold {finish, start, zero} =
Fold.fold ((id, finish, £n () => zero, start),
fn (finish, _, p, _) => finish (p ()))

fun step0 {combine, input} =
Fold.stepO (£fn (_, finish, _, £f) =>
(finish,
finish,
fn () => f input,
fn x' => combine (f input, x')))

fun stepl {combine} z input =

177



MLton Guide (20070826) FoldO1N

step0 {combine = combine, input = input} =z
end

Last edited on 2006-03-21 23:10:39 by VesaKarvonen.

178



MLton Guide (20070826) ForLoops

ForLoops

A for-loop is typically used to iterate over a range of consecutive integers that denote indices of some sort.
For example, in OCaml a for-loop takes either the form

for <name> = <lower> to <upper> do <body> done

or the form

for <name> = <upper> downto <lower> do <body> done

Some languages provide considerably more flexible for-loop or foreach-constructs.

A bit surprisingly, Standard ML provides special syntax for whi1e-loops, but not for for-loops. Indeed, in
SML, many uses of for-loops are better expressed using app, foldl/foldr, map and many other
higher-order functions provided by the Basis Library for manipulating lists, vectors and arrays. However, the
Basis Library does not provide a function for iterating over a range of integer values. Fortunately, it is very
easy to write one.

A fairly simple design
The following implementation imitates both the syntax and semantics of the OCaml fozr-loop.

datatype for = to of int * int
| downto of int * int

infix to downto
val for =
fn lo to up =>
(fn £ => let fun loop lo = if lo > up then ()
else (f lo; loop (lo+l))
in loop lo end)
| up downto lo =>
(fn £ => let fun loop up = if up < lo then ()

else (f up; loop (up-1))
in loop up end)

For example,

for (1 to 9)
(fn 1 => print (Int.toString 1))

would print 123456789 and

for (9 downto 1)
(fn 1 => print (Int.toString 1))

would print 987654321.
Straightforward formatting of nested loops

for (a to b)

179



MLton Guide (20070826) ForLoops

(fn 1 =>
for (¢ to d)
(fn 3§ =>
)

is fairly readable, but tends to cause the body of the loop to be indented quite deeply.

Off-by-one

The above design has an annoying feature. In practice, the upper bound of the iterated range is almost always
excluded and most loops would subtract one from the upper bound:

for (0 to n-1)
for (n-1 downto 0)

It is probably better to break convention and exclude the upper bound by default, because it leads to more
concise code and becomes idiomatic with very little practice. The iterator combinators described below
exclude the upper bound by default.

Iterator combinators

While the simple for-function described in the previous section is probably good enough for many uses, it is
a bit cumbersome when one needs to iterate over a Cartesian product. One might also want to iterate over
more than just consecutive integers. It turns out that one can provide a library of iterator combinators that
allow one to implement iterators more flexibly.

Since the types of the combinators may be a bit difficult to infer from their implementations, let's first take a
look at a signature of the iterator combinator library:

signature ITER =

sig
type 'a t = ('a —-> unit) -> unit
val return : 'a -> 'a t
val >>= : 'a t * ('a > 'b t) -> 'b t
val none : 'a t
val to : int * int -> int t
val downto : int * int -> int t
val inList : 'a list -> 'a t
val inVector : 'a vector -> 'a t
val inArray : 'a array -> 'a t
val using : ('a, 'b) StringCvt.reader -> 'b -> 'a t
val when : 'a t * ('a -> bool) -> 'a t
val by : 'a t * ('a -> 'b) -> 'b t
val @@ : 'a t * 'at -> 'a t
val ** : 'a t * 'b t -> ('a, 'b) product t
val for : 'a -> 'a
end

180



MLton Guide (20070826)

ForLoops

Several of the above combinators are meant to be used as infix operators. Here is a set of suitable infix
declarations:

infix 2 to downto
infix 1 @@ when by
infix 0 >>= **

A few notes are in order:

The below implementation of the I TER-signature makes use of the following basic combinators:

fun
fun
fun
fun
fun

e The 'a t type constructor with the return and >>= operators forms a monad.

® The t o and downto combinators will omit the upper bound of the range.

¢ for is the identity function. It is purely for syntactic sugar and is not strictly required.
¢ The @@ combinator produces an iterator for the concatenation of the given iterators.

¢ The ** combinator produces an iterator for the Cartesian product of the given iterators.

¢ See ProductType for the type constructor ('a, 'b) product used in the type of the

iterator produced by * *.

¢ The using combinator allows one to iterate over slices, streams and many other kinds of sequences.

¢ when is the filtering combinator. The name when is inspired by OCaml's guard clauses.

¢ by is the mapping combinator.

const x _ = X

flip £f x vy = £ yv x

id x = x

opt fno fso = £n NONE => fno () | SOME ? => fso ?
pass x £ = f x

Here is an implementation the I TER-signature:

structure Iter :> ITER =

struct
type 'a t = ('a -> unit) -> unit
val return = pass

fun (iA >>= a2iB) f = iA (flip aZ2iB f)

val none = ignore
fun (1 to u) £ = let fun "1 = if 1<u then (f 1; " (1+1l)) else () in 1 end
fun (u downto 1) f = let fun "u = if u>l1 then (f (u-1); "~ (u-1)) else () in "u end

fun inlList ? = flip List.app ?
fun inVector ? = flip Vector.app °?
fun inArray ? = flip Array.app ?

fun

fun using get s £ = let fun s = opt (const ()) (fn (x, s) => (f x; “s))
fun (iA when p) £ = iA (fn a => if p a then f a else ())
fun (iA by g) £ = iA (f o 9)
fun (iA @@ iB) £ = (iA f : unit; iB f)
(

iA ** iB) f = iA (fn a => iB (fn b => f (a & Db)))

val for = id

end

(get s)

in

181

‘s end



MLton Guide (20070826) ForLoops

Note that some of the above combinators (e.g. * *) could be expressed in terms of the other combinators, most
notably return and >>=. Another implementation issue worth mentioning is that downto is written
specifically to avoid computing 1-1, which could cause an Overflow.

To use the above combinators the Iter-structure needs to be opened
open Iter
and one usually also wants to declare the infix status of the operators as shown earlier.

Here is an example that illustrates some of the features:

for (0 to 10 when (fn x => x mod 3 <> 0) ** inList ["a", "b"] ** 2 downto 1 by real)
(fn x & v & z =>
print ("(""Int.toString x"", \""~y~"\", "“Real.toString z"")\n"))

Using the Tter combinators one can easily produce more complicated iterators. For example, here is an
iterator over a "triangle":

fun triangle (1, u) =1 tou >>= (fn 1 => i to u >>= (fn j => return (i, Jj)))

Last edited on 2007-08-15 22:06:21 by MatthewFluet.

182



MLton Guide (20070826) ForeignFunctioninterface

ForeignFunctioninterface

MLton's foreign function interface (FFI) extends Standard ML and makes it easy to take the address of C
global objects, access C global variables, call from SML to C, and call from C to SML. MLton also provides
ML-NLFFI, which is a higher-level FFI for calling C functions and manipulating C data from SML.

Overview

e Foreign Function Interface Types
e Foreign Function Interface Syntax

Importing Code into SML

¢ Calling From SML To C
¢ Calling From SML To C Function Pointer

Exporting Code from SML

e Calling From C To SML

Last edited on 2007-05-21 06:24:27 by VesaKarvonen.

183



MLton Guide (20070826) ForeignFunctioninterfaceSyntax

ForeignFunctioninterfaceSyntax

MLton extends the syntax of SML with expressions that enable a ForeignFunctionlnterface to C. The
following description of the syntax uses some abbreviations.

C base type cBaseTy Foreign Function Interface types
C argument type cArgTy cBaseTy, * .. * cBaseTy, orunit

C return type cRetTy cBaseTyor unit
C function type  cFuncTy cArgTy —> cRetTy
C pointer type  cPtrTy MLton.Pointer.t

The type annotation and the semicolon are not optional in the syntax of ForeignFunctionlInterface expressions.
However, the type is lexed, parsed, and elaborated as an SML type, so any type (including type abbreviations)
may be used, so long as it elaborates to a type of the correct form.

Address

_address "C function or variable name" : cPtrTy;

Denotes the address of the C function or variable.

Symbol
_symbol "C variable name" attr... : (unit -> cBaseTy) * (cBaseTy -> unit);
Denotes the getter and setter for a C variable. The cBaseTys must be identical.
attr... denotes a (possibly empty) sequence of attributes.
® alloc : allocate storage (and export a symbol) for the C variable
_symbol * : cPtrTy -> (unit -> cBaseTy) * (cBaseTy -> unit);

Denotes the getter and setter for a C pointer to a variable. The cBaseTys must be identical.

Import

_import "CFunctionName" attr... : cFuncTy;

Denotes an SML function whose behavior is implemented by calling the C function. See Calling from SML
to C for more details.

_import * attr... : cPtrTy —-> cFuncTy;

Denotes an SML function whose behavior is implemented by calling a C function through a C function
pointer.

attr. .. denotes a (possibly empty) sequence of attributes.

184



MLton Guide (20070826) ForeignFunctioninterfaceSyntax

® cdecl : call with the cdec1 calling convention.
® stdcall : call with the stdcall calling convention.

See Calling from SML to C function pointer for more details.

Export

_export "CFunctionName" attr... : cFuncTy -> unit;

Exports a C function with the name CFunctionName that can be used to call an SML function of the type
cFuncTy. When the function denoted by the export expression is applied to an SML function £, subsequent C
calls to CFunctionName will call £. It is an error to call CFunctionName before the export has been
applied. The export may be applied more than once, with each application replacing any previous definition of
CFunctionName.

attr. .. denotes a (possibly empty) sequence of attributes.

® cdecl : call with the cdec1 calling convention.
® stdcall : call with the stdcall calling convention.

See Calling from C to SML for more details.

Last edited on 2007-08-23 04:24:43 by MatthewFluet.

185



MLton Guide (20070826) ForeignFunctioninterfaceTypes

ForeignFunctioninterfaceTypes

MLton's ForeignFunctionInterface only allows values of certain SML types to be passed between SML and C.
The following types are allowed: bool, char, int, real, word. All of the different sizes of (fixed-sized)
integers, reals, and words are supported as well: Int8.int, Int16.int, Int32.1int, Int64.int,
Real32.real,Realb6d.real, Word8.word, Wordl6.word, Word32.word, Word64 .word
There is a special type, MLton.Pointer.t, for passing C pointers -- see MLtonPointer for details.

Arrays, refs, and vectors of the above types are also allowed. Because in MLton monomorphic arrays and
vectors are exactly the same as their polymorphic counterpart, these are also allowed. Hence, st ring,
char vector, and CharVector.vector are also allowed. Strings are not null terminated, unless you
manually do so from the SML side.

Unfortunately, passing tuples or datatypes is not allowed because that would interfere with representation
optimizations.

The C header file that —export-header generates includes t ypede fs for the C types corresponding to
the SML types. Here is the mapping between SML types and C types.

SML type C typedef C type Note
array Pointer unsigned char *

bool Bool int32_t

char Char8 uint8_t

Int8.int Int8 int8_t

Intl6.int Intlo intle_t

Int32.1int Int32 int32_t

Int64.1int Into4 int64_t

int Int32 int32_t (default)
MLton.Pointer.t Pointer unsigned char *
Real32.real Real32 float

Real64.real Real64 double

real Real64 double (default)
ref Pointer unsigned char *

string Pointer unsigned char * (read only)
vector Pointer unsigned char * (readonly)
Word8.word Word8 uint8_t

Wordl6o.word Wordle uintlo_t

Word32.word Word32 uint32_t

Word64 .word Word64 uint64d_t

word Word32 uint32_t (default)

Note (default): The default int, real, and word types may be set by the ~default-type type compiler
option. The given C typedef and C types correspond to the default behavior.

Note (read only): Because MLton assumes that vectors and strings are read-only (and will perform
optimizations that, for instance, cause them to share space), you must not modify the data pointed to by the

186



MLton Guide (20070826) ForeignFunctioninterfaceTypes

unsigned char *inC code.

Although the C type of an array, ref, or vector is always Pointer, in reality, the object has the natural C
representation. Your C code should cast to the appropriate C type if you want to keep the C compiler from
complaining.

When calling an _imported C function from SML that returns an array, ref, or vector result or when calling an
exported SML function from C that takes an array, ref, or string argument, then the object must be an ML
object allocated on the ML heap. (Although an array, ref, or vector object has the natural C representation, the
object also has an additional header used by the SML runtime system.)

Last edited on 2007-08-16 01:14:48 by MatthewFluet.

187



MLton Guide (20070826) FrontEnd

FrontEnd

FrontEnd is a translation pass from source to the AST Intermediatel anguage.

Description

This pass performs lexing and parsing to produce an abstract syntax tree.

Implementation

@front—end.sig Bifront-end.fun

Details and Notes

The lexer is produced by MLLex from Eml.lex.

The parser is produced by ML Yacc from #lml.grm.

The specifications for the lexer and parser were originally taken from SML/NJ (version 109.32), but have
been heavily modified since then.

Last edited on 2006-11-02 17:41:18 by MatthewFluet.

188


http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/front-end/front-end.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/front-end/front-end.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/front-end/front-end.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/front-end/front-end.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/front-end/ml.lex?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/front-end/ml.lex?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/front-end/ml.grm?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/front-end/ml.grm?view=markup

MLton Guide (20070826) FunctionalRecordUpdate

FunctionalRecordUpdate

Functional record update is the copying of a record while replacing the values of some of the fields. Standard
ML does not have explicit syntax for functional record update. We will show below how to implement
functional record update in SML, with a little boilerplate code.

As an example, the functional update of the record

{a =13, b = 14, c = 15}

with ¢ = 16 yields a new record

{a =13, b = 14, c = 16}

Functional record update also makes sense with multiple simultaneous updates. For example, the functional
update of the record above witha = 18, ¢ = 19 yields a new record

{a =18, b = 14, c = 19}

One could easily imagine an extension of the SML that supports functional record update. For example

e with {a = 16, b = 17}

would create a copy of the record denoted by e with field a replaced with 16 and b replaced with 17.

Since there is no such syntax in SML, we now show how to implement functional record update directly. We

first give a simple implementation that has a number of problems. We then give an advanced implementation,
that, while complex underneath, is a reusable library that admits simple use.

Simple implementation

To support functional record update on the record type
{a: 'a, b: 'b, c: 'c}

first, define an update function for each component.

fun withA ({a = _, b, ¢}, a) = {a =a, b=Db, ¢c = c}
fun withB ({a, b = _, ¢}, b) = {a =a, b=Db, ¢c = c}
fun withC ({a, b, ¢ =_}, ¢c) = {a =a, b=Db, ¢ = c}

Then, one can express e with {a = 16, b = 17} as
withB (withA (e, 16), 17)

With infix notation

infix withA withB withC

the syntax is almost as concise as a language extension.

e withA 16 withB 17

189



MLton Guide (20070826) FunctionalRecordUpdate

This approach suffers from the fact that the amount of boilerplate code is quadratic in the number of record
fields. Furthermore, changing, adding, or deleting a field requires time proportional to the number of fields
(because each with function must be changed). It is also annoying to have to define a with function,
possibly with a fixity declaration, for each field.

Fortunately, there is a solution to these problems.

Advanced implementation

Using Fold one can define a family of makeUpdate<N> functions and single update operator U so that one
can define a functional record update function for any record type simply by specifying a (trivial)
isomorphism between that type and a product type. For example, suppose that we would like to do functional
record update on records with fields a and b. Then one defines a function updateAB as follows.

val updateAB =

fn z =>
let
fun p2r (vl & v2) = {a = vl, b = v2}
fun r2p {a = vl, b = v2} = (vl & v2)
in
makeUpdate2 (p2r, p2r, r2p)
end

Z

The functions p2 r (think product to record) and r2p (think record to product) specify an isomorphism
between a, b records and binary products. There is a second use of p2r to work around the lack of first-class

polymorphism in SML.
With the definition of updateAB in place, the following expressions are valid.

updateAB {a = 13, b = "hello"} (U#b "goodbye") $
updateAB {a 13.5, b = true} (U#b false) (U#a 12.5) S

As another example, suppose that we would like to do functional record update on records with fields b, c,
and d. Then one defines a function updateBCD as follows.

val updateBCD =

fn z =>
let
fun p2r (vl & v2 & v3) = {b =vl, ¢ =v2, d = v3}
fun r2p {b =vl, ¢ =v2, d=v3} = (vl & v2 & v3)
in

makeUpdate3 (p2r, p2r, r2p)
end
z

With the definition of updateBCD in place, the following expression is valid.
updateBCD {b =1, ¢ = 2, d = 3} (U#c 4) (U#c 5) $

Note that not all fields need be updated and that the same field may be updated multiple times. Further note
that the same U operator is used for all update functions (in the above, for both updateAB and
updateBCD).

190



MLton Guide (20070826) FunctionalRecordUpdate

In general, to define a functional-record-update function on records with fields £1, £2, ..., £N, use the
following template.

val update =

fn z =>

let
fun p2r (vl & v2 & ... & vn) = {fl =vl, £f2 =v2, ..., fn = vn}
fun r2p {fl1l = vl, f2 =v2, ..., fn = vn} = (vl & Vv2 ... & vn)

in
makeUpdateN (p2r, p2r, r2p)

end

Z
With this, one can update a record as follows.
update {fl1 = vl, ..., fn = vn} (U#fil vil) ... (U#fim vim) $

If makeUpdateN is not already defined for the desired N, a generic makeUpdate function and special
value, A, is defined so that one can use the following for makeUpdateN, where A is repeated N times.

makeUpdate A ... A $

The FunctionalRecordUpdate structure

Here is the implementation of functional record update.

structure FunctionalRecordUpdate =
struct
datatype ('x, 'y) u =X of 'x | Y of 'y

val makeUpdate =

fn z =>

Fold.fold

(€O, O
fn £ => f o X,
fn (a, u) => case u of X x => x | _ => a),

fn (p, up, _, _) => fn (p2r, p2r', r2p) => fn r =>
Fold.fold ((p2r' (p id), up, r2p 1),

fn (_, _, p) => p2r p))

val A =
fn z =>
Fold.stepO

(fn (_, _, p, up) =>
(p, up, £fn £ => p (f o X) & (f oY),
fn (a & b, u) =>
(case u of X x => up (a, x) | _ => a)
& (case u of Y y => vy | => Db))

fun makeUpdate2 z = makeUpdate A A $ z
fun makeUpdate3 z = makeUpdate A A A $ z
fun makeUpdated4 z = makeUpdate A A A A $ z

fun U s v = Fold.stepO (fn (r, up, p) => (r, up, up (p, s r v)))
end

191



MLton Guide (20070826) FunctionalRecordUpdate

The idea of makeUpdate is to inductively build the update function for n-ary product types. Each A supplied
to makeUpdate adds one more level to the product. When finished with its arguments, makeUpdate
begins a second fold, this time to process a variable number of U steps. The second fold begins by converting
the supplied record to a product, using the supplied isomorphism (p2r "). Each step works by selecting a
"path", s r wv), from the inductively constructed product, reformatted by the supplied isomorphism to look
like a record. Then, the inductively constructed update function is applied to the record-as-product and the
pathup (p, s r v) toyield a new record-as-product. Finally, at the end of the fold, the product is
converted back to a record using the supplied isomorphism (p2r).

Efficiency

With MLton, the efficiency of this approach is as good as one would expect with the special syntax. Namely a
sequence of updates will be optimized into a single record construction that copies the unchanged fields and
fills in the changed fields with their new values.

Last edited on 2007-08-15 22:06:30 by MatthewFluet.

192



MLton Guide (20070826) GarbageCollection

GarbageCollection

For a good introduction and overview to garbage collection, see Jones99.
MLton's garbage collector uses copying, mark-compact, and generational collection, automatically switching
between them at run time based on the amount of live data relative to the amount of RAM. The runtime

system tries to keep the heap within RAM if at all possible.

MLton's copying collector is a simple, two-space, breadth-first, Cheney-style collector. The design for the
generational and mark-compact GC is based on Sansom91.

Design notes

o [Bihttp://mlton.org/pipermail/mlton/2002-May/012420.html
object layout and header word design

Also see

¢ Regions

Last edited on 2005-09-06 23:28:47 by MatthewFluet.

193


http://mlton.org/pipermail/mlton/2002-May/012420.html
http://mlton.org/pipermail/mlton/2002-May/012420.html

MLton Guide (20070826) GenerativeDatatype

GenerativeDatatype

In Standard ML, datatype declarations are said to be generative, because each time a datatype declaration is
evaluated, it yields a new type. Thus, any attempt to mix the types will lead to a type error at compile-time.
The following program, which does not type check, demonstrates this.

functor F () =
struct
datatype t = T
end
structure S1 F ()
structure 52 = F ()
val _: Sl.t -> S2.t = fn x => x

Generativity also means that two different datatype declarations define different types, even if they define
identical constructors. The following program does not type check due to this.

datatype t = A | B

val al = A

datatype t = A | B

val a2 = A

val _ = if true then al else a2

Last edited on 2005-01-26 20:34:48 by MatthewFluet.

194



MLton Guide (20070826) GenerativeException

GenerativeException

In Standard ML, exception declarations are said to be generative, because each time an exception declaration
is evaluated, it yields a new exception.

The following program demonstrates the generativity of exceptions.

exception E
val el = E
fun isEl (e: exn): bool
case e of
E => true
| _ => false
exception E
val e2 = E
fun isE2 (e: exn): bool
case e of
E => true
| _ => false
fun pb (b: bool): unit =
print (concat [Bool.toString b, "\n"])
val () = (pb (isEl el)
;pb (isEl e2)
; pb (isE2 el)
; pb (isE2 e2))

In the above program, two different exception declarations declare an exception E and a corresponding
function that returns t rue only on that exception. Although declared by syntactically identical exception
declarations, el and e2 are different exceptions. The program, when run, prints t rue, false, false,
true.

A slight modification of the above program shows that even a single exception declaration yields a new
exception each time it is evaluated.

fun £ (): exn * (exn —-> bool) =
let
exception E
in
(E, fn E => true | _ => false)
end
val (el, isEl) £ ()
val (e2, isE2) = £ ()
fun pb (b: bool): unit =
print (concat [Bool.toString b, "\n"])
val () = (pb (isEl el)
; pb (isEl e2)
; pb (isE2 el)
; pb (isE2 e2))

Each call to £ yields a new exception and a function that returns t rue only on that exception. The program,
when run, prints true, false, false, true.

195



MLton Guide (20070826) GenerativeException

Type Safety

Exception generativity is required for type safety. Consider the following valid SML program.

fun £ (): ('a -> exn) * (exn -> 'a) =
let
exception E of 'a
in
(E, fn E x => x | _ => raise Fail "f")
end
fun cast (a: 'a): 'b =
let
val (make: 'a —> exn, _) = f ()
val (_, get: exn -> 'b) = £ ()
in
get (make a)
end
val _ = ((cast 13): int -> int) 14
If exceptions weren't generative, then each call £ () would yield the same exception constructor E. Then,
our cast function could use make: 'a —> exn toconvert any value into an exception and then

get: exn —> 'b to convert that exception to a value of arbitrary type. If cast worked, then we could
cast an integer as a function and apply. Of course, because of generative exceptions, this program raises
Fail "f".

Last edited on 2005-01-26 20:34:34 by MatthewFluet.

196



MLton Guide (20070826) Glade

Glade

[BGlade is a tool for generating Gtk user interfaces.

WesleyTerpstra is working on a Glade->mGTK converter.

o [Bihttp://mlton.org/pipermail/mlton/2004-December/016865.html

Last edited on 2005-12-02 07:11:13 by StephenWeeks.

197


http://glade.gnome.org/features.html
http://glade.gnome.org/features.html
http://mlton.org/pipermail/mlton/2004-December/016865.html
http://mlton.org/pipermail/mlton/2004-December/016865.html

MLton Guide (20070826) Globalize

Globalize

Globalize is an analysis pass for the SXML Intermediatel.anguage, invoked from ClosureConvert.

Description

This pass marks values that are constant, allowing ClosureConvert to move them out to the top level so they
are only evaluated once and do not appear in closures.

Implementation
@globalize.sig @globalize.fun

Details and Notes

Last edited on 2006-11-02 17:37:56 by MatthewFluet.

198


http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/closure-convert/globalize.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/closure-convert/globalize.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/closure-convert/globalize.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/closure-convert/globalize.fun?view=markup

MLton Guide (20070826) GnuMP

GnuMP

The BIGnuMP (GNU multiprecision library) is a library for arbitrary precision integer arithmetic. MLton uses
the GnuMP to implement the Basis Library Int Inf module.

There is a known problem with the GnuMP, where it requires a lot of stack space for some computations, e.g.
IntInf.toString of a million digit number. If you run with stack size limited, you may see a segfault in
such programs. This problem is mentioned in the [BIGnuMP FAQ, where they describe two solutions.

e Increase (or unlimit) your stack space. From your program, use setr1imit, or from the shell, use
ulimit.

¢ Configure and rebuild 1ibgmp with ——disable-alloca, which will cause it to allocate
temporaries using malloc instead of on the stack.

Last edited on 2007-08-15 22:06:35 by MatthewFluet.

199


http://www.gnu.org/software/gmp/gmp.html
http://www.gnu.org/software/gmp/gmp.html
http://www.swox.com/gmp/#FAQ
http://www.swox.com/gmp/#FAQ

MLton Guide (20070826) HaMLet

HaMLet

[BHaML et is a Standard ML Implementation. It is intended as reference implementation of The Definition of
Standard ML and not for serious practical work.

Last edited on 2007-08-15 22:06:37 by MatthewFluet.

200


http://www.ps.uni-sb.de/hamlet/
http://www.ps.uni-sb.de/hamlet/

MLton Guide (20070826) HenryCeijtin
HenryCejtin

I was one of the original developers of Mathematica (actually employee #1). My background is a combination
of mathematics and computer science. Currently I am doing various things in Chicago.

Last edited on 2005-12-01 03:27:33 by HenryCejtin.

201



MLton Guide (20070826) History

History

In April 1997, Stephen Weeks wrote a defunctorizer for Standard ML and integrated it with SML/NJ. The
defunctorizer used SML/NJ's visible compiler and operated on the Ast intermediate representation produced
by the SML/NJ front end. Experiments showed that defunctorization gave a speedup of up to six times over
separate compilation and up to two times over batch compilation without functor expansion.

In August 1997, we began development of an independent compiler for SML. At the time the compiler was
called sm1lc. By October, we had a working monomorphiser. By November, we added a polyvariant
higher-order control-flow analysis. At that point, MLton was about 10,000 lines of code.

Over the next year and half, sm1c morphed into a full-fledged compiler for SML. It was renamed MLton, and
first released in March 1999.

From the start, MLton has been driven by whole-program optimization and an emphasis on performance. Also
from the start, MLton has had a fast C FFI and Int Inf based on the GNU multiprecision library. At its first
release, MLton was 48,006 lines.

Between the March 1999 and January 2002, MLton grew to 102,541 lines, as we added a native code
generator, mllex, mlyacc, a profiler, many optimizations, and many libraries including threads and signal
handling.

During 2002, MLton grew to 112,204 lines and we had releases in April and September. We added support
for cross compilation and used this to enable MLton to run on Cygwin/Windows and FreeBSD. We also made
improvements to the garbage collector, so that it now works with large arrays and up to 4G of memory and so
that it automatically uses copying, mark-compact, or generational collection depending on heap usage and
RAM size. We also continued improvements to the optimizer and libraries.

During 2003, MLton grew to 122,299 lines and we had releases in March and July. We extended the profiler
to support source-level profiling of time and allocation and to display call graphs. We completed the Basis
Library implementation, and added new MLton-specific libraries for weak pointers and finalization. We
extended the FFI to allow callbacks from C to SML. We added support for the Sparc/Solaris platform, and
made many improvements to the C code generator.

Last edited on 2005-12-02 04:23:16 by MatthewFluet.

202



MLton Guide (20070826) HowProfilingWorks

HowProfilingWorks

Here's how Profiling works. If profiling is on, the front end (elaborator) inserts Enter and Leave statements
into the source program for function entry and exit. For example,

fun f n = if n = 0 then 0 else 1 + £ (n - 1)

becomes
fun £ n =
let
val () = Enter "£"
val res = (if n = 0 then 0 else 1 + £ (n - 1))
handle e => (Leave "f"; raise e)
val () = Leave "f"
in
res
end

Actually there is a bit more information than just the source function name; there is also lexical nesting and
file position.

Most of the middle of the compiler ignores, but preserves, Enter and Leave. However, so that profiling
preserves tail calls, the Ssa shrinker has an optimization that notices when the only operations that cause a call
to be a nontail call are profiling operations, and if so, moves them before the call, turning it into a tail call. If
you observe a program that has a tail call that appears to be turned into a nontail when compiled with

profiling, please report a bug.

There is the checkProf function in @type—check.fun, which checks that the Enter/Leave statements
match up.

In the backend, just before translating to the Machine IL, the profiler uses the Enter/Leave statements to
infer the "local” portion of the control stack at each program point. The profiler then removes the
Enters/Leaves and inserts different information depending on which kind of profiling is happening. For
time profiling (with the native codegen), the profiler inserts labels that cover the code (i.e. each statement has
a unique label in its basic block that prefixes it) and associates each label with the local control stack. For time
profiling (with the C and bytecode codegens), the profiler inserts code that sets a global field that records the
local control stack. For allocation profiling, the profiler inserts calls to a C function that will maintain byte
counts. With stack profiling, the profiler also inserts a call to a C function at each nontail call in order to
maintain information at runtime about what SML functions are on the stack.

At run time, the profiler associates counters (either clock ticks or byte counts) with source functions. When
the program finishes, the profiler writes the counts out to the m1mon . out file. Then, m1prof uses source
information stored in the executable to associate the counts in the m1mon . out file with source functions.

For time profiling, the profiler catches the STGPROF signal 100 times per second and increments the

appropriate counter, determined by looking at the label prefixing the current program counter and mapping
that to the current source function.

203


http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/type-check.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/type-check.fun?view=markup

MLton Guide (20070826) HowProfilingWorks
Caveats

There may be a few missed clock ticks or bytes allocated at the very end of the program after the data is
written.

Profiling has not been tested with signals or threads. In particular, stack profiling may behave strangely.

Last edited on 2007-08-01 22:54:41 by MatthewFluet.

204



MLton Guide (20070826) HowToAttachFile

HowToAttachFile

To attach a file to a page you should:
1. @iCreate an account and login.
2. Click on the AttachFile link at the bottom of the page to which you wish to attach the file.
3. Enter the file name in the "File to upload" box and click upload.

Once you have done this, you can refer to the file on the page using the attachment : £ilename wiki
syntax.

Here is an [Blexample.

Last edited on 2006-10-30 18:59:17 by StephenWeeks.

205


http://mlton.org/Preferences
http://mlton.org/Preferences
http://mlton.org/pages/HowToAttachFile/attachments/example
http://mlton.org/pages/HowToAttachFile/attachments/example

MLton Guide (20070826) Identifier

Identifier

In Standard ML, there are syntactically two kinds of identifiers.

¢ Alphanumeric: starts with a letter or prime (') and is followed by letters, digits, primes and underbars

Q).

Examples: abc, ABC123, Abc_123, 'a.
¢ Symbolic: a sequence of the following

1 s e S #+ -/ :<=>2Q ]| ~"> " *
Examples: +=, <=, >>, $.
With the exception of =, reserved words can not be identifiers.
There are a number of different classes of identifiers, some of which have additional syntactic rules.

¢ Identifiers not starting with a prime.
4 value identifier (includes variables and constructors)
¢ type constructor
¢ structure identifier
¢ signature identifier
¢ functor identifier
o Identifiers starting with a prime.
¢ type variable (must start with prime)
e Identifiers + numeric labels (1, 2, ...).
¢ record label

Last edited on 2005-01-18 15:02:21 by MatthewFluet.

206



MLton Guide (20070826) Immutable

Immutable

Immutable means not mutable, and is an adjective meaning "can not be modified". Most values in Standard
ML are immutable. For example, constants, tuples, records, lists, and vectors are all immutable.

Last edited on 2004-12-08 18:51:10 by StephenWeeks.

207



MLton Guide (20070826) ImperativeTypeVariable

ImperativeTypeVariable

In Standard ML, an imperative type variable is a type variable whose second character is a digit, as in ' 1a or
' 2b. Imperative type variables were used as an alternative to the ValueRestriction in an earlier version of
SML, but no longer play a role. They are treated exactly as other type variables.

Last edited on 2004-11-29 22:58:32 by StephenWeeks.

208



MLton Guide (20070826) ImplementExceptions

ImplementExceptions

ImplementExceptions is a pass for the SXML Intermediatel.anguage, invoked from SXMLSimplify.

Description

This pass implements exceptions.
Implementation
@imglement—exceptions.sig @implement—exceptions.fun

Details and Notes

Last edited on 2006-11-02 17:54:18 by MatthewFluet.

209


http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/xml/implement-exceptions.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/xml/implement-exceptions.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/xml/implement-exceptions.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/xml/implement-exceptions.fun?view=markup

MLton Guide (20070826) ImplementHandlers
ImplementHandlers

ImplementHandlers is a pass for the RSSA Intermediatel anguage, invoked from RSSASimplify.

Description

This pass implements the (threaded) exception handler stack.
Implementation
[Blimplement-handlers.sig Mlimplement-handlers.fun

Details and Notes

Last edited on 2006-11-02 17:54:11 by MatthewFluet.

210


http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/backend/implement-handlers.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/backend/implement-handlers.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/backend/implement-handlers.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/backend/implement-handlers.fun?view=markup

MLton Guide (20070826) ImplementProfiling
ImplementProfiling

ImplementProfiling is a pass for the RSSA Intermediatel.anguage, invoked from RSSASimplify.
Description

This pass implements profiling.

Implementation

[lprofile.sig Bprofile.fun

Details and Notes

See HowProfilingWorks.

Last edited on 2006-11-02 17:50:48 by MatthewFluet.

211


http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/backend/profile.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/backend/profile.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/backend/profile.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/backend/profile.fun?view=markup

MLton Guide (20070826) ImplementSuffix

ImplementSuffix

ImplementSuffix is a pass for the SXML Intermediatel anguage, invoked from SXMLSimplify.

Description

This pass implements the TopLevel_setSuffix primitive, which installs a function to exit the program.
Implementation

[limplement-suffix.sig Bimplement-suffix.fun

Details and Notes

ImplementSuffix works by introducing a new ref cell to contain the function of type unit -> unit that
should be called on program exit.

¢ The following code (appropriately alpha-converted) is appended to the beginning of the SXML

program:
val z_0 =
fn a 0 =>
let
val x_0 =
"toplevel suffix not installed"
val x_1 =
MLton_bug (x_0)
in
x_1
end

val toplLevelSuffixCell =
Ref_ref (z_0)
¢ Any occurrence of

val x 0 =
TopLevel_setSuffix (£_0)

18 rewritten to
val x_0 =

Ref_assign (topLevelSuffixCell, £f_0)
¢ The following code (appropriately alpha-converted) is appended to the end of the SXML program:

val £_0 =
Ref_deref (topLevelSuffixCell)
val z_0 =

Last edited on 2006-11-02 17:53:06 by MatthewFluet.

212


http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/xml/implement-suffix.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/xml/implement-suffix.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/xml/implement-suffix.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/xml/implement-suffix.fun?view=markup

MLton Guide (20070826) InfixingOperators

InfixingOperators

Fixity specifications are not part of signatures in Standard ML.. When one wants to use a module that provides
functions designed to be used as infix operators there are several obvious alternatives:

e Use only prefix applications. Unfortunately there are situations where infix applications lead to
considerably more readable code.

® Make the fixity declarations at the top-level. This may lead to collisions and may be unsustainable in
a large project. Pollution of the top-level should be avoided.

® Make the fixity declarations at each scope where you want to use infix applications. The duplication
becomes inconvenient if the operators are widely used. Duplication of code should be avoided.

¢ Use non-standard extensions, such as the ML Basis system to control the scope of fixity declarations.
This has the obvious drawback of reduced portability.

® Reuse existing infix operator symbols (*, +, —, ...). This can be convenient when the standard
operators aren't needed in the same scope with the new operators. On the other hand, one is limited to
the standard operator symbols and the code may appear confusing.

None of the obvious alternatives is best in every case. The following describes a slightly less obvious
alternative that can sometimes be useful. The idea is to approximate Haskell's special syntax for treating any

identifier enclosed in grave accents (backquotes) as an infix operator. In Haskell, instead of writing the prefix
application £ x vy one can write the infix application x " £ y.

Infixing operators

Let's first take a look at the definitions of the operators:

infix 3 <\ fun x <\ £ = fn y => f (x, vy) (* Left section *)
infix 3 \> fun £ \> y = f y (* Left application *)
infixr 3 /> fun f /> y = £fn x => f (x, V) (* Right section *)
infixr 3 </ fun x </ £ = f x (* Right application *)

infix 2 o (* See motivation below *)
infix 0 :=

The left and right sectioning operators, <\ and />, are useful in SML for partial application of infix operators.
ML For the Working Programmer describes curried functions secl and secr for the same purpose on
pages 179-181. For example,

List.map (op- /> V)

is a function for subtracting y from a list of integers and

List.exists (x <\ op=)

is a function for testing whether a list contains an x.

Together with the left and right application operators, \> and </, the sectioning operators provide a way to
treat any binary function (i.e. a function whose domain is a pair) as an infix operator. In general,

x0 <\fI1\> x1 <\f2\> x2 ... <\fN\> xN = fN (... f2 (fl1 (x0, x1), x2) ..., xN)

213



MLton Guide (20070826) InfixingOperators

and

xN </fN/> ... x2 </f2/> x1 </f1/> x0 = £N (xN, ... f2 (x2, fl1 (x1, x0)) ...)
Examples

As a fairly realistic example, consider providing a function for sequencing comparisons:

structure Order (* ... *) =
struct
(* ... %)
val orWhenkEg = £n (EQUAL, th) => th ()
| (other, _) => other
(* ... %)
end

Using orWhenEq and the infixing operators, one can write a compare function for triples as

fun compare (fad, fbe, fcf) ((a, b, ¢c), (d, e, £f)) =
fad (a, d) <\Order.orWhenEg\> " fbe (b, e) <\Order.orWhenEg\> "“fcf (c, f)

where ° is defined as
fun "f x = £fn () => f x
Although orWhenEq can be convenient (try rewriting the above without it), it is probably not useful enough

to be defined at the top level as an infix operator. Fortunately we can use the infixing operators and don't have
to.

Another fairly realistic example would be to use the infixing operators with the technique described on the
Printf page. Assuming that you would have a Print f module binding printf, *, and formatting
combinators named int and string, you could write

let open Printf in
printf (' "Here's an int "<\int\>" and a string "<\string\>".") 13 "foo" end

without having to duplicate the fixity declarations. Alternatively, you could write
P.printf (P. "Here's an int "<\P.int\>" and a string "<\P.string\>".") 13 "foo"
assuming you have the made the binding

structure P = Printf

Application and piping operators

The left and right application operators may also provide some notational convenience on their own. In
general,

£f\>x1 \> ... \> xN = f x1 ... xN

and

214



MLton Guide (20070826) InfixingOperators

xN </ ... </ x1 </ £ =f x1 ... xN
If nothing else, both of them can eliminate parentheses. For example,
foo (1 + 2) = foo \> 1 + 2

The left and right application operators are related to operators that could be described as the right and left
piping operators:

infix 1 >| val op>| = op</ (* Left pipe *)
infixr 1 |< val opl< op\> (* Right pipe *)

As you can see, the left and right piping operators, >l and I<, are the same as the right and left application
operators, respectively, except the associativities are reversed and the binding strength is lower. They are
useful for piping data trough a sequence of operations. In general,

x > £1 >] ... >| £fN
= fN (... (f1 x) ...)
= (fN o ... o fl) x
and

fN |< ... |< fl |< x
= fN (... (f1 x) ...)
= (fN o ... o fl) x

The right piping operator, | <, is provided by the Haskell prelude as $. It can be convenient in CPS or
continuation passing style.

A use for the left piping operator is with parsing combinators. In a strict language, like SML, eta-reduction is
generally unsafe. Using the left piping operator, parsing functions can be formatted conveniently as

fun parsingFunc input =
input >| (* ... *)
[
[ .. %)

where | | is supposed to be a combinator provided by the parsing combinator library.

About precedences

You probably noticed that we redefined the precedences of the function composition operator o and the
assignment operator : =. Doing so is not strictly necessary, but can be convenient and should be relatively
safe. Consider the following motivating examples from Wesley W. Terpstra relying on the redefined
precedences:

Word8.fromInt o Char.ord o s <\String.sub
(* Combining sectioning and composition *)

x := s <\String.sub\> i
(* Assigning the result of an infixed application *)

In imperative languages, assignment usually has the lowest precedence (ignoring statement separators). The

215



MLton Guide (20070826) InfixingOperators

precedence of : = in the Basis library is perhaps unnecessarily high, because an expression of the form
r := x always returns a unit, which makes little sense to combine with anything. Dropping : = to the lowest
precedence level makes it behave more like in other imperative languages.

The case for o is different. With the exception of before and : =, it doesn't seem to make much sense to use
o with any of the operators defined by the Basis library in an unparenthesized expression. This is simply
because none of the other operators deal with functions. It would seem that the precedence of o could be
chosen completely arbitrarily from the set {1, ..., 9} without having any adverse effects with respect to
other infix operators defined by the Basis library.

Design of the symbols

The closest approximation of Haskell's x £ vy syntax achievable in Standard ML would probably be
something like x * £~ vy, but ~ is already used for string concatenation by the Basis library. Other
combinations of the characters * and "~ would be possible, but none seems clearly the best visually. The
symbols <\, \>, </ and /> are reasonably concise and have a certain self-documenting appearance and
symmetry, which can help to remember them. As the names suggest, the symbols of the piping operators > |
and | < are inspired by Unix shell pipelines.

Also see

e Utilities

Last edited on 2007-08-26 19:59:13 by MatthewFluet.

216



MLton Guide (20070826) Inline

Inline

Inline is an optimization pass for the SSA Intermediatel .anguage, invoked from SSASimplify.

Description

This pass inlines SSA functions using a size-based metric.

Implementation

@inline.sig Blinline.fun

Details and Notes

The Inline pass can be invoked to use one of three metrics:

® NonRecursive (product, small) --inline any function satisfying
(numCalls — 1) * (size - small) <= product, where numCalls is the static
number of calls to the function and si ze is the size of the function.

® Leaf (size) --inline any leaf function smaller than size

® LeafNoLoop (size) --inline any leaf function without loops smaller than size

Last edited on 2006-11-02 17:31:06 by MatthewFluet.

217


http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/inline.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/inline.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/inline.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/inline.fun?view=markup

MLton Guide (20070826) InsertLimitChecks

InsertLimitChecks

InsertLimitChecks is a pass for the RSSA Intermediatel.anguage, invoked from RSSASimplify.

Description

This pass inserts limit checks.

Implementation

[Bllimit-check.sig [@limit-check.fun

Details and Notes

Last edited on 2006-11-02 17:51:39 by MatthewFluet.

218


http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/backend/limit-check.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/backend/limit-check.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/backend/limit-check.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/backend/limit-check.fun?view=markup

MLton Guide (20070826) InsertSignalChecks

InsertSignalChecks

InsertSignalChecks is a pass for the RSSA Intermediatel.anguage, invoked from RSSASimplify.

Description

This pass inserts signal checks.

Implementation

[Bllimit-check.sig [@limit-check.fun

Details and Notes

Last edited on 2006-11-02 17:36:04 by MatthewFluet.

219


http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/backend/limit-check.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/backend/limit-check.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/backend/limit-check.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/backend/limit-check.fun?view=markup

MLton Guide (20070826) Installation

Installation

MLton runs on a variety of platforms and is distributed in both source and binary form. The format for the
binary package depends on the platform. The binary package will install under /usr or /usr/local,
depending on the platform. A .tgz or . tbz binary package should be extracted in the root directory. If you
install MLton somewhere else, you must set the 1 ib variable in the /usr/bin/mlton script to the
directory that contains the libraries (/usr/1ib/mlton by default).

MLton requires that you have the IGNU multiprecision library installed on your machine. MLton must be
able to find both the gmp . h include file and the 1ibgmp.a or 1ibgmp. so library. If you see the error
message gmp.h: No such file or directory, you should copy gmp.h to
/usr/lib/mlton/self/include. If you see the error message

/usr/bin/1d: cannot find -lgmp, you should adda -1ink—-opt -L argument in the
/usr/bin/mlton script so that the linker can find 1 ibgmp. If, for example, 1ibgmp. a is in /tmp, then
add -1link-opt -L/tmp.

Installation of MLton creates the following files and directories.

® /usr/bin/mllex
The MLLex lexer generator.
® /usr/bin/mlnlffigen
The ML-NLFFI tool.
e /usr/bin/mlprof
A Profiling tool.
® /usr/bin/mlton
A script to call the compiler. This script may be moved anywhere, however, it makes use of files in
/usr/lib/mlton.
® /usr/bin/mlyacc
The ML Yacc parser generator.
® /usr/lib/mlton
Directory containing libraries and include files needed during compilation.
® /usr/share/man/manl/mllex.l,mlnlffigen.1l,mlprof.l,mlton.1l,mlyacc.1
Man pages.
® /usr/share/doc/mlton
Directory containing the user guide for MLton, mllex, and mlyacc, as well as example SML programs
(in the examples dir), and license information.

Hello, World!

Once you have installed MLton, create a file called hello-world. sml with the following contents.
print "Hello, world!\n";

Now create an executable, hello-world, with the following command.

mlton hello-world.sml

You can now run hello-world to verify that it works. There are more small examples in
/usr/share/doc/mlton/examples.

220


http://www.gnu.org/software/gmp/gmp.html
http://www.gnu.org/software/gmp/gmp.html

MLton Guide (20070826) Installation
Installation on Cygwin

When installing the Cygwin t gz, you should use Cygwin's bash and tar. The use of an archiving tool that
is not aware of Cygwin's mounts will put the files in the wrong place.

Last edited on 2007-08-23 04:13:31 by MatthewFluet.

221



MLton Guide (20070826) IntermediateLanguage

IntermediateLanguage

MLton uses a number of intermediate languages in translating from the input source program to low-level
code. Here is a list in the order which they are translated to.

e AST. Pretty close to the source.

e CoreML.. Explicitly typed, no module constructs.
® XML. Polymorphic, HigherOrder.

e SXML. SimplyTyped, HigherOrder.

e SSA. SimplyTyped, FirstOrder.

e SSA2. SimplyTyped, FirstOrder.

e RSSA. Explicit data representations.

e Machine. Untyped register transfer language.

Last edited on 2004-11-29 02:16:14 by MatthewFluet.

222



MLton Guide (20070826) IntroduceLoops

IntroducelLoops

IntroduceLoops is an optimization pass for the SSA Intermediatel anguage, invoked from SSASimplify.

Description

This pass rewrites any SSA function that calls itself in tail position into one with a local loop and no self tail
calls.

A SSA function like
fun F (arg_0, arg_1l) = L_0 ()
L_16 (x_0)

F (z_0, z_1) Tail

becomes

fun F (arg_0', arg_1l') = loopS_0 ()
loopS_0 ()
loop_0 (arg_0', arg_1")
loop_0 (arg_0, arg_l)
L0 ()
IL_16 (x_0)

loop_0 (z_0, z_1)

Implementation
@introduce—loops.sig @introduce-loops.fun

Details and Notes

Last edited on 2006-11-02 17:35:30 by MatthewFluet.

223


http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/introduce-loops.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/introduce-loops.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/introduce-loops.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/introduce-loops.fun?view=markup

MLton Guide (20070826) JesperLouisAndersen

JesperLouisAndersen

Jesper Louis Andersen

Jesper Louis Andersen is an undergraduate student at DIKU, the department of computer science,
Copenhagen university. His contributions to MLton are few, though he has made the port of MLton to the
NetBSD and OpenBSD platforms.

His general interests in computer science are compiler theory, language theory, algorithms and datastructures
and programming. His assets are his general knowledge of UNIX systems, knowledge of system
administration, knowledge of operating system kernels; NetBSD in particular.

He was employed by the university as a system administrator for 2 years, which has set him back somewhat in
his studies. Currently he is trying to learn mathematics (real analysis, general topology, complex functional
analysis and algebra).

Projects using MLton
A register allocator

For internal use at a compiler course at DIKU. It is written in the literate programming style and implements
the Iterated Register Coalescing algorithm by Lal George and Andrew Appel
[Bhhttp.//citeseer.ist.psu.edu/george96iterated.html. The status of the project is that it is unfinished. Most of the

basic parts of the algorithm is done, but the interface to the students (simple) datatype takes some conversion.
A configuration management system in SML

At this time, only loose plans exists for this. The plan is to build a Configuration Management system on the
principles of the OpenCM system, see [@http://www.opencm.org/docs.html. The basic idea is to unify
"naming" and "identity" into one by uniquely identifying all objects managed in the repository by the use of
cryptographic checksums. This mantra guides the rest of the system, providing integrity, accessibility and
confidentiality.

Last edited on 2004-12-06 13:45:22 by JesperLouisAndersen.

224


http://citeseer.ist.psu.edu/george96iterated.html
http://citeseer.ist.psu.edu/george96iterated.html
http://www.opencm.org/docs.html
http://www.opencm.org/docs.html

MLton Guide (20070826) JohnnyAndersen

JohnnyAndersen

Johnny Andersen (aka Anoq of the Sun)

Here is a picture in front of the academy building at the University of Athens, Greece, taken in September
2003.

@image

Last edited on 2004-10-27 18:12:11 by eponym.

225


http://mlton.org/pages/JohnnyAndersen/attachments/anoq.jpg?ts=1098900670

MLton Guide (20070826) KnownCase

KnownCase

KnownCase is an optimization pass for the SSA Intermediatel.anguage, invoked from SSASimplify.

Description

This pass duplicates and simplifies Case transfers when the constructor of the scrutinee is known.
Uses Restore.

For example, the program

val rec last =
fn [] => 0

gives rise to the SSA function

fun last_0 (x_142) = loopS_1 ()

loopS_1 ()

loop_11 (x_142)
loop_11 (x_143)

case x_143 of

nil_1 => L_73 | ::_0 => L_74

L_73 ()

return global_5
L_74 (x_145, x_144)

case x_145 of

nil_1 => 1L_75 | _ => L_76
L_75 ()
return x_144
L_76 ()

loop_11 (x_145)

which is simplified to

fun last_0 (x_142) = loopS_1 ()
loopS_1 ()
case x_142 of
nil 1 =>1L_73 | ::_0 => 1_118
L_73 ()

return global_5
L_118 (x_230, x_229)

L_74 (x_230, x_229, x_142)
L_74 (x_145, x_144, x_232)

case x_145 of

nil 1 => L_75 | ::_0 => 1L_114

L_75 ()

return x_144
L_114 (x_227, x_226)

L_74 (x_227, x_226, x_145)

226



MLton Guide (20070826) KnownCase

Implementation

@known-case.sig [Blknown-case.fun

Details and Notes

One interesting aspect of KnownCase, is that it often has the effect of unrolling list traversals by one iteration,
moving the nil/: : check to the end of the loop, rather than the beginning.

Last edited on 2006-11-02 17:54:28 by MatthewFluet.

227


http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/known-case.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/known-case.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/known-case.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/known-case.fun?view=markup

MLton Guide (20070826) LLVM

LLVM

BILLVM (Low Level Virtual Machine) is an abstract machine, optimizer, and code generator. It might make a
nice backend for MLton, and there has been some discussion about this on the MLton list.

[Bthttp://mlton.org/pipermail/mlton/2005-November/028263 .html

The latest is that LLVM's gcc variant has been used in place of gcc, and so there has been no work toward
changing MLton to target LLVM's IL directly.

[Bthttp://mlton.org/pipermail/mlton/2006-August/029021.html

Also see

e CMinusMinus

Last edited on 2006-09-04 20:25:17 by StephenWeeks.

228


http://www.llvm.org/
http://www.llvm.org/
http://mlton.org/pipermail/mlton/2005-November/028263.html
http://mlton.org/pipermail/mlton/2005-November/028263.html
http://mlton.org/pipermail/mlton/2006-August/029021.html
http://mlton.org/pipermail/mlton/2006-August/029021.html

MLton Guide (20070826) LambdaCalculus

LambdaCalculus

The @ilambda calculus is the formal system underlying Standard ML.

Last edited on 2006-03-28 00:58:46 by StephenWeeks.

229


http://en.wikipedia.org/wiki/Lambda_calculus
http://en.wikipedia.org/wiki/Lambda_calculus

MLton Guide (20070826) LambdaFree

LambdaFree

LambdaFree is an analysis pass for the SXML Intermediatel anguage, invoked from ClosureConvert.

Description

This pass descends the entire SXML program and attaches a property to each Lambda PrimExp.t in the
program. Then, you can use lambdaFree and lambdaRec to get free variables of that Lambda.

Implementation

@lambda—free.sig [Bllambda-free.fun

Details and Notes

For Lambdas bound in a Fun dec, lambdaF ree gives the union of the frees of the entire group of mutually
recursive functions. Hence, lambdaFree for every Lambda in a single Fun dec is the same. Furthermore,
for a Lambda bound in a Fun dec, lambdaRec gives the list of other functions bound in the same dec
defining that Lambda. For example:

val rec f = fnx=> ...y ... g ... f ...
and g = fn z => ... £ ... w ...

* lambdaFree (fn x =>) = [y, w]

* lambdaFree (fn z =>) = [y, w]

* lambdaRec (fn x =>) = [g, f]

* lambdaRec (fn z =>) = [f]

Last edited on 2006-11-02 17:37:38 by MatthewFluet.

230


http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/closure-convert/lambda-free.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/closure-convert/lambda-free.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/closure-convert/lambda-free.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/closure-convert/lambda-free.fun?view=markup

MLton Guide (20070826) LanguageChanges

LanguageChanges

We are sometimes asked to modify MLton to change the language it compiles. In short, we are very
conservative about making such changes. There are a number of reasons for this.

e The Definition of Standard ML is an extremely high standard of specification. The value of the
Definition would be significantly diluted by changes that are not specified at an equally high level,
and the dilution increases with the complexity of the language change and its interaction with other
language features.

® The SML community is small and there are a number of SML implementations. Without an
agreed-upon standard, it becomes very difficult to port programs between compilers, and the
community would be balkanized.

¢ Our main goal is to enable programmers to be as effective as possible with MLton/SML. There are a
number of improvements other than language changes that we could spend our time on that would
provide more benefit to programmers.

® The more the language that MLton compiles changes over time, the more difficult it is to use MLton
as a stable platform for serious program development.

Despite these drawbacks, we have extended SML in a couple of cases.

e Foreign function interface
e ML Basis system

We allow these language extensions because they provide functionality that is impossible to achieve without
them. The Definition does not define a foreign function interface. So, we must either extend the language or
greatly restrict the class of programs that can be written. Similarly, the Definition does not provide a
mechanism for namespace control at the module level, making it impossible to deliver packaged libraries and
have a hope of users using them without name clashes. The ML Basis system addresses this problem. We
have also provided a formal specification of the ML Basis system at the level of the Definition.

Also see

o Bihttp://mlton.org/pipermail/mlton/2004-August/016165.html
° @http://mlton.org/pipermail/mlton—user/2004—December/000320.html

Last edited on 2007-08-15 22:06:40 by MatthewFluet.

231


http://mlton.org/pipermail/mlton/2004-August/016165.html
http://mlton.org/pipermail/mlton/2004-August/016165.html
http://mlton.org/pipermail/mlton-user/2004-December/000320.html
http://mlton.org/pipermail/mlton-user/2004-December/000320.html

MLton Guide (20070826) Lazy

Lazy

In a lazy (or non-strict) language, the arguments to a function are not evaluated before calling the function.
Instead, the arguments are suspended and only evaluated by the function if needed.

Standard ML is an eager (or strict) language, not a lazy language. However, it is easy to delay evaluation of an
expression in SML by creating a thunk, which is a nullary function. In SML, a thunk is written

fn () => e. Another essential feature of laziness is memoization, meaning that once a suspended argument
is evaluated, subsequent references look up the value. We can express this in SML with a function that maps a
thunk to a memoized thunk.

signature LAZY =
sig
val lazy: (unit -> 'a) -> unit -> 'a
end

This is easy to implement in SML.

structure Lazy: LAZY =

struct
fun lazy (th: unit -> 'a): unit -> 'a =
let
val r: 'a option ref = ref NONE
in
fn () =>
case !r of
NONE =>
let
val a = th ()
val () = r := SOME a
in
a
end
| SOME a => a
end
end

Last edited on 2005-01-26 20:33:55 by MatthewFluet.

232



MLton Guide (20070826) Libraries

Libraries

In theory every strictly conforming Standard ML program should run on MLton. However, often large SML
projects use implementation specific features so some "porting" is required. Here is a partial list of software
that is known to run on MLton.

¢ Concurrency: ConcurrentML - distributed with MLton
e Graphics
¢ GTK: mGTK.
¢ OpenGL
o ex-like lexer generator: MLLex - distributed with MLton.
® Regular expressions
¢ The SMLNJL ibrary has a regexp module.
¢ The internal MLton library has a regexp module which we hope to cleanup and make more
accessible someday. See Bregexp.sig Blregexp.sml
e SMINJLibrary - distributed with MLton
¢ CKitLibrary - distributed with MLton
e MI -NILFFI - distributed with MLton
e MIRISCLibrary - distributed with MLton
o [Bisml-lib, a grab bag of libraries for MLton and other SML implementations.
e Swerve, an HTTP server.
o [BiTwelf. The version in CVS should compile out of the box.
e XML: fxp
® Yacc-like parser generator: ML Yacc - distributed with MLton.

Ports in progress

Contact us for details on any of these.

e MI.Doc @http://people.cs.uchicago.edu/~jhr/tools/ml—doc.html
e Unicode

More

More projects using MLton can be seen on the Users page.

Software for SML implementations other than MLton

® PostgreSQL
¢ Moscow ML: @http://www.dina.kvl.dk/~sestoft/mosmllibfPostgres.html
¢ SML/NJ NLFFT: @httg://smlweb.sourceforge.net/smlsgl/

® Web:
¢ ML Kit: BISMLserver (a plugin for AOLserver)
¢ Moscow ML: ML Server Pages (support for PHP-style CGI scripting)
¢ SML/NJ: Elsmiweb

Last edited on 2006-12-01 06:12:50 by JeremyFincher.

233


http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/lib/mlton/basic/regexp.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/lib/mlton/basic/regexp.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/lib/mlton/basic/regexp.sml?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/lib/mlton/basic/regexp.sml?view=markup
http://tom7misc.cvs.sourceforge.net/viewcvs.py/tom7misc/sml-lib/
http://tom7misc.cvs.sourceforge.net/viewcvs.py/tom7misc/sml-lib/
http://www.twelf.org/
http://www.twelf.org/
http://people.cs.uchicago.edu/~jhr/tools/ml-doc.html
http://people.cs.uchicago.edu/~jhr/tools/ml-doc.html
http://www.dina.kvl.dk/~sestoft/mosmllib/Postgres.html
http://www.dina.kvl.dk/~sestoft/mosmllib/Postgres.html
http://smlweb.sourceforge.net/smlsql/
http://smlweb.sourceforge.net/smlsql/
http://www.smlserver.org
http://www.smlserver.org
http://ellemose.dina.kvl.dk/~sestoft/msp/index.msp
http://ellemose.dina.kvl.dk/~sestoft/msp/index.msp
http://smlweb.sourceforge.net/
http://smlweb.sourceforge.net/

MLton Guide (20070826) License

License
Web Site

In order to allow the maximum freedom for the future use of the content in this web site, we require that
contributions to the web site be dedicated to the public domain. That means that you can only add works that
are already in the public domain, or that you must hold the copyright on the work that you agree to dedicate
the work to the public domain.

By contributing to this web site, you agree to dedicate your contribution to the public domain.

Software

As of 20050812, MLton software is licensed under the BSD-style license below. By contributing code to the
project, you agree to release the code under this license. Contributors can retain copyright to their
contributions by asserting copyright in their code. Contributors may also add to the list of copyright holders in
doc/license/MLton-LICENSE, which appears below.

This is the license for MLton, a whole-program optimizing compiler for
the Standard ML programming language. Send comments and questions to
MLton@mlton.org.

MLton COPYRIGHT NOTICE, LICENSE AND DISCLAIMER.

Copyright (C) 1999-2007 Henry Cejtin, Matthew Fluet, Suresh
Jagannathan, and Stephen Weeks.
Copyright (C) 1997-2000 by the NEC Research Institute

Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that
both the copyright notice and this permission notice and warranty
disclaimer appear in supporting documentation, and that the name of
the above copyright holders, or their entities, not be used in
advertising or publicity pertaining to distribution of the software
without specific, written prior permission.

The above copyright holders disclaim all warranties with regard to
this software, including all implied warranties of merchantability and
fitness. In no event shall the above copyright holders be liable for
any special, indirect or consequential damages or any damages
whatsoever resulting from loss of use, data or profits, whether in an
action of contract, negligence or other tortious action, arising out
of or in connection with the use or performance of this software.

Last edited on 2006-11-02 17:39:56 by MatthewFluet.

234



MLton Guide (20070826) LineDirective

LineDirective

To aid in the debugging of code produced by program generators such as [BNoweb, MLton supports
comments with line directives of the form (*#1ine line.col "file"*) . Here, line and col are sequences
of decimal digits and file is the source file. A line directive causes the front end to believe that the character
following the right parenthesis is at the line and column of the specified file. A line directive only affects the
reporting of error messages and does not affect program semantics (except for functions like
MLton.Exn.history that report source file positions). Syntactically invalid line directives are ignored. To
prevent incompatibilities with SML, the file name may not contain the character sequence *) .

Last edited on 2005-12-02 04:21:37 by StephenWeeks.

235


http://www.eecs.harvard.edu/~nr/noweb/
http://www.eecs.harvard.edu/~nr/noweb/

MLton Guide (20070826) LocalFlatten

LocalFlatten

LocalFlatten is an optimization pass for the SSA Intermediatel .anguage, invoked from SSASimplify.

Description

This pass flattens arguments to SSA blocks.

A block argument is flattened as long as it only flows to selects and there is some tuple constructed in this
function that flows to it.

Implementation

@local—ﬂatten.sig [Bllocal-flatten.fun

Details and Notes

Last edited on 2006-11-02 17:52:44 by MatthewFluet.

236


http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/local-flatten.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/local-flatten.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/local-flatten.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/local-flatten.fun?view=markup

MLton Guide (20070826) LocalRef

LocalRef

LocalRef is an optimization pass for the SSA Intermediatel anguage, invoked from SSASimplify.

Description

This pas optimizes ref cells local to a SSA function:
e global refs only used in one function are moved to the function
e refs only created, read from, and written to (i.e., don't escape) are converted into function local

variables

Uses Multi and Restore.

Implementation

@local—ref.sig [Bllocal-ref.fun

Details and Notes

Moving a global ref requires the Multi analysis, because a global re f can only be moved into a function
that is executed at most once.

Conversion of non-escaping refs is structured in three phases:

¢ analysis -- a variable r = Ref_ref x escapes if
¢ ris used in any context besides Ref_assign (r, _) orRef_deref r
¢ all uses r reachable from a (direct or indirect) call to Thread_copyCurrent are of the
same flavor (either Ref_assign or Ref_deref); this also requires the Multi analysis.
¢ transformation
¢ rewritesr = Ref_ref xtor = x
¢ rewrites _ = Ref_assign (r, y)tor =y
¢ rewrites z Ref_deref rtoz = r Note thatthe resulting program violates the SSA
condition.
e Restore -- restore the SSA condition.

Last edited on 2006-11-02 17:46:41 by MatthewFluet.

237


http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/local-ref.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/local-ref.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/local-ref.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/local-ref.fun?view=markup

MLton Guide (20070826)

Looplnvariant

LooplInvariant is an optimization pass for the SSA Intermediatel.anguage, invoked from SSASimplify.

Description

This pass removes loop invariant arguments to local loops.

loop (%, vy)
loop (x, z)

becomes

loop' (%, )
loop (vy)
loop (vy)

loop (z)

Implementation
@loop—invariant.sig @loop—invariant.fun

Details and Notes

Looplnvariant

Last edited on 2006-11-02 17:57:42 by MatthewFluet.

238


http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/loop-invariant.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/loop-invariant.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/loop-invariant.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/loop-invariant.fun?view=markup

MLton Guide (20070826) ML

ML

ML stands for meta language. ML was originally designed in the 1970s as a programming language to assist
theorem proving in the logic LCF. In the 1980s, ML split into two variants, Standard ML, and OCaml, both of

which are still used today.

Last edited on 2004-12-06 06:00:35 by StephenWeeks.

239



MLton Guide (20070826) MLBasis

MLBasis

The ML Basis system extends Standard ML to support programming-in-the-very-large, namespace
management at the module level, separate delivery of library sources, and more. While Standard ML modules
are a sophisticated language for programming-in-the-large, it is difficult, if not impossible, to accomplish a
number of routine namespace management operations when a program draws upon multiple libraries provided
by different vendors.

The ML Basis system is a simple, yet powerful, approach that builds upon the programmer's intuitive notion
(and _The Definition of Standard ML's formal notion) of the top-level environment (a basis). The system is
designed as a natural extension of Standard ML; the formal specification of the ML Basis system (Epdf) is
given in the style of the Definition.

Here are some of the key features of the ML Basis system:

1. Explicit file order: The order of files (and, hence, the order of evaluation) in the program is explicit.
The ML Basis system's semantics are structured in such a way that for any well-formed project, there
will be exactly one possible interpretation of the project's syntax, static semantics, and dynamic
semantics.

2. Implicit dependencies: A source file (corresponding to an SML top-level declaration) is elaborated in
the environment described by preceding declarations. It is not necessary to explicitly list the
dependencies of a file.

3. Scoping and renaming: The ML Basis system provides mechanisms for limiting the scope of (i.e,
hiding) and renaming identifiers.

4. No naming convention for finding the file that defines a module. To import a module, its defining file
must appear in some ML Basis file.

Next steps

e MI BasisSyntaxAndSemantics
e MI BasisExamples

e MI BasisPathMa

e MI BasisAnnotations

e MI BasisAvailablel ibraries

Last edited on 2007-08-23 04:24:53 by MatthewFluet.

240


http://mlton.org/pages/MLBasis/attachments/mlb-formal.pdf
http://mlton.org/pages/MLBasis/attachments/mlb-formal.pdf

MLton Guide (20070826) MLBasisAnnotationExamples

MLBasisAnnotationExamples

Here are some example uses of ML.BasisAnnotations.

Eliminate spurious warnings in automatically generated code

Programs that automatically generate source code can often produce nonexhaustive matches, relying on
invariants of the generated code to ensure that the matches never fail. A programmer may wish to elide the
nonexhaustive match warnings from this code, in order that legitimate warnings are not missed in a flurry of
false positives. To do so, the programmer simply annotates the generated code with the
nonexhaustiveMatch ignore annotation:

local
$ (GEN_ROOT) /gen-1lib.mlb

ann "nonexhaustiveMatch ignore" in
foo.gen.sml
end
in
signature FOO
structure Foo
end

Deliver a library

Standard ML libraries can be delivered via .m1b files. Authors of such libraries should strive to be mindful of
the ways in which programmers may choose to compile their programs. For example, although the defaults for
sequenceNonUnit and warnUnused are ignore and false, periodically compiling with these
annotations defaulted to warn and t rue can help uncover likely bugs. However, a programmer is unlikely to
be interested in unused modules from an imported library, and the behavior of sequenceNonUnit error
may be incompatible with some libraries. Hence, a library author may choose to deliver a library as follows:

ann
"nonexhaustiveMatch warn" "redundantMatch warn"
"sequenceNonUnit warn"
"warnUnused true" "forceUsed"
in
local
filel.sml

filen.sml

in
functor F1
signature S1

structure SN

end
end

The annotations nonexhaustiveMatch warn, redundantMatch warn, and
sequenceNonUnit warn have the obvious effect on elaboration. The annotations warnUnused true
and forceUsed work in conjunction --- warning on any identifiers that do not contribute to the exported

241



MLton Guide (20070826) MLBasisAnnotationExamples

modules, and preventing warnings on exported modules that are not used in the remainder of the program.
Many of the available libraries are delivered with these annotations.

Last edited on 2005-12-01 19:45:40 by StephenWeeks.

242



MLton Guide (20070826) MLBasisAnnotations

MLBasisAnnotations

ML Basis annotations control options that affect the elaboration of SML source files. Conceptually, a basis
file is elaborated in a default annotation environment (just as it is elaborated in an empty basis). The
declaration ann "ann" in basdec end merges the annotation ann with the "current" annotation
environment for the elaboration of basdec. To allow for future expansion, "ann" is lexed as a single SML
string constant. To conveniently specify multiple annotations, the following derived form is provided:

ann "ann" ("ann")+ in basdec end ==>

ann "ann" in ann ("ann")+ in basdec end end

Here are the available annotations. In the explanation below, for annotations that take an argument, the first
value listed is the default.

¢ allowFFI {false]|true}
If true, allow _address, _export, _import, and _symbol expressions to appear in source
files. See ForeignFunctionlnterface.

® forceUsed
Force all identifiers in the basis denoted by the body of the ann to be considered used; use in
conjunction with warnUnused true.

® nonexhaustiveExnMatch {default|ignore}
If ignore, suppress errors and warnings about nonexhaustive matches that arise solely from
unmatched exceptions. If default, follow the behavior of nonexhaustiveMatch.

® nonexhaustiveMatch {warn|error|ignore}
If error or warn, report nonexhaustive matches. An error will abort a compile, while a warning
will not.

® redundantMatch {warn|error|ignore}
If error or warn, report redundant matches. An error will abort a compile, while a warning will
not.

® sequenceNonUnit {ignore|error|warn}
If error or warn, report when el is not of type unit in the sequence expression (el; e2). This
can be helpful in detecting curried applications that are mistakenly not hully applied. To silence
spurious messages, you can use ignore el.

® yarnUnused {false]|true}
Report unused identifiers.

Next Steps

e ML BasisAnnotationExamples

Last edited on 2007-08-23 17:10:20 by MatthewFluet.

243



MLton Guide (20070826) MLBasisAvailableLibraries

MLBasisAvailableLibraries

MLton comes with the following ML Basis files available.

® S (SML_LIB) /basis/basis.mlb
The Basis Library.
® S (SML_LIB) /basis/basis-1997.mlb
The (deprecated) 1997 version of the Basis Library.
® S (SML_LIB) /basis/mlton.mlb
The MLton structure and signatures.
® 5 (SML_LIB) /basis/sml-nj.mlb
The SMLofNJ structure and signature.
® S (SML_LIB) /basis/unsafe.mlb
The Unsafe structure and signature.
® 5 (SML_LIB) /mlyacc-lib/mlyacc-1lib.mlb
Modules used by parsers built with ML Yacc.
® S (SML_LIB)/cml/cml.mlb
ConcurrentML, a library for message-passing concurrency.
® S (SML_LIB)/mlnlffi-lib/mlnlffi-1ib.mlb
ML -NLFFI, a library for foreign function interfaces.
® S (SML_LIB) /mlrisc-1ib/...
MLRISCLibrary, a library for retargetable and optimizing compiler back ends.
® S5 (SML_LIB)/smlnj-1ib/...
SMINJLibrary, a collection of libraries distributed with SML/NJ.
® S (SML_LIB) /ckit-1ib/ckit-1ib.mlb
CKitlLibrary, a library for C source code.

Basis fragments

There are a number of specialized ML Basis files for importing fragments of the Basis Library that can not be
expressed within SML.

® S (SML_LIB) /basis/pervasive-types.mlb
The top-level types and constructors of the Basis Library.
® $(SML_LIB) /basis/pervasive—exns.mlb
The top-level exception constructors of the Basis Library.
® $(SML_LIB) /basis/pervasive-vals.mlb
The top-level values of the Basis Library, without infix status.
® S (SML_LIB) /basis/overloads.mlb
The top-level overloaded values of the Basis Library, without infix status.
® $(SML_LIB) /basis/equal.mlb
The polymorphic equality = and inequality <> values, without infix status.
® S (SML_LIB) /basis/infixes.mlb
The infix declarations of the Basis Library.
® S (SML_LIB) /basis/pervasive.mlb
The entire top-level value and type environment of the Basis Library, with infix status. This is the
same as importing the above six MLB files.

Last edited on 2007-08-23 17:13:23 by MatthewFluet.

244



MLton Guide (20070826) MLBasisExamples

MLBasisExamples

Here are some example uses of ML Basis files.

Complete program

Suppose your complete program consists of the files filel.sml, ..., filen.sml, which depend upon
libraries 1ib1 .mlb, ..., libm.mlb.

(* import libraries *)
1libl.mlb

libm.mlb

(* program files *)
filel.sml

filen.sml

The bases denoted by 1ib1.mlb, ..., Libm.mlb are merged (bindings of names in later bases take
precedence over bindings of the same name in earlier bases), producing a basis in which filel.sml, ...,
filen.sml are elaborated, adding additional bindings to the basis.

Export filter

Suppose you only want to export certain structures, signatures, and functors from a collection of files.

local
filel.sml

filen.sml
in
(* export filter here ¥*)
functor F
structure S
end

While filel.sml, .., filen.sml may declare top-level identifiers in addition to F and S, such names are
not accessible to programs and libraries that import this . m1b.

Export filter with renaming

Suppose you want an export filter, but want to rename one of the modules.

local
filel.sml

filen.sml
in
(* export filter, with renaming, here ¥*)
functor F
structure S' = S
end

245



MLton Guide (20070826) MLBasisExamples

Note that functor F is an abbreviation for functor F = F, which simply exports an identifier under
the same name.

Import filter

Suppose you only want to import a functor F from one library and a structure S from another library.

local
libl.mlb

in
(* import filter here ¥*)
functor F

end

local
1ib2.mlb

in
(* import filter here ¥*)
structure S

end

filel.sml

%iien.sml
Import filter with renaming

Suppose you want to import a structure S from one library and another structure S from another library.

local
libl.mlb

in
(* import filter, with renaming, here *)
structure S1 = S

end

local
1lib2.mlb

in
(* import filter, with renaming, here ¥*)
structure S2 = S

end

filel.sml

%iien.sml
Full Basis

Since the Modules level of SML is the natural means for organizing program and library components, MLB
files provide convenient syntax for renaming Modules level identifiers (in fact, renaming of functor identifiers
provides a mechanism that is not available in SML). However, please note that . m1b files elaborate to full
bases including top-level types and values (including infix status), in addition to structures, signatures, and
functors. For example, suppose you wished to extend the Basis Library withan ('a, 'b) either
datatype corresponding to a disjoint sum; the type and some operations should be available at the top-level;
additionally, a signature and structure provide the complete interface.

We could use the following files.

246



MLton Guide (20070826) MLBasisExamples

either-sigs.sml

signature EITHER GLOBAL =

sig

datatype ('a, 'b) either = Left of 'a | Right of 'b

val & : ('a —> 'c) * ('"b —> 'c) —> ('a, 'b) either -> 'c

val &¢& : ('a —> 'c) * ('b -> 'd) -> ('a, 'b) either -> ('c, 'd) either
end

signature EITHER =

sig
include EITHER_GLOBAL
val isLeft : ('a, 'b) either -> bool
val isRight : ('a, 'b) either -> bool
end

either—-strs.sml

structure Either : EITHER =
struct
datatype ('a, 'b) either = Left of 'a | Right of 'b
fun £ ¢ g = fn x =>
case x of Left z => f z | Right z => g z

fun £ && g = (Left o f) & (Right o g)
fun isleft x = ((fn _ => true) & (fn _ => false)) x
fun isRight x = (not o isleft) x

end

structure EitherGlobal : EITHER_GLOBAL = Either
either-infixes.sml

infixr 3 & &&
either-open.sml

open EitherGlobal
either.mlb

either-infixes.sml

local
(* import Basis Library ¥*)
$(SML_LIB) /basis/basis.mlb
either-sigs.sml
either-strs.sml

in
signature EITHER
structure Either
either-open.sml

end

A client that imports either .mlb will have access to neither EITHER_GLOBAL nor EitherGlobal, but
will have access to the type either and the values & and && (with infix status) in the top-level environment.
Note that either—-infixes.sml is outside the scope of the local, because we want the infixes available in
the implementation of the library and to clients of the library.

247



MLton Guide (20070826) MLBasisExamples

Last edited on 2005-12-02 04:21:48 by StephenWeeks.

248



MLton Guide (20070826) MLBasisPathMap

MLBasisPathMap

An ML Basis path map describes a map from ML Basis path variables (of the form $ (VAR) ) to file system
paths. ML Basis path variables provide a flexible way to refer to libraries while allowing them to be moved
without changing their clients.

The format of an m1b-path-map file is a sequence of lines; each line consists of two, white-space delimited
tokens. The first token is a path variable VAR and the second token is the path to which the variable is
mapped. The path may include path variables, which are recursively expanded.

The mapping from path variables to paths is initialized by reading a system-wide configuration file:
/usr/lib/mlton/mlb-path-map. Additional path maps can be specified with -m1b-path-map (see
CompileTimeOptions). Configuration files are processed from first to last and from top to bottom, later
mappings take precedence over earlier mappings.

The compiler and system-wide configuration file makes the following path variables available.

MLB path variable Description

SML_LIB path to system-wide libaries, usually /usr/1lib/mlton/sml
TARGET_ARCH string representation of target architecture

TARGET_OS string representation of target operating system

Last edited on 2006-04-23 21:06:47 by MatthewFluet.

249



MLton Guide (20070826) MLBasisSyntaxAndSemantics

MLBasisSyntaxAndSemantics

An ML Basis (MLB) file should have the .m1b suffix and should contain a basis declaration.

Syntax
A basis declaration (basdec) must be one of the following forms.

®basis basid = basexp (and basid = basexp)*

® open basid, ... basid,

® local basdec in basdec end

® basdec [; ]| basdec

e structure strid [= strid] (and strid[= strid])*
® signature sigid [= sigid] (and sigid [= sigid])*
e functor funid[= funid] (and funid [= funid])*
® path.sml, path.sig, or path. fun

® path.mlb

e ann "ann" in basdec end

A basis expression (basexp) must be of one the following forms.

® bas basdec end
® basid
® let basdec in basexp end

Nested SML-style comments (enclosed with (* and *) ) are ignored (but LineDirectives are recognized).

Paths can be relative or absolute. Relative paths are relative to the directory containing the MLB file. Paths
may include path variables and are expanded according to a path map. Unquoted paths may include
alpha-numeric characters and the symbols "-" and "_", along with the arc separator "/" and extension
separator " .". More complicated paths, including paths with spaces, may be included by quoting the path with

". A quoted path is lexed as an SML string constant.

Annotations allow a library author to control options that affect the elaboration of SML source files.

Semantics

There is a [@formal semantics for ML Basis files in the style of the Definition. Here, we give an informal
explanation.

An SML structure is a collection of types, values, and other structures. Similarly, a basis is a collection, but of
more kinds of objects: types, values, structures, fixities, signatures, functors, and other bases.

A basis declaration denotes a basis. A structure, signature, or functor declaration denotes a basis containing
the corresponding module. Sequencing of basis declarations merges bases, with later definitions taking
precedence over earlier ones, just like sequencing of SML declarations. Local declarations provide name
hiding, just like SML local declarations. A reference to an SML source file causes the file to be elaborated in
the basis extant at the point of reference. A reference to an MLB file causes the basis denoted by that MLB
file to be imported -- the basis at the point of reference does not affect the imported basis.

250


http://mlton.org/pages/MLBasis/attachments/mlb-formal.pdf
http://mlton.org/pages/MLBasis/attachments/mlb-formal.pdf

MLton Guide (20070826) MLBasisSyntaxAndSemantics

Basis expressions and basis identifiers allow binding a basis to a name.

An MLB file is elaborated starting in an empty basis. Each MLB file is elaborated and evaluated only once,
with the result being cached. Subsequent references use the cached value. Thus, any observable effects due to
evaluation are not duplicated if the MLB file is referred to multiple times.

Last edited on 2007-08-23 04:22:13 by MatthewFluet.

251



MLton Guide (20070826) MLKit

MLKit

The BIML Kit is a Standard ML, Compiler.

Some Properties of the MLKit

e SML'97
¢ including most of the latest Standard ML Basis Library
¢ Supports ML Basis Files
¢ and separate compilation
¢ Region-Based Memory Management
¢ and garbage collection
¢ Two Backends
¢ native x86 and bytecode

At the time of writing, MLKit does not support:

® concurrent programming / threads,
e calling from C to SML.

Last edited on 2006-02-04 11:17:46 by VesaKarvonen.

252


http://www.it-c.dk/research/mlkit/
http://www.it-c.dk/research/mlkit/

MLton Guide (20070826) MLNLFFI

MLNLFFI

MIL.-NLFFI is the no-longer-foreign-function interface library for SML.

As of 20050212, MLton has an initial port of ML-NLFFI from SML/NJ to MLton. All of the ML-NLFFI
functionality is present.

Additionally, MLton has an initial port of the m1n1ffigen tool from SML/NJ to MLton. Due to low-level
details, the code generated by SML/NJ's m1-n1ffigen is not compatible with MLton, and vice-versa.
However, the generated code has the same interface, so portable client code can be written. MLton's
mlnlffigen does not currently support C functions with st ruct or union arguments.

Usage

® You can import the ML-NLFFI Library into an MLB file with
MLB file Description

$(SML_LIB) /mlnlffi-1ib/mlnlffi-1ib.mlb

e If you are porting a project from SML/NJ's CompilationManager to MLton's ML Basis system using
cm2mlb, note that the following maps are included by default:

$c/c.mlb $(SML_LIB)/mlnlffi-lib/mlnlffi-lib.mlb

This will automatically convert a $/c . cm import in an input . cm file into a
$(SML_LIB) /mlnlffi-1lib/mlnlffi-1ib.mlb importin the output .mlb file.

Also see

e Blume01
e MILNLFFIImplementation

Last edited on 2007-08-23 17:24:47 by MatthewFluet.

253



MLton Guide (20070826) MLNLFFlImplementation
MLNLFFlImplementation

MLton's implementation(s) of the MLNLFFI library differs from the SML/NJ implementation in two
important ways:

e MLton cannot utilize the Unsafe.cast "cheat" described in Section 3.7 of BlumeO1l. (MLton's
representation of closures and aggressive representation optimizations make an Unsafe.cast even
more "unsafe" than in other implementations.) We have considered two solutions:

¢ One solution is to utilize an additional type parameter (as described in Section 3.7 of
BlumeO1):

signature C = sig
type ('t, '£, 'c) obj
eqtype ('t, 'f, 'c) obj'

type ('o, 'f) ptr
eqtype ('o, 'f) ptr’'

type 'f fptr
type 'f ptr'

structure T : sig
type ('t, 'f) typ

end
end

The rulefor ('t, 'f, 'c) obj ('t, 'f, 'c) ptr, andalso

('t, 'f) T.typisthat whenever F fptr occurs within the instantiation of 't,
then ' f must be instantiated to F. In all other cases, ' £ will be instantiated to unit.
(In the actual MLton implementation, an abstract type naf (not-a-function) is used
instead of unit.)

While this means that type-annotated programs may not type-check under both the SML/NJ
implementation and the MLton implementation, this should not be a problem in practice.
Tools, like m1-n1f figen, which are necessarily implementation dependent (in order to
make calls through a C function pointer), may be easily extended to emit the additional type
parameter. Client code which uses such generated glue-code (e.g., Section 1 of Blume(1)
need rarely write type-annotations, thanks to the magic of type inference.

¢ The above implementation suffers from two disadvantages. First, it changes the MLNLFFI
Library interface, meaning that the same program may not type-check under both the SML/NJ
implementation and the MLton implementation (though, in light of type inference and the
richer MLRep structure provided by MLton, this point is mostly moot).

Second, it appears to unnecessarily duplicate type information. For example, an external C
variable of type int (* £[3]) (int) (thatis, an array of three function pointers), would
be represented by the SML type

(((sint —-> sint) fptr, dec dg3) arr, sint —-> sint, rw) obj.One
might well ask why the ' f instantiation (sint -> sint in this case) cannot be extracted
from the 't instantiation (( (sint —-> sint) fptr, dec dg3) arr inthis case),
obviating the need for a separate function-type type argument. There are a number of
components to an complete answer to this question. Foremost is the fact that _Standard ML,
supports neither (general) type-level functions nor intensional polymorphism.

254



MLton Guide (20070826) MLNLFFlImplementation

A more direct answer for MLNLFFI is that in the SML/NJ implemention, the definition of the
types ('t, 'c) objand ('t, 'c) ptr are made in such a way that the type variables
't and ' c are phantom (not contributing to the run-time representation of an

('"t, 'c) objor ('t, 'c) ptr value), despite the fact that the types

((sint -> sint) fptr, rw) ptrand

((double -> double) fptr, rw) ptr necessarily carry distinct (and type
incompatible) run-time (C-)type information (RTTI), corresponding to the different calling
conventions of the two C functions. The Unsafe.cast "cheat" overcomes the type
incompatibility without introducing a new type variable (as in the first solution above).

Hence, the reason that function-type type cannot be extracted from the 't type variable
instantiation is that the type of the representation of RTTI doesn't even see the (phantom) 't
type variable. The solution which presents itself is to give up on the phantomness of the 't
type variable, making it available to the representation of RTTI.

This is not without some small drawbacks. Because many of the types used to instantiate 't
carry more structure than is strictly necessary for 't's RTTI, it is sometimes necessary to
wrap and unwrap RTTI to accommodate the additional structure. (In the other
implementations, the corresponding operations can pass along the RTTI unchanged.)
However, these coercions contribute minuscule overhead; in fact, in a majority of cases,
MLton's optimizations will completely eliminate the RTTI from the final program.

The implementation distributed with MLton uses the second solution.

Bonus question: Why can't one use a _universal type to eliminate the use of Unsafe.cast?

¢ Answer: 77?
® MLton (in both of the above implementations) provides a richer MLRep structure, utilizing Int <N>
and Word<N> structures.

structure MLRep = struct
structure Char =
struct
structure Signed = Int8
structure Unsigned = Word8
(* word-style bit-operations on integers... *)
structure SignedBitops = IntBitOps (structure I = Signed
structure W = Unsigned)
end
structure Short =
struct
structure Signed = Intlé6
structure Unsigned = Wordl6

(* word-style bit-operations on integers... *)
structure SignedBitops = IntBitOps (structure I = Signed
structure W = Unsigned)
end
structure Int =
struct

structure Signed = Int32
structure Unsigned = Word32
(* word-style bit-operations on integers... *)
structure SignedBitops = IntBitOps (structure I = Signed
structure W = Unsigned)
end
structure Long =

255



MLton Guide (20070826) MLNLFFlImplementation

struct
structure Signed = Int32
structure Unsigned = Word32
(* word-style bit-operations on integers... *)
structure SignedBitops = IntBitOps (structure I = Signed
structure W = Unsigned)
end
structure LongLong =
struct
structure Signed = Inté64
structure Unsigned = Wordé64
(* word-style bit-operations on integers... *)
structure SignedBitops = IntBitOps (structure I = Signed
structure W = Unsigned)
end
structure Float = Real32
structure Double = Real64
end

This would appear to be a better interface, even when an implementation must choose Int 32 and
Word32 as the representation for smaller C-types.

Last edited on 2007-08-15 22:06:50 by MatthewFluet.

256



MLton Guide (20070826) MLRISCLibrary

MLRISCLibrary

The BIMLRISC Library is a framework for retargetable and optimizing compiler back ends. The MLRISC
Library is distributed with SML/NJ. Due to differences between SML/NJ and MLton, this library will not
work out-of-the box with MLton.

As of 20070812, MLton includes a port of the MLRISC Library synchronized with SML/NJ version 110.65.

Usage
® You can import a sub-library of the MLRISC Library into an MLB file with:
MLB file Description
SML_LIB) /mlrisc-1lib/mlb/ALPHA.mlb The ALPHA backend
SML_LIB) /mlrisc-1ib/mlb/AMD64.mlb The AMD64 backend
SML_LIB) /mlrisc-1lib/mlb/AMD64-Peephole.mlb The AMDG64 peephole optimizer
SML_LIB) /mlrisc—-1ib/mlb/Control.mlb
SML_LIB) /mlrisc-1ib/mlb/Graphs.mlb
SML_LIB)/mlrisc-1lib/mlb/HPPA.mlb The HPPA backend
SML_LIB) /mlrisc-1ib/mlb/IA32.mlb The TA32 backend

( )

( )

( )

( )

( )

( )

( )

(SML_LIB) /mlrisc-1lib/mlb/IA32-Peephole.mlb The IA32 peephole optimizer
(SML_LIB) /mlrisc-lib/mlb/Lib.mlb

(SML_LIB) /mlrisc—1lib/mlb/MLRISC.mlb

(SML_LIB) /mlrisc-1lib/mlb/MLTREE.mlb

(SML_LIB) /mlrisc-1lib/mlb/PPC.mlb The PPC backend
(SML_LIB) /mlrisc-lib/mlb/RA.mlb

(SML_LIB) /mlrisc—1lib/mlb/SA.mlb

( ) /mlrisc-1ib/mlb/SPARC.mlb The Sparc backend
( ) /mlrisc-1ib/mlb/Visual.mlb

SML_LIB

$
$
$
S
S
$
$
$
$
$
$
$
$
$
$
$(SML_LIB

e If you are porting a project from SML/NJ's CompilationManager to MLton's ML Basis system using
cm2mlb, note that the following map is included by default:

$SMLNJ-MLRISC $(SML_LIB) /mlrisc-1lib/mlb

This will automatically convert a $SMLNJ-MLRISC/MLRISC.cm importin an input . cm file into a
$(SML_LIB) /mlrisc-1ib/mlb/MLRISC.mlb import in the output .m1b file.

Details

The following changes were made to the MLRISC Library, in addition to deriving the .m1b file from the
. cm files:

¢ climinate or-patterns: Duplicate the whole match (p => e) at each of the patterns.

e eliminate vector constants: Change # [ to Vector.fromList [.
e eliminate withtype in signatures.

257


http://www.cs.nyu.edu/leunga/www/MLRISC/Doc/html/index.html
http://www.cs.nyu.edu/leunga/www/MLRISC/Doc/html/index.html

MLton Guide (20070826) MLRISCLibrary

e climinate sequential withtype expansions: Most could be rewritten as a sequence of type
definitions and datatype definitions.

e climinate higher-order functors: Every higher-order functor definition and application could be
uncurried in the obvious way.

¢ climinate where <str> = <str>: Quite painful to expand out all the flexible types in the
respective structures. Furthermore, many of the implied type equalities aren't needed, but it's too hard
to pick out the right ones.

Patch

o BIMLRISC patch

Last edited on 2007-08-23 17:24:50 by MatthewFluet.

258


http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/lib/mlrisc-lib/MLRISC.patch?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/lib/mlrisc-lib/MLRISC.patch?view=markup

MLton Guide (20070826) MLj
MLj

[BIMLj is a Standard ML Compiler that targets Java bytecode. It is no longer maintained. It has morphed into
SML.NET.

BentonEtA198 and BentonKennedy99 describe ML}.

Last edited on 2004-12-30 20:11:59 by StephenWeeks.

259


http://www.dcs.ed.ac.uk/home/mlj/
http://www.dcs.ed.ac.uk/home/mlj/

MLton Guide (20070826) MLmon

MLmon

Anmlmon. out file records dynamic profiling counts.

File format

Anmlmon.out fileis a text file with a sequence of lines.

¢ The string "MLton prof".

® The string "alloc", "count", or "t ime", depending on the kind of profiling information,
corresponding to the command-line argument supplied tomlton -profile.

¢ The string "current" or "stack" depending on whether profiling data was gathered for only the
current function (the top of the stack) or for all functions on the stack. This corresponds to whether
the executable was compiled with —-profile-stack falseor -profile-stack true.

¢ The magic number of the executable.

¢ The number of non-gc ticks, followed by a space, then the number of GC ticks.

e The number of (split) functions for which data is recorded.

e A line for each (split) function with counts. Each line contains an integer count of the number of ticks
while the function was current. In addition, if stack data was gathered (-profile-stack true),
then the line contains two additional tick counts:

¢ the number of ticks while the function was on the stack.
¢ the number of ticks while the function was on the stack and a GC was performed.
¢ The number of (master) functions for which data is recorded.
e A line for each (master) function with counts. The lines have the same format and meaning as with

split-function counts.

Last edited on 2006-10-23 22:02:16 by StephenWeeks.

260



MLton Guide (20070826) MLtonArray

MLtonArray

signature MLTON_ARRAY =
sig
val unfoldi: int * 'b * (int * 'b -> 'a * 'b) -> 'a array * 'b
end

eunfoldi (n, b, f)
constructs an array a of length n, whose elements g, are determined by the equations b, = b and (a,

bl'+1) =f( b,)

Last edited on 2007-08-23 03:43:43 by MatthewFluet.

261



MLton Guide (20070826) MLtonBinIO

MLtonBinlO

signature MLTON_BIN_IO = MLTON_IO

See MLtonlO.

Last edited on 2005-12-01 21:00:20 by StephenWeeks.

262



MLton Guide (20070826) MLtonCont

MLtonCont

signature MLTON_CONT =
sig
type 'a t

val callcc: ('a t -> 'a) —> 'a

val prepend: 'a t * ('b -> 'a) -> 'b t

val throw: 'a t * 'a -> 'b

val throw': 'a t * (unit -> 'a) -> 'b
end

etype 'a t
the type of continuations that expect a value of type 'a.

®callcc £
applies f to the current continuation. This copies the entire stack; hence, callcc takes time
proportional to the current stack size.

e prepend (k, £f)
composes a function £ with a continuation k to create a continuation that first does £ and then does k.
This is a constant time operation.

ethrow (k, V)
throws value v to continuation k. This copies the entire stack of k; hence, t hrow takes time
proportional to the size of this stack.

ethrow' (k, th)
a generalization of throw that evaluates th () in the context of k. Thus, for example, if th ()
raises an exception or grabs another continuation, it will see k, not the current continuation.

Last edited on 2007-08-23 03:43:48 by MatthewFluet.

263



MLton Guide (20070826)

MLtonExn

signature MLTON_EXN =
sig

val addExnMessager: (exn —-> string option) -> unit
val history: exn —-> string list

val defaultTopLevelHandler: exn —-> 'a

val getToplLevelHandler: unit -> (exn —> unit)
val setToplevelHandler: (exn -> unit) -> unit
val toplLevelHandler: exn -> 'a

end

® addExnMessager £
adds f as a pretty-printer to be used by General . exnMessage for converting exceptions to
strings. Messagers are tried in order from most recently added to least recently added.
ehistory e
returns call stack at the point that e was first raised. Each element of the list is a file position. The
elements are in reverse chronological order, i.e. the function called last is at the front of the list.

history e will return [] unless the program is compiled with
—const 'Exn.keepHistory true'.
e defaultTopLevelHandler e
function that behaves as the default top level handler; that is, print out the unhandled exception
message for e and exit.
® getTopLevelHandler ()
get the top level handler.
® setTopLevelHandler f
set the top level handler to the function £. The function £ should not raise an exception or return
normally.
® topLevelHandler e
behaves as if the top level handler received the exception e.

MLtonExn

Last edited on 2007-08-23 03:43:53 by MatthewFluet.

264



MLton Guide (20070826) MLtonFinalizable

MLtonFinalizable

signature MLTON_FINALIZABLE =

sig
type 'a t
val addFinalizer: 'a t * ('a -> unit) -> unit
val finalizeBefore: 'a t * 'b t -> unit
val new: 'a -> 'a t
val touch: 'a t —-> unit
val withvalue: 'a t * ('a —> 'b) —> 'b
end

A finalizable value is a container to which finalizers can be attached. A container holds a value, which is
reachable as long as the container itself is reachable. A finalizer is a function that runs at some point after
garbage collection determines that the container to which it is attached has become unreachable. A finalizer is
treated like a signal handler, in that it runs asynchronously in a separate thread, with signals blocked, and will
not interrupt a critical section (see MLtonThread).

® addFinalizer (v, f)
adds f as a finalizer to v. This means that sometime after the last call to withValue on v completes
and v becomes unreachable, £ will be called with the value of v.

® finalizeBefore (vl, Vv2)
ensures that v1 will be finalized before v2. A cycle of values v =v1, ..., vh = v with
finalizeBefore (vi, vi+1) will result in none of the vi being finalized.

® new X
creates a new finalizable value, v, with value x. The finalizers of v will run sometime after the last
call to withValue on v when the garbage collector determines that v is unreachable.

e touch v
ensures that v's finalizers will not run before the call to touch.

e withvalue (v, f)
returns the result of applying £ to the value of v and ensures that v's finalizers will not run before £
completes. The call to £ is a nontail call.

Example

Suppose that finalizable. sml contains the following.

signature CLIST =
sig
type t

val cons: int * t -> t
val sing: int -> t
val sum: t -> int

end

functor CList (structure F: MLTON_FINALIZARBRLE
structure Prim:
sig
val cons: int * Word32.word -> Word32.word
val free: Word32.word -> unit
val sing: int -> Word32.word
val sum: Word32.word -> int

265



MLton Guide (20070826) MLtonFinalizable

end) : CLIST =
struct
type t = Word32.word F.t

fun cons (n: int, 1: t) =
F.withValue
(1, £fn w' =>

let
val ¢ = F.new (Prim.cons (n, w'))
val _ = F.addFinalizer (c, Prim.free)
val _ = F.finalizeBefore (c, 1)

in
c

end)

fun sing n =

let
val ¢ = F.new (Prim.sing n)
val _ = F.addFinalizer (c, Prim.free)
in
c
end
fun sum ¢ = F.withvalue (¢, Prim.sum)

end

functor Test (structure CList: CLIST
structure MLton: sig
structure GC:

sig
val collect: unit -> unit
end
end) =
struct
fun f n =
ifn=1
then ()
else
let
val a = Array.tabulate (n, £fn i => i)
val _ = Array.sub (a, 0) + Array.sub (a, 1)
in
f (n - 1)
end
val 1 = CList.sing 2
val 1 = CList.cons (2,1)
val 1 = CList.cons (2,1)
val 1 = CList.cons (2,1)
val 1 = CList.cons (2,1)
val 1 = CList.cons (2,1)
val 1 = CList.cons (2,1)
val _ = MLton.GC.collect ()
val _ = £ 100
val _ = print (concat ["listSum(l) = ",
Int.toString (CList.sum 1),
"\n"])
val _ = MLton.GC.collect ()
val _ = £ 100
end

266



MLton Guide (20070826)

structure CList =

MLtonFinalizable

CList (structure F = MLton.Finalizable
structure Prim =

struct
val cons = _import "listCons": int * Word32.word -> Word32.word;
val free = _import "listFree": Word32.word -> unit;
val sing = _import "listSing": int -> Word32.word;
val sum = _import "listSum": Word32.word -> int;

end)

(structure CList = CList
structure MLton = MLton)

structure S = Test

Suppose that cons . ¢ contains the following.

#include <stdio.h>
typedef unsigned int uint;

typedef struct Cons {
struct Cons *next;
int value;

} *Cons;

Cons listCons (int n, Cons c) {

Cons res;

res = (Cons) malloc (sizeof (*res));
fprintf (stderr, "0x%08x = listCons
res—->next = c;
res->value = n;

return res;

Cons listSing (int n) {
Cons res;

res = (Cons) malloc (sizeof (*res));
fprintf (stderr, "0x%08x = listSing
res—>next = NULL;

res—->value = nj;

return res;

void listFree (Cons p) {
fprintf (stderr, "listFree (0x%08x)\n",
free (p);

int listSum (Cons c) {

int res;
fprintf (stderr, "listSum\n");
res = 0;
for (; ¢ != NULL; c = c—>next)

res += c->value;
return res;

We can compile these to create an executable with

($d) \n", (uint)res,
(%$d) \n", (uint)res,

(uint)p);

n);

267



MLton Guide (20070826) MLtonFinalizable

% mlton —-default—-ann 'allowFFI true' finalizable.sml cons.c
Running this executable will create output like the following.

% finalizable

0x08072890 = listSing (2)
0x080728a0 = listCons (2)
0x080728b0 = listCons (2)
0x080728c0 = listCons (2)
0x080728d0 = listCons (2)
0x080728e0 = listCons (2)
0x080728f0 = 1listCons (2)
listSum

listSum(l) = 14

listFree (0x080728f£0)
listFree (0x080728e0)
listFree (0x080728d0)
listFree (0x080728c0)
listFree (0x080728b0)
listFree (0x080728a0)
listFree (0x08072890)

Synchronous Finalizers
Finalizers in MLton are asynchronous. That is, they run at an unspecified time, interrupting the user program.
It is also possible, and sometimes useful, to have synchronous finalizers, where the user program explicitly
decides when to run enabled finalizers. We have considered this in MLton, and it seems possible, but there are
some unresolved design issues. See the thread at

o [Bhhttp://mlton.org/pipermail/mlton/2004-September/016570.html
Also see

® Boehm03

Last edited on 2007-08-23 03:44:00 by MatthewFluet.

268


http://mlton.org/pipermail/mlton/2004-September/016570.html
http://mlton.org/pipermail/mlton/2004-September/016570.html

MLton Guide (20070826) MLtonGC

MLtonGC

signature MLTON_GC =

sig
val collect: unit -> unit
val pack: unit -> unit
val setMessages: bool -> unit
val setSummary: bool —-> unit
val unpack: unit —-> unit

end

e collect ()
causes a garbage collection to occur.
*pack ()
shrinks the heap as much as possible so that other processes can use available RAM.
® setMessages Db
controls whether diagnostic messages are printed at the beginning and end of each garbage collection.
It is the same as the gc-messages runtime system option.
® setSummary b
controls whether a summary of garbage collection statistics is printed upon termination of the
program. It is the same as the gc—summary runtime system option.
® unpack ()
resizes a packed heap to the size desired by the runtime.

Last edited on 2007-08-23 03:44:05 by MatthewFluet.

269



MLton Guide (20070826)

MLtonlO

signature MLTON_IO =
sig

type instream

type outstream

val inFd: instream —-> Posix.IO.file_desc
val mkstemp: string -> string * outstream

val mkstemps: {prefix: string, suffix: string} —-> string * outstream

val newIn: Posix.IO.file_desc * string —-> instream
val newOut: Posix.IO.file_desc * string -> outstream
val outFd: outstream -> Posix.IO.file_desc
val tempPrefix: string —-> string

end

® inFd ins
returns the file descriptor corresponding to ins.
emkstemp s

like the C mk st emp function, generates and open a temporary file with prefix s.

emkstemps {prefix, suffix}
like mk st emp, except it has both a prefix and suffix.
e newlIn (fd, name)

MLtonlO

creates a new instream from file descriptor £d, with name used in any Io exceptions later raised.

® newOut (fd, name)

creates a new outstream from file descriptor £d, with name used in any I o exceptions later raised.

® outFd out
returns the file descriptor corresponding to out.
® tempPrefix s
adds a suitable system or user specific prefix (directory) for temp files.

Last edited on 2007-08-23 03:44:14 by MatthewFluet.

270



MLton Guide (20070826) MLtonlIntInf

MLtonIntinf

signature MLTON_INT_INF =
sig
type t = IntInf.int

val areSmall: t * t -> bool
val gcd: t * t —> t
val isSmall: t -> bool

structure BigWord : WORD
structure SmallInt : INTEGER
datatype rep =
Big of BigWord.word vector
| Small of SmallInt.int
val rep: t -> rep
end

MLton represents an arbitrary precision integer either as an unboxed word with the bottom bit set to 1 and the
top bits representing a small signed integer, or as a pointer to a vector of words, where the first word indicates
the sign and the rest are the limbs of a GnuMP big integer.

®type t
the same as type IntInf.int.
® areSmall (a, b)
returns true iff both a and b are small.
*gcd (a, b)
uses the GnuMP's fast gcd implementation.
®isSmall a
returns true iff a is small.
e BigWord : WORD
representation of a big Int Inf.int as a vector of words; on 32-bit platforms, BigWoxrd is likely to
be equivalent to Word32, and on 64-bit platforms, BigWord is likely to be equivalent to Word64.
® SmallInt : INTEGER
representation of a small IntInf.int as a signed integer; on 32-bit platforms, SmallInt is likely
to be equivalent to Int 32, and on 64-bit platforms, SmallInt is likely to be equivalent to Int 64.
e datatype rep
the underlying representation of an Int Inf.int.
erep 1
returns the underlying representation of i.

Last edited on 2007-08-23 13:54:34 by MatthewFluet.

271



MLton Guide (20070826) MLtonltimer

MLtonltimer

signature MLTON_ITIMER =
sig
datatype t =
Prof
| Real
| Virtual

val set: t * {interval: Time.time, value: Time.time} -> unit
val signal: t -> Posix.Signal.signal
end

e set (t, {interval, value})

sets the interval timer (using set it imer) specified by t to the given interval and value.
® signal t

returns the signal corresponding to t.

Last edited on 2007-08-23 03:44:18 by MatthewFluet.

272



MLton Guide (20070826) MLtonMonoArray

MLtonMonoArray

signature MLTON_MONO_ARRAY =
sig
type t
type elem
val fromPoly: elem array —-> t
val toPoly: t —-> elem array
end

® type t
type of monomorphic array

® type elem
type of array elements

® fromPoly a
type cast a polymorphic array to its monomorphic counterpart; the argument and result arrays share
the same identity

® toPoly a
type cast a monomorphic array to its polymorphic counterpart; the argument and result arrays share
the same identity

Last edited on 2007-08-23 03:44:22 by MatthewFluet.

273



MLton Guide (20070826) MLtonMonoVector

MLtonMonoVector

signature MLTON_MONO_VECTOR =
sig
type t
type elem
val fromPoly: elem vector —-> t
val toPoly: t —-> elem vector
end

® type t
type of monomorphic vector

® type elem
type of vector elements

e fromPoly v
type cast a polymorphic vector to its monomorphic counterpart; in MLton, this is a constant-time
operation

® tobPoly v
type cast a monomorphic vector to its polymorphic counterpart; in MLton, this is a constant-time
operation

Last edited on 2007-08-23 03:44:26 by MatthewFluet.

274



MLton Guide (20070826)

MLtonPlatform

signature MLTON_PLATFORM
sig
structure Arch:
sig
datatype t = Alpha | AMD64 ARM HPPA IA64
| MIPS | PowerPC | S390 | Sparc | X86

m68k

val fromString: string -> t option
val host: t
val toString: t -> string

end

structure 0S:
sig
datatype t = AIX | Cygwin | Darwin | FreeBSD | HPUX
| Linux | MinGW | NetBSD | OpenBSD | Solaris

val fromString: string -> t option
val host: t
val toString: t -> string
end
end

® datatype Arch.t
processor architectures
¢ Arch.fromString a
converts from string to architecture. Case insensitive.
e Arch.host
the architecture for which the program is compiled.
e Arch.toString
string for architecture.
e datatype OS.t
operating systems
¢ O0S.fromString
converts from string to operating system. Case insensitive.
® O0S.host
the operating system for which the program is compiled.
¢ 0S.toString
string for operating system.

MLtonPlatform

Last edited on 2007-08-23 03:44:30 by MatthewFluet.

275



MLton Guide (20070826) MLtonPointer

MLtonPointer

signature MLTON_POINTER =
sig
eqgtype t

val add: t * word —-> t
val compare: t * t -> order
val diff: t * t —-> word
val getInt8: t * int -> Int8.int
val getIntl6: t * int -> Intl6.int
val getInt32: t * int -> Int32.int
val getInt64: t * int -> Inté4.int
val getPointer: t * int -> t
val getReal32: t * int -> Real32.real
val getReal64: t * int -> Real64.real
val getWord8: t * int -> Word8.word
val getWordl6: t * int —-> Wordlé6.word
val getWord32: t * int -> Word32.word
val getWord64: t * int —> Word64.word
val null: t
val setInt8: t * int * Int8.int -> unit
val setIntl6: t * int * Intl6.int -> unit
val setInt32: t * int * Int32.int -> unit
val setInt64: t * int * Inté64.int -> unit
val setPointer: t * int * t -> unit
val setReal32: t * int * Real32.real -> unit
val setReal64: t * int * Real64d.real -> unit
val setWord8: t * int * Word8.word —-> unit
val setWordlé: t * int * Wordl6.word —-> unit
val setWord32: t * int * Word32.word -> unit
val setWord64: t * int * Word64.word —-> unit
val sub: t * word -> t

end

® cgtype t
the type of pointers, i.e. machine addresses.
®add (p, w)
returns the pointer w bytes after than p. Does not check for overflow.
® compare (pl, p2)
compares the pointer p1 to the pointer p2 (as addresses).
ediff (pl, p2)
returns the number of bytes w such that add (p2, w) = pl. Does not check for overflow.
®getX (p, 1)
returns the object stored at index i of the array of X objects pointed to by p. For example,
getWord32 (p, 7) returns the 32-bit word stored 28 bytes beyond p.
enull
the null pointer, i.e. 0.
e setX (p, 1, V)
assigns v to the object stored at index i of the array of X objects pointed to by p. For example,
setWord32 (p, 7, w) storesthe 32-bit word w at the address 28 bytes beyond p.
®*sub (p, w)
returns the pointer w bytes before p. Does not check for overflow.

Last edited on 2007-08-23 03:44:35 by MatthewFluet.

276



MLton Guide (20070826) MLtonProcEnv

MLtonProcEnv

signature MLTON_PROC_ENV =
sig
type gid

val setenv: {name: string, value: string} -> unit
val setgroups: gid list —-> unit
end

® setenv {name, value}

like the C setenv function. Does not require name or value to be null terminated.
® setgroups grps

like the C setgroups function.

Last edited on 2007-08-23 03:44:40 by MatthewFluet.

277



MLton Guide (20070826)

MLtonProcess

signature MLTON_PROCESS =
sig
type pid
val spawn:

val spawne:
val spawnp:

{args:
{args:
{args:

type ('stdin, 'stdout,

input

output

type
type

none
chain
any

type
type
type

exception MisuseOfForget
exception DoublyRedirected

structure Child:
sig

type ('use, 'dir) t
binIn:
binOut:
fd:
remember:
textIn:
textOut:

val
val
val
val
val
val
end

(any,

structure Param:
sig

type ('use, 'dir) t
child:
fd:
file: string -—>
forget: ('use,
null: (none, 'dir)
pipe: ('use, 'dir)
self: (none, 'dir)

val
val
val
val
val
val
val
end

(chain,

val create:
{args: string list,
env:
path: string,
stderr: ('stderr,
stdin: ('stdin, input)
stdout: ('stdout,
-> ('stdin, 'stdout,
getStderr: ('stdin,
getStdin: ('"stdin,
getStdout: ('stdin,
kill: ('stdin, 'stdout,
reap: ('stdin, 'stdout,

val
val
val
val
val

string list,
string list,
string list,

(BinIO.instream,
(BinIO.outstream,
(Posix.FileSys.file_desc,
'dir) t
(TextIO.instream,
(TextIO.outstream,

'dir)
Posix.FileSys.file_desc —->

(none,
'dir)

t
t
t

string list option,

output)

path:
env:
file:

'stderr) t

input) t
output)

-> ('use,

input)

Child.t —>

'dir) t
t -> (any,

Param.t,

Param.t,

output)
'stderr) t
'stdout,
'stdout,
'stdout,

Param.t}

'stderr)
'stderr)
'stderr)
'stderr)
'stderr)

string}
string list,
string}

MLtonProcess

-> pid
path:
-> pid

string} -> pid

-> BinIO.instream

t

t

'dir)

output)

(none,
(none,

t
t
t

t * Posix.Signal.signal ->
t —> Posix.Process.exit_status

-> BinIO.outstream

t -> Posix.FileSys.file_desc
dir) t

-> TextIO.instream

t —> TextIO.outstream

'dir) t
'dir) t

'dir) t

—>
—>
->

Child.t
Child.t
Child.t
unit

("stderr,
('stdin,
('stdout,

input)
output)
input)

278



MLton Guide (20070826) MLtonProcess

end

Spawn

The spawn functions provide an alternative to the fork/exec idiom that is typically used to create a new
process. On most platforms, the spawn functions are simple wrappers around fork/exec. However, under
Windows, the spawn functions are primitive. All spawn functions return the process id of the spawned
process. They differ in how the executable is found and the environment that it uses.

® spawn {args, path}
starts a new process running the executable specified by path with the arguments args. Like
Posix.Process.exec.

® spawne {args, env, path}
starts a new process running the executable specified by path with the arguments args and
environment env. Like Posix.Process.exece.

® spawnp {args, file}
search the PATH environment variable for an executable named fi1le, and start a new process
running that executable with the arguments args. Like Posix.Process.execp.

Create

MLton.Process.create provides functionality similar to Unix.executeInEnv, but provides more
control control over the input, output, and error streams. In addition, create works on all platforms,
including Cygwin and MinGW (Windows) where Posix . fork is unavailable. For greatest portability
programs should still use the standard Unix.execute, Unix.executeInEnv, and
OS.Process.system.

The following types and sub-structures are used by the create function. They provide static type checking
of correct stream usage.

Child

® ('use, 'dir) Child.t
This represents a handle to one of a child's standard streams. The 'dir is viewed with respect to the
parent. Thusa ('a, input) Child.t handle means that the parent may input the output from
the child.

®Child. {bin,text}{In,Out} h
These functions take a handle and bind it to a stream of the named type. The type system will detect
attempts to reverse the direction of a stream or to use the same stream in multiple, incompatible ways.

®eChild.fd h
This function behaves like the other Child. * functions; it opens a stream. However, it does not
enforce that you read or write from the handle. If you use the descriptor in an inappropriate direction,
the behavior is undefined. Furthermore, this function may potentially be unavailable on future MLton
host platforms.

¢ Child.remember h
This function takes a stream of use any and resets the use of the stream so that the stream may be
used by Child. *. An any stream may have had use none or 'use prior to calling
Param. forget. If the stream was none and is used, Mi suseOfForget is raised.

279



MLton Guide (20070826) MLtonProcess

Param

® ('use, 'dir) Param.t
This is a handle to an input/output source and will be passed to the created child process. The 'dir is
relative to the child process. Input means that the child process will read from this stream.

®Param.child h
Connect the stream of the new child process to the stream of a previously created child process. A
single child stream should be connected to only one child process or else DoublyRedirected will
be raised.

®Param.fd fd
This creates a stream from the provided file descriptor which will be closed when create is called.
This function may not be available on future MLton host platforms.

® Param.forget h
This hides the type of the actual parameter as any. This is useful if you are implementing an
application which conditionally attaches the child process to files or pipes. However, you must ensure
that your use after Child.remember matches the original type.

®Param.file s
Open the given file and connect it to the child process. Note that the file will be opened only when
create is called. So any exceptions will be raised there and not by this function. If used for input,
the file is opened read-only. If used for output, the file is opened read-write.

®Param.null
In some situations, the child process should have its output discarded. The null param when passed
as stdout or stderr does this. When used for st din, the child process will either receive EOF or
a failure condition if it attempts to read from stdin.

® Param.pipe
This will connect the input/output of the child process to a pipe which the parent process holds. This
may later form the input to one of the Child. * functions and/or the Param.child function.

Process

e type ('stdin, 'stdout, 'stderr) t
represents a handle to a child process. The type arguments capture how the named stream of the child
process may be used.

® type any
bypasses the type system in situations where an application does not want the it to enforce correct
usage. See Child.remember and Param. forget.

® type chain
means that the child process's stream was connected via a pipe to the parent process. The parent
process may pass this pipe in turn to another child, thus chaining them together.

e type input, output
record the direction that a stream flows. They are used as a part of Param.t and Child.t andis
detailed there.

® type none
means that the child process's stream my not be used by the parent process. This happens when the
child process is connected directly to some source.

The types BinIO.instream, BinIO.outstream, TextIO.instream, TextIO.outstream, and
Posix.FileSys.file_desc are also valid types with which to instantiate child streams.

280



MLton Guide (20070826) MLtonProcess

® cxception MisuseOfForget
may be raised if Child.remember and Param. forget are used to bypass the normal type
checking. This exception will only be raised in cases where the forget mechanism allows a misuse
that would be impossible with the type-safe versions.

® cxception DoublyRedirected
raised if a stream connected to a child process is redirected to two separate child processes. It is safe,
though bad style, to use the a Child.t with the same Child. * function repeatedly.

® create {args, path, env, stderr, stdin, stdout}
starts a child process with the given command-line args (excluding the program name). path
should be an absolute path to the executable run in the new child process; relative paths work, but are
less robust. Optionally, the environment may be overridden with env where each string element has
the form "key=value". The std* options must be provided by the Param. * functions
documented above.

Processes which are created must be either reaped or killed.

® getStd{in,out,err} proc
gets a handle to the specified stream. These should be used by the Child. * functions. Failure to use
a stream connected via pipe to a child process may result in runtime dead-lock and elicits a compiler
warning.

ekill (proc, sig)
terminates the child process immediately. The signal may or may not mean anything depending on the
host platform. A good value is Posix.Signal.term.

® reap proc
waits for the child process to terminate and return its exit status.

Important usage notes

When building an application with many pipes between child processes, it is important to ensure that there are
no cycles in the undirected pipe graph. If this property is not maintained, deadlocks are a very serious
potential bug which may only appear under difficult to reproduce conditions.

The danger lies in that most operating systems implement pipes with a fixed buffer size. If process A has two
output pipes which process B reads, it can happen that process A blocks writing to pipe 2 because it is full
while process B blocks reading from pipe 1 because it is empty. This same situation can happen with any
undirected cycle formed between processes (vertexes) and pipes (undirected edges) in the graph.

It is possible to make this safe using low-level I/O primitives for polling. However, these primitives are not
very portable and difficult to use properly. A far better approach is to make sure you never create a cycle in

the first place.

For these reasons, the Unix.executeInEnv is a very dangerous function. Be careful when using it to
ensure that the child process only operates on either stdin or stdout, but not both.

Example use of MLton.Process.create

The following example program launches the ipconfig utility, pipes its output through grep, and then
reads the result back into the program.

open MLton.Process
val p =

281



MLton Guide (20070826) MLtonProcess

create {args = [ "/all" ],
env = NONE,
path = "C:\\WINDOWS\\system32\\ipconfig.exe",
stderr = Param.self,
stdin = Param.null,
stdout = Param.pipe}
val g =
create {args = [ "IP-Ad" ],
env = NONE,
path = "C:\\msys\\bin\\grep.exe",
stderr = Param.self,
stdin = Param.child (getStdout p),
stdout = Param.pipe}
fun suck h =
case TextIO.inputLine h of

NONE => ()
| SOME s => (print ("'" ~ s ~ "'\n"); suck h)
val () = suck (Child.textIn (getStdout q))

Last edited on 2007-08-23 03:44:51 by MatthewFluet.

282



MLton Guide (20070826) MLtonProfile

MLtonProfile

signature MLTON_PROFILE =
sig
structure Data:
sig
type t

val equals: t * t —-> bool

val free: t —-> unit

val malloc: unit -> t

val write: t * string -> unit
end

val isOn: bool
val withData: Data.t * (unit -> 'a) -> 'a
end

MLton.Profile provides Profiling control from within the program, allowing you to profile individual
portions of your program. With MLton.Profile, you can create many units of profiling data (essentially,
mappings from functions to counts) during a run of a program, switch between them while the program is
running, and output multiple m1mon . out files.

® isOn
a compile-time constant that is false only when compiling -profile no.

® type Data.t
the type of a unit of profiling data. In order to most efficiently execute non-profiled programs, when
compiling ~-profile no (the default), Data.t is equivalent to unit ref.

®Data.equals (x, V)
returns true if the x and y are the same unit of profiling data.

®Data.free x
frees the memory associated with the unit of profiling data x. It is an error to free the current unit of
profiling data or to free a previously freed unit of profiling data. When compiling ~-profile no,
Data.free xisano-op.

®Data.malloc ()
returns a new unit of profiling data. Each unit of profiling data is allocated from the process address
space (but is not in the MLton heap) and consumes memory proportional to the number of source
functions. When compiling ~-profile no,Data.malloc () isequivalent to allocating a new
unit ref.

ewrite (x, f)
writes the accumulated ticks in the unit of profiling data x to file £. It is an error to write a previously
freed unit of profiling data. When compiling -profile no,write (x, f) isano-op. A
profiled program will always write the current unit of profiling data at program exit to a file named
mlmon.out.

eswithData (d, f)
runs £ with d as the unit of profiling data, and returns the result of £ after restoring the current unit of
profiling data. When compiling ~-profile no,withData (d, £) isequivalenttof ().

Example

Here is an example, taken from the examples/profiling directory, showing how to profile the
executions of the £ib and tak functions separately. Suppose that fib—-tak.sml contains the following.

283



MLton Guide (20070826)

structure Profile = MLton.Profile

val fibData = Profile.Data.malloc ()
val takData Profile.Data.malloc ()

fun wrap (£, d) x =
Profile.withData (d, £n () => f x)

val rec fib =

fn 0 => 0
| 1 =>1
| n => fib (n - 1) + fib (n - 2)

val fib

wrap (fib, fibData)

fun tak (x,y,z) =
if not (y < x)
then =z
else tak (tak (x -1, vy, z),
tak (y - 1, z, x),
tak (z - 1, x, vy))
val tak = wrap (tak, takData)

val rec f =
fn 0 => ()
| n => (fib 38; f (n-1))
f 2

val

val rec g =
fn 0 => ()

| n => (tak (18,12,6); g (n-1))
g 500

val _

fun done (data, file) =
(Profile.Data.write (data, file)
; Profile.Data.free data)

val

val

Compile and run the program.

% mlton -profile time fib-tak.sml
% ./fib-tak

Separately display the profiling data for £ib

)

$ mlprof fib-tak mlmon.fib.out

5.77 seconds of CPU time (0.00 seconds GC)

function cur
fib 96.9%
<unknown> 3.1%
and for tak

)

$ mlprof fib-tak mlmon.tak.out

0.68 seconds of CPU time (0.00 seconds GC)

function cur

done (fibData, "mlmon.fib.out")
done (takData, "mlmon.tak.out")

MLtonProfile

284



MLton Guide (20070826) MLtonProfile

tak 100.0%

Combine the data for £ib and tak by calling m1prof with multiple m1mon . out files.

% mlprof fib-tak mlmon.fib.out mlmon.tak.out mlmon.out
6.45 seconds of CPU time (0.00 seconds GC)

function cur
fib 86.7%
tak 10.5%

<unknown> 2.8%

Last edited on 2007-08-23 03:44:58 by MatthewFluet.

285



MLton Guide (20070826) MLtonRandom

MLtonRandom

signature MLTON_RANDOM =

sig
val alphaNumChar: unit -> char
val alphaNumString: int —-> string
val rand: unit -> word
val seed: unit -> word option
val srand: word —-> unit
val useed: unit -> word option

end

® alphaNumChar ()
returns a random alphanumeric character.

¢ alphaNumString n
returns a string of length n of random alphanumeric characters.

® rand ()
returns the next pseudo-random number.

® seed ()
returns a random word from /dev/random. Useful as an arg to srand. If /dev/random can not
be read from, seed () returns NONE. A call to seed may block until enough random bits are
available.

®srand w
sets the seed used by rand to w.

® useed ()
returns a random word from /dev/urandom. Useful as an arg to srand. If /dev/urandom can
not be read from, useed () returns NONE. A call to useed will never block -- it will instead return
lower quality random bits.

Last edited on 2007-08-23 03:45:02 by MatthewFluet.

286



MLton Guide (20070826) MLtonReal

MLtonReal

signature MLTON_REAL =
sig
type t

val fromWord: word -> t

val fromLargeWord: LargeWord.word —-> t

val toWord: IEEEReal.rounding_mode —-> t -> word

val toLargeWord: IEEEReal.rounding _mode -> t —-> LargeWord.word
end

®type t
the type of reals. For MLton . LargeReal thisis LargeReal.real, for MLton.Real thisis
Real.real, forMLton.Real32 thisis Real32.real, for MLton.Real64 thisis
Real64.real.

® fromWord w

® fromLargeWord w
convert the word w to a real value. If the value of w is larger than (the appropriate)
REAL.maxFinite, then infinity is returned. If w cannot be exactly represented as a real value, then
the current rounding mode is used to determine the resulting value.

® toWord mode r

® toLargeWord mode r
convert the argument r to a word type using the specified rounding mode. They raise Overflow if
the result is not representable, in particular, if r is an infinity. They raise Domain if r is NaN.

e MLton.Real32.castFromWord w

e MLton.Real64.castFromWord w
convert the argument w to a real type as a bit-wise cast.

e MLton.Real32.castToWord r

e MLton.Real64.castToWord r
convert the argument r to a word type as a bit-wise cast.

Last edited on 2007-08-23 03:45:07 by MatthewFluet.

287



MLton Guide (20070826)

MLtonRIlimit

signature MLTON_RLIMIT =
sig
structure RLim : sig
type t
val castFromSysWord: SysWord.word —-> t
val castToSysWord: t -> SysWord.word
end

val infinity: RLim.t

type t

val coreFileSize: t (* CORE max core file size *)

val cpuTime: t (* CPU CPU time 1in seconds *)

val dataSize: t (* DATA max data size *)

val fileSize: t (* FSIZE Maximum filesize *)

val numFiles: t (* NOFILE max number of open files *)
val lockedInMemorySize: t (* MEMLOCK max locked address space *)
val numProcesses: t (* NPROC max number of processes *)
val residentSetSize: t (* RSS max resident set size *)
val stackSize: t (* STACK max stack size *)

val virtualMemorySize: t (* AS virtual memory limit *)

val get: t -> {hard: rlim, soft: rlim}
val set: t * {hard: rlim, soft: rlim} -> unit
end

MLton.R1limit provides a wrapper around the C getrlimit and setrlimit functions.

®*type Rlim.t
the type of resource limits.
einfinity
indicates that a resource is unlimited.
®type t
the types of resources that can be inspected and modified.
®get r
returns the current hard and soft limits for resource r. May raise OS. SysErr.
® set (r, {hard, soft})
sets the hard and soft limits for resource r. May raise OS . SysErr.

MLtonRIimit

Last edited on 2007-08-23 03:20:15 by MatthewFluet.

288



MLton Guide (20070826) MLtonRusage

MLtonRusage

signature MLTON_RUSAGE
sig
type t = {utime: Time.time, (* user time *)
stime: Time.time} (* system time *)

val measureGC: bool —-> unit
val rusage: unit —-> {children: t, gc: t, self: t}
end

®type t
corresponds to a subset of the C struct rusage.

®* measureGC b
controls whether garbage collection time is separately measured during program execution. This
affects the behavior of both rusage and Timer.checkCPUTimes, both of which will return gc
times of zero with measureGC false. Garbage collection time is always measured when either
gc-messages Or gc—summary is given as a runtime system option.

® rusage ()
corresponds to the C get rusage function. It returns the resource usage of the exited children, the
garbage collector, and the process itself. The self component includes the usage of the gc
component, regardless of whether measureGC is true or false. If rusage is used in a program,
either directly, or indirectly via the Timer structure, then measureGC true is automatically
called at the start of the program (it can still be disable by user code later).

Last edited on 2007-08-23 03:45:11 by MatthewFluet.

289



MLton Guide (20070826)

MLtonSignal

signature MLTON_SIGNAL =
sig
type t
type signal = t

structure Handler:
sig
type t

val default:

val handler:

val ignore:

val isDefaul

val isIgnore

val simple:
end

structure Mask:
sig
type t

val all: t
val allBut:
val block: t
val getBlock
val isMember
val none: t
val setBlock
val some: si
val unblock:
end

val getHandler: t
val handled: unit
val prof: t

val restart: bool
val setHandler: t
val suspend: Mask.
val vtalrm: t

end

t

(Thread.Runnable.t -> Thread.Runnable.t)

t

t: t -> bool

: t => bool

(unit —> unit) —> t

signal list -> t
-> unit
ed: unit -> t
: t * signal -> bool

ed: t -> unit
gnal list -> t
t -> unit

—-> Handler.t
-> Mask.t

ref
* Handler.t -> unit
t —-> unit

->

t

MLtonSignal

Signals handlers are functions from (runnable) threads to (runnable) threads. When a signal arrives, the
corresponding signal handler is invoked, its argument being the thread that was interrupted by the signal. The
signal handler runs asynchronously, in its own thread. The signal handler returns the thread that it would like
to resume execution (this is often the thread that it was passed). It is an error for a signal handler to raise an

exception that is not handled within the signal handler itself.

A signal handler is never invoked while the running thread is in a critical section (see MLtonThread).
Invoking a signal handler implicitly enters a critical section and the normal return of a signal handler
implicitly exits the critical section; hence, a signal handler is never interrupted by another signal handler.

®type t
the type of signals.
® type Handler.t

the type of signal handlers.

290



MLton Guide (20070826) MLtonSignal

® Handler.default
handles the signal with the default action.
® Handler.handler f
returns a handler h such that when a signal s is handled by h, £ will be passed the thread that was
interrupted by s and should return the thread that will resume execution.
® Handler.ignore
is a handler that will ignore the signal.
® Handler.isDefault
returns true if the handler is the default handler.
® Handler.isIgnore
returns true if the handler is the ignore handler.
® Handler.simple £
returns a handler that executes £ () and does not switch threads.
® type Mask.t
the type of signal masks, which are sets of blocked signals.
® Mask.all
a mask of all signals.
® Mask.allBut 1
a mask of all signals except for those in 1.
® Mask.block m
blocks all signals in m.
® Mask.getBlocked ()
gets the signal mask m, i.e. a signal is blocked if and only if it is in m.
® Mask.isMember (m, s)
returns true if the signal s is in m.
® Mask.none
a mask of no signals.
® Mask.setBlocked m
sets the signal mask to m, i.e. a signal is blocked if and only if it is in m.
® Mask.some 1
a mask of the signals in 1.
® Mask.unblock m
unblocks all signals in m.
® getHandler s
returns the current handler for signal s.
® handled ()
returns the signal mask m corresponding to the currently handled signals; i.e., a signal is handled if
and only if it is in m.
eprof
SIGPROF, the profiling signal.
® restart
dynamically determines the behavior of interrupted system calls; when t rue, interrupted system calls
are restarted; when false, interrupted system calls raise OS.SysError.
® setHandler (s, h)
sets the handler for signal s to h.
® suspend m
temporarily sets the signal mask to m and suspends until an unmasked signal is received and handled,
at which point suspend resets the mask and returns.
®evtalrm
SIGVTALRY, the signal for virtual timers.

291



MLton Guide (20070826) MLtonSignal

Interruptible System Calls

Signal handling interacts in a non-trivial way with those functions in the Basis Library that correspond
directly to interruptible system calls (a subset of those functions that may raise OS . SysError). The desire is
that these functions should have predictable semantics. The principal concerns are:

1. System calls that are interrupted by signals should, by default, be restarted; the alternative is to raise

0S.SysError (Posix.Error.errorMsg Posix.Error.intr,
SOME Posix.Error.intr)

This behavior is determined dynamically by the value of Signal.restart.

2. Signal handlers should always get a chance to run (when outside a critical region). If a system call is
interrupted by a signal, then the signal handler will run before the call is restarted or OS . SysError
is raised; that is, before the Signal.restart check.

3. A system call that must be restarted while in a critical section will be restarted with the handled
signals blocked (and the previously blocked signals remembered). This encourages the system call to
complete, allowing the program to make progress towards leaving the critical section where the signal
can be handled. If the system call completes, the set of blocked signals are restored to those
previously blocked.

Last edited on 2007-08-23 03:45:18 by MatthewFluet.

292



MLton Guide (20070826) MLtonSocket

MLtonSocket

signature MLTON_SOCKET =
sig
structure Address:
sig
type t = NetHostDB.in_addr
end
structure Ctl:
sig
val getERROR: ('af, 'sock_type) Socket.sock -> (string * Posix.Error.syserror optic
end
structure Host:
sig
type t = {name: string}

val getByAddress: Address.t -> t option
val getByName: string -> t option
end
structure Port:
sig
type t = int
end

type t

val accept: t —> Address.t * Port.t * TextIO.instream * TextIO.outstream
val connect: string * Port.t —-> TextIO.instream * TextIO.outstream

val listen: unit -> Port.t * t

val listenAt: Port.t -> t

val shutdownRead: TextIO.instream —-> unit

val shutdownWrite: TextIO.outstream —-> unit

val fdToSock: Posix.FileSys.file_desc -> ('a, 'b) Socket.sock
end

This module contains a bare minimum of functionality to do TCP/IP programming. This module is
implemented on top of the Socket module of the Basis Library. We encourage you to use the standard
Socket module, since MLton . Socket is deprecated.

® type Address.t
the type of IP addresses.
® Ctl.getERROR s
like the Basis Library's Socket .Ct1.getERROR, except that it returns more information. NONE
means that there was no error, and SOME means that there was an error, and provides the error
message and error code, if any.
® Host .getByAddress a
looks up the hostname (using gethostbyaddr) corresponding to a.
® Host .getByName s
looks up the hostname (using gethostbyname) corresponding to s.
® type Port.t
the type of TCP ports.
®type t
the type of sockets.
® accept s

293



MLton Guide (20070826) MLtonSocket

accepts a connection on socket s and return the address port of the connecting socket, as well as
streams corresponding to the connection.
® connect (h, p)
connects to host h on port p, returning the streams corresponding to the connection.
e listen ()
listens to a port chosen by the system. Returns the port and the socket.
e listenAt p
listens to port p. Returns the socket.
® shutdownRead ins
causes the read part of the socket associated with ins to be shutdown.
® shutdownWrite out
causes the write part of the socket associated with out to be shutdown.
e fdToSock fd
coerces a file descriptor to a socket.

Last edited on 2007-08-23 03:45:24 by MatthewFluet.

294



MLton Guide (20070826)

MLtonStructure

MLtonStructure

The MLt on structure contains a lot of functionality that is not available in the Basis Library. As a warning,
please keep in mind that the MLt on structure and its substructures do change from release to release of

MLton.

structure
sig

val

val

val

val

MLton:
eq: 'a * 'a —> bool
isMLton: bool

share: 'a -> unit
shareAll: unit -> unit

val size:
structure
structure
structure

structure

structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure

structure

structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure
structure

'a —> int

Array: MLTON_ARRAY

BinIO: MLTON_BIN_TIO

CharArray: MLTON_MONO_ARRAY where type t = CharArray.array

where type elem = CharArray.elem

CharVector: MLTON_MONO_VECTOR where type t = CharVector.vector
where type elem = CharVector.elem

Cont:

Exn:

MLTON_CONT
MLTON_EXN
Finalizable: MLTON_FINALIZABLE
GC: MLTON_GC
IntInf: MLTON_INT_INF
Itimer: MLTON_ITIMER
LargeReal: MLTON_REAL where type t =
LargeWord: MLTON_WORD where type t =
Platform: MLTON_PLATFORM
Pointer: MLTON_POINTER
ProcEnv: MLTON_PROC_ENV
Process: MLTON_PROCESS
Profile: MLTON_PROFILE
Random: MLTON_RANDOM
Real: MLTON_REAL where type t =
Real32: sig

include MLTON_REAL
val castFromWord: Word32.word —-> t
val castToWord: t -> Word32.word
end where type t = Real32.real
sig
include MLTON_REAL
val castFromWord: Word64.word —-> t
val castToWord: t -> Word64.word
end where type t = Real64.real
MLTON_RLIMIT
MLTON_RUSAGE
MLTON_SIGNAL
MLTON_SOCKET
MLTON_SYSLOG
MLTON_TEXT_TO
Thread: MLTON_THREAD
Vector: MLTON_VECTOR
Weak: MLTON_WEAK
Word: MLTON_WORD where type t =
Word8: MLTON_WORD where type t =
Wordl6: MLTON_WORD where type t
Word32: MLTON_WORD where type t
Word64: MLTON_WORD where type t =

LargeReal.real
LargeWord.word

Real.real

Realo6d:

Rlimit:
Rusage:
Signal:
Socket:
Syslog:
TextIO:

Word.word
Word8.word
Wordl6.word
Word32.word
Wordé64 .word

295



MLton Guide (20070826) MLtonStructure

structure Word8Array: MLTON_MONO_ARRAY where type t = Word8Array.array
where type elem = Word8Array.elem
structure Word8Vector: MLTON_MONO_VECTOR where type t = Word8Vector.vector
where type elem = Word8Vector.elem
structure World: MLTON_WORLD
end

Substructures

e MI tonArra

e M1 tonBinlO

e MI tonCont

e MI tonExn

e M1 tonFinalizable
* MILtonGC

e MI tonIntInf

e ML tonlO

e MI tonltimer

e Ml tonMonoArra
e MI tonMonoVector
e M1 tonPlatform

e MI tonPointer

e MI tonProcEnv

® MI tonProcess

e Ml tonRandom

e MI tonReal

e M1 tonRlimit

e MI tonRusage

e MI tonSignal

* MI tonSocket

e ML tonSyslog

e MI tonTextIO

e MI tonThread

* Ml tonVector

e MI tonWeak

e Ml .tonWord

e M1 tonWorld

Values

*eq (%, V)
returns true if x and y are equal as pointers. For simple types like char, int, and word, this is the
same as equals. For arrays, datatypes, strings, tuples, and vectors, this is a simple pointer equality.
The semantics is a bit murky.

® isMLton
is always true in a MLton implementation, and is always false in a stub implementation.

® share x
maximizes sharing in the heap for the object graph reachable from x.

® shareAll ()
maximizes sharing in the heap by sharing space for equivalent immutable objects. A call to
shareAll performs a major garbage collection, and takes time proportional to the size of the heap.

296



MLton Guide (20070826)

®size x

MLtonStructure

returns the amount of heap space (in bytes) taken by the value of x, including all objects reachable
from x by following pointers. It takes time proportional to the size of x. See below for an example.

Example of MLton.size

This example, size.sml, demonstrates the application of MLt on . size to many different kinds of objects.

fun 'a printSize (name: string, min: int, value: 'a): unit=
if MLton.size value >= min
then

(print "The size of "
; print name
; print " is >= "
; print (Int.toString min)
; print " bytes.\n")
else ()

val 1

Il
[y
~
N
~
W
~

4]
val =
printSize ("a char", 0, #"c")

; printSize ("an int list of length 4", 48, 1)
; printSize ("a string of length 10", 24, "0123456789")

; printSize ("an int array of length 10", 52, Array.tabulate (10, fn _

; printSize ("a double array of length 10",
92, Array.tabulate (10, £n _ => 0.0))
; printSize ("an array of length 10 of 2-ples of ints",
92, Array.tabulate (10, £n i => (i, i + 1)))
; printSize ("a useless function", 0, fn _ => 13)

(* This is here so that the list is "useful".
* If it were removed, then the optimizer (remove-unused-constructors)
* would remove 1 entirely.
*)
val _ = if 10 = foldl (op +) 0 1
then ()
else raise Fail "bug"

local

open MLton.Cont
in

val rc: int option t option ref = ref NONE

val _ =

case callcc (fn k: int option t => (rc := SOME k; throw (k, NONE)))
NONE => ()
| SOME i => print (concat [Int.toString i, "\n"])

end
val =

(print "The size of a continuation option ref is "
; if MLton.size rc > 1000
then print "> 1000.\n"
else print "< 1000.\n")

val =
case !rc of

=> 0))

of

297



MLton Guide (20070826)

NONE => ()
=> (rc := NONE; MLton.Cont.throw (k, SOME 13))

| SOME k

Compile and run as usual.

o o

The
The
The
The
The
The
The
The
13

The

size
size
size
size
size
size
size
size

size

of
of
of
of
of
of
of
of

of

mlton size.sml
./size

a char is >= 0 bytes.
an int list of length
a string of length 10

4 is >= 48 bytes.
is >= 24 Dbytes.

an int array of length 10 is >= 52 bytes.
a double array of length 10 is >= 92 bytes.

an array of length 10
a useless function is
a continuation option

a continuation option

of 2-ples of ints is >= 92 bytes.
>= (0 bytes.
ref is > 1000.

ref is < 1000.

MLtonStructure

Last edited on 2007-08-23 03:45:32 by MatthewFluet.

298



MLton Guide (20070826)

MLtonSyslog

signature MLTON_SYSLOG =

sig

type openflag

val
val
val
val
val
val

CONS
NDELAY
NOWAIT
ODELAY
PERROR
PID

type facility

val
val
val
val
val
val
val
val
val
val
val
val
val
val
val
val
val
val

AUTHPRIV
CRON
DAEMON
KERN
LOCALO
LOCAL1
LOCAL2
LOCAL3
LOCAL4
LOCALS
LOCALG6
LOCAL7
LPR
MAIL
NEWS
SYSLOG
USER
UuCP

type loglevel

val
val
val
val
val
val
val
val

val

val

val
end

EMERG
ALERT
CRIT
ERR
WARNING
NOTICE
INFO
DEBUG

closelog:

openlog:

unit

openflag
openflag
openflag
openflag
openflag
openflag

facility
facility
facility
facility
facility
facility
facility
facility
facility
facility
facility
facility
facility
facility
facility
facility
facility
facility

loglevel
loglevel
loglevel
loglevel
loglevel
loglevel
loglevel
loglevel

-> unit
log: loglevel * string —-> unit
string * openflag list * facility -> unit

MLtonSyslog

MLton.Syslog is a complete interface to the system logging facilities. See man 3 syslog for more

details.

e closelog ()

closes the connection to the system logger.

®log (1, s)

logs message s at a loglevel 1.

299



MLton Guide (20070826) MLtonSyslog

® openlog (name, flags, facility)
opens a connection to the system logger. name will be prefixed to each message, and is typically set
to the program name.

Last edited on 2007-08-23 03:45:37 by MatthewFluet.

300



MLton Guide (20070826) MLtonTextlO

MLtonTextlO

signature MLTON_TEXT_IO = MLTON_IO

See MLtonlO.

Last edited on 2005-12-01 23:11:52 by StephenWeeks.

301



MLton Guide (20070826) MLtonThread

MLtonThread

signature MLTON_THREAD =

sig
structure AtomicState:
sig
datatype t = NonAtomic | Atomic of int
end
val atomically: (unit -> 'a) -> 'a

val atomicBegin: unit -> unit
val atomicEnd: unit -> unit
val atomicState: unit -> AtomicState.t

structure Runnable:

sig
type t

end
type 'a t
val atomicSwitch: ('a t —-> Runnable.t) -> 'a
val new: ('a -> unit) -> 'a t
val prepend: 'a t * ('b -> 'a) -> 'b t
val prepare: 'a t * 'a -> Runnable.t
val switch: ('a t -> Runnable.t) -> 'a

end

MLton.Thread provides access to MLton's user-level thread implementation (i.e. not OS-level threads).
Threads are lightweight data structures that represent a paused computation. Runnable threads are threads that
will begin or continue computing when switched to. MLton. Thread does not include a default
scheduling mechanism, but it can be used to implement both preemptive and non-preemptive threads.

® type AtomicState.t
the type of atomic states.
® atomically f
runs f in a critical section.
® atomicBegin ()
begins a critical section.
® atomicEnd ()
ends a critical section.
® atomicState ()
returns the current atomic state.
® type Runnable.t
the type of threads that can be resumed.
etype 'a t
the type of threads that expect a value of type ' a.
® atomicSwitch £
like switch, but assumes an atomic calling context. Upon swit ching back to the current thread, an
implicit atomicEnd is performed.
®*new f
creates a new thread that, when run, applies f to the value given to the thread. £ must terminate by
switching to another thread or exiting the process.

302



MLton Guide (20070826) MLtonThread

® prepend (t, f)
creates a new thread (destroying t in the process) that first applies £ to the value given to the thread
and then continues with t. This is a constant time operation.

® prepare (t, V)
prepares a new runnable thread (destroying t in the process) that will evaluate t on v.

e switch £
applies f to the current thread to get rt, and then start running thread rt. It is an error for £ to
perform another switch. f is guaranteed to run atomically.

Example of non-preemptive threads

structure Queue:
sig
type 'a t

val new: unit -> 'a t

val enque: 'a t * 'a -> unit
val deque: 'a t -> 'a option
end =
struct

datatype 'a t T of {front: 'a list ref, back: 'a list ref}
fun new() = T{front = ref [], back = ref []}

fun enque (T{back, ...}, x) = back 'back

1
W

fun deque (T{front, back}) =
case !front of
[] => (case !back of
[l => NONE
| 1 => let val 1 = rev 1
in case 1 of
[] => raise Fail "deque"

| x :: 1 => (back := []; front := 1; SOME x)
end)
| x 1l => (front := 1; SOME x)
end
structure Thread:
sig
val exit: unit -> 'a
val run: unit -> unit
val spawn: (unit -> unit) -> unit
val yield: unit -> unit
end =
struct

open MLton
open Thread

val toplLevel: Thread.Runnable.t option ref = ref NONE

local
val threads: Thread.Runnable.t Queue.t = Queue.new()
in
fun ready (t: Thread.Runnable.t) : unit =
Queue.enque (threads, t)
fun next () : Thread.Runnable.t =

case Queue.deque threads of

303



MLton Guide (20070826) MLtonThread

NONE => valOf (!topLevel)
| SOME t => t

end
fun 'a exit(): 'a = switch(fn _ => next())
fun new (f: unit -> unit): Thread.Runnable.t =
Thread.prepare
(Thread.new (fn () => ((f() handle _ => exit())
;ioexit())),
())
fun schedule t = (ready t; next())
fun yield(): unit = switch(fn t => schedule (Thread.prepare (t, ())))
val spawn = ready o new
fun run(): unit =
(switch (fn t =>
(topLevel := SOME (Thread.prepare (t, ()))
i next()))
; topLevel := NONE)
end

val rec loop =
fn 0 => ()
| n => (print (concat[Int.toString n, "\n"])
; Thread.yield()
;i loop(n - 1))

val rec loop' =

fn 0 => ()
| n => (Thread.spawn (fn () => loop n); loop'(n - 2))
val _ = Thread.spawn(fn () => loop' 10)
val _ = Thread.run/()
val _ = print "success\n"

Example of preemptive threads

structure Queue:
sig
type 'a t

val new: unit -> 'a t

val enque: 'a t * 'a —-> unit
val deque: 'a t -> 'a option
end =
struct

datatype 'a t = T of {front: 'a list ref, back: 'a list ref}

fun new () = T {front = ref [], back

ref []}
fun enque (T {back, ...}, x) = back := x :: !back

fun deque (T {front, back}) =
case !front of

304



MLton Guide (20070826)

[] => (case !back of
[] => NONE

MLtonThread

| 1 => let val 1 = rev 1
in case 1 of

[]
| x
end)
| x :: 1 => (front :=
end

structure Thread:
sig
val exit: unit -> 'a
val run: unit -> unit
val spawn: (unit -> unit)
val yield: unit -> unit
end =
struct
open Posix.Signal
open MLton
open Itimer Signal Thread

=> raise Fail "deque"
1 => (back := []; front := 1; SOME x)

SOME x)

-> unit

val toplevel: Thread.Runnable.t option ref = ref NONE

local
val threads: Thread.Runnable.t Queue.t = Queue.new ()
in
fun ready t = Queue.enque (threads, t)
fun next () =
case Queue.deque threads of
NONE => valOf (!topLevel)
| SOME t => t
end

fun 'a exit ():

fun new (f: unit -> unit):
Thread.prepare

(Thread.new (fn () => ((f

0))

fun schedule t = (ready t;
fun yield (): unit = switch
val spawn = ready o new

fun setItimer t =

Itimer.set (Itimer.Real,

{value = t,
interval =
fun run (): unit =
(switch (fn t =>
(topLevel := SOME

; new (fn ()

; setItimer Time.zeroTime

; lgnore alrm
; toplLevel := NONE)

'a = switch

(fn t => schedule (Thread.prepare (t,

(fn _ => next ())

Thread.Runnable.t =

() handle _ => exit ())

exit ())),

next ())

t})

(Thread.prepare (t, ()))
(setHandler (alrm, Handler.handler schedule)
; setItimer (Time.fromMilliseconds 20)))))

305



MLton Guide (20070826) MLtonThread

end

val rec delay =
fn 0 => ()
| n => delay (n - 1)

val rec loop =
fn 0 => ()
| n => (delay 500000; loop (n - 1))

val rec loop' =

fn 0 => ()
| n => (Thread.spawn (fn () => loop n); loop' (n - 1))
val _ = Thread.spawn (fn () => loop' 10)
val = Thread.run ()

val print "success\n"

Last edited on 2007-08-23 03:45:45 by MatthewFluet.

306



MLton Guide (20070826) MLtonVector

MLtonVector

signature MLTON_VECTOR =
sig
val create: int -> {done: unit -> 'a vector,
sub: int -> 'a,
update: int * 'a -> unit}
val unfoldi: int * 'b * (int * 'b -> 'a * 'b) -> 'a vector * 'b
end

® create n
initiates the construction a vector v of length n, returning functions to manipulate the vector. The
done function may be called to return the created vector; it is an error to call done before all entries
have been initialized; it is an error to call done after having called done. The sub function may be
called to return an initialized vector entry; it is not an error to call sub after having called done. The
update function may be called to initialize a vector entry; it is an error to call update after having
called done. One must initialize vector entries in order from lowest to highest; that is, before calling
update (i, x),one musthave already called update (7j, x) forall jin [0, 1).The
done, sub, and update functions are all constant-time operations.

eunfoldi (n, b, f)
constructs a vector v of length n, whose elements v, are determined by the equations b, = b and (v,

b)) =f(i by).

Last edited on 2007-08-23 03:45:50 by MatthewFluet.

307



MLton Guide (20070826) MLtonWeak

MLtonWeak

signature MLTON_WEAK =
sig
type 'a t
val get: 'a t -> 'a option
val new: 'a -> 'a t
end

A weak pointer is a pointer to an object that is nulled if the object becomes unreachable due to garbage
collection. The weak pointer does not itself cause the object it points to be retained by the garbage collector --
only other strong pointers can do that. For objects that are not allocated in the heap, like integers, a weak
pointer will always be nulled. So, if w: int Weak.t then Weak.get w = NONE.

etype 'a t
the type of weak pointers to objects of type 'a
® get w
returns NONE if the object pointed to by w no longer exists. Otherwise, returns SOME of the object
pointed to by w.
® new X
returns a weak pointer to x.

Last edited on 2007-08-23 03:45:54 by MatthewFluet.

308



MLton Guide (20070826) MLtonWord

MLtonWord

signature MLTON_WORD =
sig
type t

val rol: t * word -> t
val ror: t * word —-> t
end

® type t
the type of words. For MLt on . LargeWord this is LargeWord.word, for MLton.Word this is
Word.word, for MLton.Word$§ this is Word8 .word, for MLton.Word16 this is
Wordl6.word, for MLton.Word32 thisis Word32.word, for MLton.Wordé4 this is
Word64 .word.

®bswap w
byte swap.

®erol (w, w')
rotates left (circular).

®ror (w, w')
rotates right (circular).

Last edited on 2007-08-23 03:45:58 by MatthewFluet.

309



MLton Guide (20070826) MLtonWorld

MLtonWorld

signature MLTON_WORLD
sig
datatype status = Clone | Original

val load: string -> 'a

val save: string —-> status

val saveThread: string * Thread.Runnable.t -> unit
end

e datatype status
specifies whether a world is original or restarted (a clone).

®load £
loads the saved computation from file £.

® save f
saves the entire state of the computation to the file £. The computation can then be restarted at a later
time using World. load or the load-world runtime option. The call to save in the original
computation returns Original and the call in the restarted world returns Clone.

® saveThread (f, rt)
saves the entire state of the computation to the file £ that will resume with thread rt upon restart.

Example

Suppose that save-world. sml contains the following.

open MLton.World
val _ =
case save "world" of
Original => print "I am the original\n"
| Clone => print "I am the clone\n"

Then, if we compile save-world.sml and run it, the Original branch will execute, and a file named
world will be created.

o\

mlton save-world.sml
% save-world
I am the original

We can then load wor1d using the 1oad-world run time option.

% save-world @MLton load-world world —-—
I am the clone

Last edited on 2007-08-23 03:46:03 by MatthewFluet.

310



MLton Guide (20070826) Machine

Machine

Machine is an Intermediatel anguage, translated from RSSA by ToMachine and used as input by the Codegen.

Description

Machine is an Untyped Intermediatel .anguage, corresponding to a abstract register machine.

Implementation

[Blmachine. sig [Blmachine.fun

Type Checking

The Machine Intermediatel .anguage has a primitive type checker, which only checks some liveness
properties.

@machine.sig [B|machine.fun

Details and Notes

Last edited on 2006-11-02 17:45:41 by MatthewFluet.

311


http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/backend/machine.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/backend/machine.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/backend/machine.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/backend/machine.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/backend/machine.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/backend/machine.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/backend/machine.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/backend/machine.fun?view=markup

MLton Guide (20070826) ManualPage

ManualPage

MLton is run from the command line with a collection of options followed by a file name and a list of files to
compile, assemble, and link with.

mlton [option ...] file.{c|cm|mlb|o|sml} [file.{clols|S} ...]

The simplest case is torunmlton foo.sml, where foo.sml contains a valid SML program, in which
case MLton compiles the program to produce an executable foo. Since MLton does not support separate
compilation, the program must be the entire program you wish to compile. However, the program may refer to
signatures and structures defined in the Basis Library.

Larger programs, spanning many files, can be compiled with the ML Basis system. In this case,
mlton foo.mlb will compile the complete SML program described by the basis foo .m1lb, which may
specify both SML files and additional bases.

MLton also supports a limited subset of SML/NJ CompilationManager (CM) files. For example,

mlton foo.cm will compile the complete SML program consisting of the concatenation of all the SML
files referred to (either directly or indirectly) by foo. cm.

Next Steps

e CompileTimeOptions
® RunTimeOptions

Last edited on 2005-12-01 19:31:43 by StephenWeeks.

312



MLton Guide (20070826) MatchCompilation

MatchCompilation

Match compilation is the process of translating an SML match into a nested tree (or dag) of simple case
expressions and tests.

MLton's match compiler is described here.

Match compilation in other compilers

¢ BaudinetMacqueen85
¢ Leroy90, pages 60-69.
e Scott00

e Sestoft96

Last edited on 2005-07-26 18:19:23 by StephenWeeks.

313



MLton Guide (20070826) MatchCompile

MatchCompile

MatchCompile is a translation pass, agnostic in the Intermediatel.anguages between which it translates.

Description

Match compilation converts a case expression with nested patterns into a case expression with flat patterns.

Implementation
@match—compile.sig @match—compile.fun

Details and Notes

val matchCompile:
{caseType: Type.t, (* type of entire expression *)
cases: (NestedPat.t * ((Var.t -> Var.t) —-> Exp.t)) vector,
conTycon: Con.t —-> Tycon.t,
region: Region.t,
test: Var.t,
testType: Type.t,
tyconCons: Tycon.t -> {con: Con.t, hasArg: bool} vector}
-> Exp.t * (unit -> ((Layout.t * {isOnlyExns: bool}) vector) wvector)

matchCompile is complicated by the desire for modularity between the match compiler and its caller. Its
caller is responsible for building the right hand side of arule p => e. On the other hand, the match compiler
is responsible for destructing the test and binding new variables to the components. In order to connect the
new variables created by the match compiler with the variables in the pattern p, the match compiler passes an
environment back to its caller that maps each variable in p to the corresponding variable introduced by the
match compiler.

The match compiler builds a tree of n-way case expressions by working from outside to inside and left to right
in the patterns. For example,

case x of
(_, Cl a) => el
| (C2 b, C3 c) => e2

is translated to

let

fun f1 a = el

fun £f2 (b, c) = e2
in

case x of

(x1, x2) =>
(case x1 of
C2 b' => (case x2 of
Cl a' => f1 a'

| C3 ¢c' => f2(b',c")

| _ => raise Match)
=> (case x2 of

Cl a'' => f1 a'"'

314


http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/match-compile/match-compile.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/match-compile/match-compile.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/match-compile/match-compile.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/match-compile/match-compile.fun?view=markup

MLton Guide (20070826) MatchCompile

| _ => raise Match))
end

Here you can see the necessity of abstracting out the ride hand sides of the cases in order to avoid code
duplication. Right hand sides are always abstracted. The simplifier cleans things up. You can also see the new
(primed) variables introduced by the match compiler and how the renaming works. Finally, you can see how
the match compiler introduces the necessary default clauses in order to make a match exhaustive, i.e. cover all
the cases.

The match compiler uses numCons and tyconCons to determine the exhaustivity of matches against
constructors.

Last edited on 2006-11-02 17:35:55 by MatthewFluet.

315



MLton Guide (20070826) MatthewFluet

MatthewFluet

Matthew Fluet ( Emfluet@acm.org , @http://ttic.uchicago.edu/~ﬂuet ) is an Assistant Research Professor at
the @Toyota Technological Institute at Chicago.

Current MLton projects:

¢ Porting MLton to x86_64

® Migrating SSA optimizations to SSA2
¢ Improving CML implementation

¢ Porting ML-Doc

¢ Porting ML-NLFFI

¢ Porting ML-RISC

Last edited on 2006-11-02 15:51:09 by MatthewFluet.

316


mailto:mfluet@acm.org
mailto:mfluet@acm.org
http://ttic.uchicago.edu/~fluet
http://ttic.uchicago.edu/~fluet
http://www.tti-c.org
http://www.tti-c.org

MLton Guide (20070826) MichaelNorrish

MichaelNorrish

I am a researcher at BINICTA, with a web-page Ehere.

I'm interested in MLton because of the chance that it might be a good vehicle for future implementations of
the BIHOL theorem-proving system. It's beginning to look as if one route forward will be to embed an SML
interpreter into a MLton-compiled executable. I don't know if an extensible interpreter of the kind we're
looking for already exists.

Last edited on 2005-04-05 06:48:34 by MichaelNorrish.

317


http://nicta.com.au
http://nicta.com.au
http://web.rsise.anu.edu.au/~michaeln/
http://web.rsise.anu.edu.au/~michaeln/
http://hol.sf.net
http://hol.sf.net

MLton Guide (20070826) MikeThomas

MikeThomas

Here is a picture at home in Brisbane, Queensland, Australia, taken in January 2004.

@image

Last edited on 2004-10-27 18:15:50 by StephenWeeks.

318


http://mlton.org/pages/MikeThomas/attachments/picture.jpg?ts=1098900911

MLton Guide (20070826) MoinMoin

MoinMoin

[BMoinMoin is the wiki engine used to implement this site.

You can find out technical specifics about this particular instance of MoinMoin at the SystemInfo page.

Last edited on 2004-10-25 20:51:11 by StephenWeeks.

319


http://moinmoin.wikiwikiweb.de/
http://moinmoin.wikiwikiweb.de/

MLton Guide (20070826) Monomorphise

Monomorphise

Monomorphise is a translation pass from the XML Intermediatel.anguage to the SXML
Intermediatel .anguage.

Description

Monomorphisation eliminates polymorphic values and datatype declarations by duplicating them for each
type at which they are used.

Consider the following XML program.

datatype 'a t = T of 'a
fun 'a £ (x: 'a) =T x
val a = £ 1

val b = £ 2

val z = £ (3, 4)

The result of monomorphising this program is the following SXML program:

datatype tl1l = Tl of int
datatype t2 = T2 of int * int

fun f1 (x: tl) = Tl x
fun f2 (x: t2) = T2 X
val a = f1 1
val b = f1 2

val z = £f2 (3, 4)
Implementation
@monomomhise. sig @monomogphise.fun

Details and Notes

The monomorphiser works by making one pass over the entire program. On the way down, it creates a cache
for each variable declared in a polymorphic declaration that maps a lists of type arguments to a new variable
name. At a variable reference, it consults the cache (based on the types the variable is applied to). If there is
already an entry in the cache, it is used. If not, a new entry is created. On the way up, the monomorphiser
duplicates a variable declaration for each entry in the cache.

As with variables, the monomorphiser records all of the type at which constructors are used. After the entire
program is processed, the monomorphiser duplicates each datatype declaration and its associated constructors.

The monomorphiser duplicates all of the functions declared in a fun declaration as a unit. Consider the
following program

fun 'a £ (x: 'a) = g x
and g (y: 'a) = f vy
val a = £ 13

val b = g 14

val ¢ = £ (1, 2)

320


http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/xml/monomorphise.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/xml/monomorphise.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/xml/monomorphise.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/xml/monomorphise.fun?view=markup

MLton Guide (20070826) Monomorphise

and its monomorphisation

fun f1 (x: int) = gl x
and gl (y: int) = fl y
fun f2 (x : int * int) = g2 x
and g2 (y : int * int) = f2 y

val a = f1 13
val b = gl 14
val ¢ £f2 (1, 2)

Pathological datatype declarations

SML allows a pathological polymorphic datatype declaration in which recursive uses of the defined type
constructor are applied to different type arguments than the definition. This has been disallowed by others on
type theoretic grounds. A canonical example is the following.

datatype 'a t
val z : int t

A of 'a | Bof ('a * 'a) t
B (B (A ((1, 2), (3, 4))))

The presence of the recursion in the datatype declaration might appear to cause the need for the
monomorphiser to create an infinite number of types. However, due to the absence of polymorphic recursion
in SML, there are in fact only a finite number of instances of such types in any given program. The
monomorphiser translates the above program to the following one.

datatype tl = Bl of t2
datatype t2 = B2 of t3
datatype t3 A3 of (int * int) * (int * int)
val z : int t = Bl (B2 (A3 ((1, 2), (3, 4))))

It is crucial that the monomorphiser be allowed to drop unused constructors from datatype declarations in
order for the translation to terminate.

Last edited on 2006-11-02 17:37:05 by MatthewFluet.

321



MLton Guide (20070826) MoscowML

MoscowML

[BMoscow ML is a Standard ML Compiler. It is a byte-code compiler, so it compiles code quickly, but the
code runs slowly. See Performance.

Last edited on 2004-12-30 20:11:52 by StephenWeeks.

322


http://www.dina.kvl.dk/~sestoft/mosml.html
http://www.dina.kvl.dk/~sestoft/mosml.html

MLton Guide (20070826) Mult

Multi

Multi is an analysis pass for the SSA Intermediatel.anguage, invoked from ConstantPropagation and
LocalRef.

Description
This pass analyzes the control flow of a SSA program to determine which SSA functions and blocks might be

executed more than once or by more than one thread. It also determines when a program uses threads and
when functions and blocks directly or indirectly invoke Thread_copyCurrent.

Implementation

@multi.sig Blmulti.fun

Details and Notes

Last edited on 2006-11-02 17:37:26 by MatthewFluet.

323


http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/multi.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/multi.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/multi.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/multi.fun?view=markup

MLton Guide (20070826) Mutable

Mutable

Mutable is an adjective meaning can be modified. In Standard ML, ref cells and arrays are mutable, while all
other values are immutable.

Last edited on 2004-12-08 18:51:14 by StephenWeeks.

324



MLton Guide (20070826)

NumericLiteral

NumericLiteral

Numeric literals in Standard ML can be written in either decimal or hexadecimal notation. Sometimes it can
be convenient to write numbers down in other bases. Fortunately, using Fold, it is possible to define a concise
syntax for numeric literals that allows one to write numeric constants in any base and of various types (int,
IntInf.int, word, and more).

We will define constants I, IT, W, and ~ so that, for example,

I 10 '1°2°3 $

denotes 123 :int in base 10, while

IT 8 "2°3

denotes 19:IntInf.int in base 8, and

$

w2 '1°'1°0°1 3

= 12x iBase

12x)

=>
if 0 <= i andalso i < iBase then

iBase =

X * xBase + i2x i

raise Fail

denotes Owl3: word.
Here is the code.
structure Num =
struct
fun make (op *, op +,
let
val xBase
in
Fold.fold
((i2x O,
fn (i, x)
else
fst)
end
fun I = make (op *,
fun I1I = make (op *,
fun W = make (op *,
fun ° ? = Fold.stepl
val a = 10
val b = 11
val ¢ = 12
val d = 13
val e = 14
val £ = 15

op +,
op +,
op +,

(fn (4,

(concat

["Num: ",

id) 2

Int.toString i,
" is not a wvalid\

\ digit in base ",
Int.toString iBase])),

IntInf.fromInt)

Word.fromInt)

(x, step)) =>
(step (i, x), step))

?

?

325



MLton Guide (20070826) NumericLiteral

end
where
fun fst (x, _) = x

The idea is for the fold to start with zero and to construct the result one digit at a time, with each stepper
multiplying the previous result by the base and adding the next digit. The code is abstracted in two different
ways for extra generality. First, the make function abstracts over the various primitive operations (addition,
multiplication, etc) that are needed to construct a number. This allows the same code to be shared for
constants I, IT, W used to write down the various numeric types. It also allows users to add new constants for
additional numeric types, by supplying the necessary arguments to make.

Second, the step function, *, is abstracted over the actual construction operation, which is created by make,
and passed along the fold. This allows the same constant, ", to be used for all numeric types. The alternative
approach, having a different step function for each numeric type, would be more painful to use.

On the surface, it appears that the code checks the digits dynamically to ensure they are valid for the base.
However, MLton will simplify everything away at compile time, leaving just the final numeric constant.

Last edited on 2006-05-28 08:52:54 by VesaKarvonen.

326



MLton Guide (20070826) OCaml

OCaml

[BOCaml is a variant of ML and is similar to Standard ML.

OCaml and SML

Here's a comparison of some aspects of the OCaml and SML languages.

e Standard ML has a formal Definition, while OCaml is specified by its lone implementation and
informal documentation.

e Standard ML has a number of compilers, while OCaml has only one.

e OCaml has built-in support for object-oriented programming, while Standard ML does not (however,

see ObjectOrientedProgramming).
e Andreas Rossberg has a [@lside-by-side comparison of the syntax of SML and OCaml.

OCaml and MLton

Here's a comparison of some aspects of OCaml and MLton.

¢ Performance
¢ Both OCaml and MLton have excellent performance.
¢ MLton performs extensive WholeProgramOptimization, which can provide substantial
improvements in large, modular programs.
¢ MLton uses native types, like 32-bit integers, without any penalty due to tagging or boxing.
OCaml uses 31-bit integers with a penalty due to tagging, and 32-bit integers with a penalty
due to boxing.
¢ MLton uses native types, like 64-bit floats, without any penalty due to boxing. OCaml, in
some situations, boxes 64-bit floats.
¢ MLton represents arrays of all types unboxed. In OCaml, only arrays of 64-bit floats are
unboxed, and then only when it is syntactically apparent.
¢ MLton represents records compactly by reordering and packing the fields.
¢ In MLton, polymorphic and monomorphic code have the same performance. In OCaml,
polymorphism can introduce a performance penalty.
¢ In MLton, module boundaries have no impact on performance. In OCaml, moving code
between modules can cause a performance penalty.
® MLton's ForeignFunctionInterface is simpler than OCaml's.
¢ Tools
¢ OCaml has a debugger, while MLton does not.
¢ OCaml supports separate compilation, while MLton does not.
¢ OCaml compiles faster than MLton.
¢ MLton supports profiling of both time and allocation.
e Libraries
¢ OCaml has more available libraries.
¢ Community
¢ OCaml has a larger community than MLton.
¢ MLton has a very responsive Bdeveloper list.

Last edited on 2005-12-02 04:23:05 by StephenWeeks.

327


http://caml.inria.fr/
http://caml.inria.fr/
http://www.ps.uni-sb.de/~rossberg/SMLvsOcaml.html
http://www.ps.uni-sb.de/~rossberg/SMLvsOcaml.html
http://www.mlton.org/mailman/listinfo/mlton
http://www.mlton.org/mailman/listinfo/mlton

MLton Guide (20070826) ObjectOrientedProgramming

ObjectOrientedProgramming

Standard ML does not have explicit support for object-oriented programming. Here are some papers that show
how to express certain object-oriented concepts in SML.

® OO Programming styles in ML,
® Object-oriented programming and Standard ML
e mGTK: An SML binding of Gtk+

The question of OO programming in SML comes up every now and then. The following discusses a simple
object-oriented (OO) programming technique in Standard ML. The reader is assumed to be able to read Java
and SML code.

Motivation

SML doesn't provide subtyping, but it does provide parametric polymorphism, which can be used to encode
some forms of subtyping. Most articles on OO programming in SML concentrate on such encoding
techniques. While those techniques are interesting --- and it is recommended to read such articles --- and
sometimes useful, it seems that basically all OO gurus agree that (deep) subtyping (or inheritance) hierarchies
aren't as practical as they were thought to be in the early OO days. "Good", flexible, "OO" designs tend to
have a flat structure

Interface

~

\
e e e it

\ \ \
ImplA ImplB ImplC

and deep inheritance hierarchies

ClassA

tend to be signs of design mistakes. There are good underlying reasons for this, but a thorough discussion is
not in the scope of this article. However, the point is that perhaps the encoding of subtyping is not as
important as one might believe. In the following we ignore subtyping and rather concentrate on a very simple
and basic dynamic dispatch technique.

Dynamic Dispatch Using a Recursive Record of Functions

Quite simply, the basic idea is to implement a "virtual function table" using a record that is wrapped inside a
(possibly recursive) datatype. Let's first take a look at a simple concrete example.

Consider the following Java interface:

328



MLton Guide (20070826) ObjectOrientedProgramming

public interface Counter {
public void inc();
public int get();

}

We can translate the Counter interface to SML as follows:
datatype counter = Counter of {inc : unit -> unit, get : unit -> int}

Each value of type counter can be thought of as an object that responds to two messages inc and get. To
actually send messages to a counter, it is useful to define auxiliary functions

local

fun mk m (Counter t) = m t ()
in

val cGet = mk#get

val cInc = mk#inc
end

that basically extract the "function table" t from a counter object and then select the specified method m from
the table.

Let's then implement a simple function that increments a counter until a given maximum is reached:
fun incUpto counter max = while cGet counter < max do cInc counter

You can easily verify that the above code compiles even without any concrete implementation of a counter,
thus it is clear that it doesn't depend on a particular counter implementation.

Let's then implement a couple of counters. First consider the following Java class implementing the Counter
interface given earlier.

public class BasicCounter implements Counter {
private int cnt;

public BasicCounter (int initialCnt) { this.cnt = initialCnt; }
public void inc() { this.cnt += 1; }
public int get () { return this.cnt; }

We can translate the above to SML as follows:

fun newBasicCounter initialCnt = let

val cnt = ref initialCnt
in
Counter {inc = £n () => cnt := !cnt + 1,
get = £n () => !cnt}
end

The SML function newBasicCounter can be described as a constructor function for counter objects of the
BasicCounter "class". We can also have other counter implementations. Here is the constructor for a
counter decorator that logs messages:

fun newlLoggedCounter counter =
Counter {inc = £n () => (print "inc\n" ; cInc counter),
get = £fn () => (print "get\n" ; cGet counter)}

329



MLton Guide (20070826) ObjectOrientedProgramming

The incUpto function works just as well with objects of either class:

val aCounter = newBasicCounter 0

val () = incUpto aCounter 5

val () = print (Int.toString (cGet aCounter) ~"\n")
val aCounter = newlLoggedCounter (newBasicCounter 0)
val () = incUpto aCounter 5

val () = print (Int.toString (cGet aCounter) ~"\n")

In general, a dynamic dispatch interface is represented as a record type wrapped inside a datatype. Each field
of the record corresponds to a public method or field of the object:

datatype interface =
Interface of {method : t1 -> t2,
immutableField : t,
mutableField : t ref}

The reason for wrapping the record inside a datatype is that records, in SML, can not be recursive. However,
SML datatypes can be recursive. A record wrapped in a datatype can contain fields that contain the datatype.
For example, an interface such as Cloneable

datatype cloneable = Cloneable of {clone : unit -> cloneable}
can be represented using recursive datatypes.

Like in OO languages, interfaces are abstract and can not be instantiated to produce objects. To be able to
instantiate objects, the constructors of a concrete class are needed. In SML, we can implement constructors as
simple functions from arbitrary arguments to values of the interface type. Such a constructor function can
encapsulate arbitrary private state and functions using lexical closure. It is also easy to share implementations
of methods between two or more constructors.

While the Counter example is rather trivial, it should not be difficult to see that this technique quite simply
doesn't require a huge amount of extra verbiage and is more than usable in practice.

SML Modules and Dynamic Dispatch

One might wonder about how SML modules and the dynamic dispatch technique work together. Let's
investigate! Let's use a simple dispenser framework as a concrete example. (Note that this isn't intended to be
an introduction to the SML module system.)

Programming with SML Modules

Using SML signatures we can specify abstract data types (ADTs) such as dispensers. Here is a signature for
an "abstract" functional (as opposed to imperative) dispenser:

signature ABSTRACT_DISPENSER = sig

type 'a t

val isEmpty : 'a t —-> bool

val push : 'a * 'a t —> 'a t

val pop : 'a t -> ('a * 'a t) option
end

330



MLton Guide (20070826) ObjectOrientedProgramming

The term "abstract" in the name of the signature refers to the fact that the signature gives no way to instantiate
a dispenser. It has nothing to do with the concept of abstract data types.

Using SML functors we can write "generic" algorithms that manipulate dispensers of an unknown type. Here
are a couple of very simple algorithms:

functor DispenserAlgs (D : ABSTRACT_DISPENSER) = struct
open D
fun pushAll (xs, d) = foldl push d xs

fun popAll d = let

fun 1lp (xs, NONE) = rev xs
| lp (xs, SOME (x, d)) = lp (x::xs, pop d)
in
lp ([1, pop d)
end
fun cp (from, to) = pushAll (popAll from, to)

end

As one can easily verify, the above compiles even without any concrete dispenser structure. Functors
essentially provide a form a static dispatch that one can use to break compile-time dependencies.

We can also give a signature for a concrete dispenser

signature DISPENSER = sig
include ABSTRACT_DISPENSER
val empty : 'a t

end

and write any number of concrete structures implementing the signature. For example, we could implement
stacks

structure Stack :> DISPENSER = struct
type 'a t = 'a list
val empty = []
val isEmpty = null
val push = op
val pop = List.getItem
end

and queues

structure Queue :> DISPENSER = struct
datatype 'a t = T of 'a list * 'a list
val empty = T ([], [])
fn T ([], _) => true | _ => false

val isEmpty =

val normalize = £n ([], ys) => (rev ys, []) | g => g

fun push (y, T (xs, ys)) = T (normalize (xs, y::ys))

val pop = £fn (T (x::xs, ys)) => SOME (x, T (normalize (xs, ys))) | _ => NONE

end

One can now write code that uses either the St ack or the Queue dispenser. One can also instantiate the
previously defined functor to create functions for manipulating dispensers of a type:

structure S = DispenserAlgs (Stack)

331



MLton Guide (20070826) ObjectOrientedProgramming
val [4,3,2,1] = S.popAll (S.pushAll ([1,2,3,4], Stack.empty))

structure Q = DispenserAlgs (Queue)
val [1,2,3,4] = Q.popAll (Q.pushAll ([1,2,3,4], Queue.empty))

There is no dynamic dispatch involved at the module level in SML. An attempt to do dynamic dispatch
val g = O.push (1, Stack.empty)

will give a type error.

Combining SML Modules and Dynamic Dispatch

Let's then combine SML modules and the dynamic dispatch technique introduced in this article. First we
define an interface for dispensers:

structure Dispenser = struct
datatype 'a t =
I of {isEmpty : unit -> bool,
push : 'a —> 'a t,
pop : unit -> ('a * 'a t) option}

fun Om (I t) = m t
fun isEmpty t = O#isEmpty t ()
fun push (v, t) = O#push t v

fun pop t = O#pop t ()
end

The Dispenser module, which we can think of as an interface for dispensers, implements the
ABSTRACT_DISPENSER signature using the dynamic dispatch technique, but we leave the signature
ascription until later.

Then we define a DispenserClass functor that makes a "class" out of a given dispenser module:

functor DispenserClass (D : DISPENSER) : DISPENSER = struct
open Dispenser

fun make d =

I {isEmpty = £n () => D.isEmpty d,
push = £fn x => make (D.push (x, d)),
pop = fn () =>

case D.pop d of
NONE => NONE
| SOME (x, d) => SOME (x, make d)}

val empty =
I {isEmpty = £n () => true,
push = £n x => make (D.push (x, D.empty)),
pop = £n () => NONE}
end

Finally we seal the Dispenser module:

structure Dispenser : ABSTRACT_DISPENSER = Dispenser

332



MLton Guide (20070826) ObjectOrientedProgramming

This isn't necessary for type safety, because the unsealed Dispenser module does not allow one to break
encapsulation, but makes sure that only the Di spenserClass functor can create dispenser classes (because
the constructor Dispenser. I is no longer accessible).

Using the DispenserClass functor we can turn any concrete dispenser module into a dispenser class:

structure StackClass DispenserClass (Stack)
structure QueueClass = DispenserClass (Queue)

Each dispenser class implements the same dynamic dispatch interface and the ABSTRACT_DISPENSER
-signature.

Because the dynamic dispatch Dispenser module implements the ABSTRACT_DISPENSER -signature,
we can use it to instantiate the DispenserAlgs -functor:

structure D = DispenserAlgs (Dispenser)

The resulting D module, like the Di spenser module, works with any dispenser class and uses dynamic
dispatch:

val [4,

3 = D.popAll (D.pushAll ([1, 2, 3, 4], StackClass.empty))
val [1, 2,

, 4] = D.popAll (D.pushAll ([1, 2, 3, 4], QueueClass.empty))

~
w N
~
[y
|

Last edited on 2007-02-15 17:22:16 by VesaKarvonen.

333



MLton Guide (20070826) OpenGL

OpenGL

There are at least two interfaces to OpenGL for MLton/SML, both of which should be considered alpha
quality.

e MikeThomas built a low-level interface, directly translating many of the functions, covering GL,
GLU, and GLUT. This is available in the MLton Sources: @opengl. The code contains a number of
small, standard OpenGL examples translated to SML.

¢ ChrisClearwater has written at least an interface to GL, and possibly more. See

[Bhhttp://mlton.org/pipermail/mlton/2005-January/026669.html

Contact us for more information or an update on the status of these projects.

Last edited on 2006-11-02 17:31:46 by MatthewFluet.

334


http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/lib/opengl
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/lib/opengl
http://mlton.org/pipermail/mlton/2005-January/026669.html
http://mlton.org/pipermail/mlton/2005-January/026669.html

MLton Guide (20070826) OperatorPrecedence

OperatorPrecedence

Standard ML has a built in notion of precedence for certain symbols. Every program that includes the Basis
Library automatically gets the following infix declarations. Higher number indicates higher precedence.

infix 7 * / mod div
infix 6 + - *

infixr 5 :: Q@
infix 4 = <> > >= < <=
infix 3 := o

infix 0 before

Last edited on 2005-12-02 04:23:19 by StephenWeeks.

335



MLton Guide (20070826) OptionalArguments

OptionalArguments

Standard ML does not have built-in support for optional arguments. Nevertheless, using Fold, it is easy to
define functions that take optional arguments.

For example, suppose that we have the following definition of a function f.

fun £ (i, r, s) =
concat [Int.toString i, ", ", Real.toString r, ", ", s]

Using the Opt ionalArg structure described below, we can define a function £ ', an optionalized version of
£, that takes 0, 1, 2, or 3 arguments. Embedded within £' will be default values for i, r, and s. If £' gets no
arguments, then all the defaults are used. If £' gets one argument, then that will be used for i. Two
arguments will be used for i and r respectively. Three arguments will override all default values. Calls to £
will look like the following.

£ 3
f' "2
fr "2
fr "2

$

"3.0
3.0 “"four" $

The optional argument indicator, ", is not special syntax -- it is a normal SML value, defined in the
OptionalArg structure below.

Here is the definition of £' using the Opt ionalArg structure, in particular, Opt ionalArg.make and
OptionalArg.D.

val f' =
fn z =>
let open OptionalArg in
make (D 1) (D 2.0) (D "three") $
end (fn i & r & s => f (i, r, s))
V4

The definition of £ ' is eta expanded as with all uses of fold. A call to Opt ionalArg.make is supplied
with a variable number of defaults (in this case, three), the end-of-arguments terminator, $, and the function to
run, taking its arguments as an n-ary product. In this case, the function simply converts the product to an
ordinary tuple and calls £. Often, the function body will simply be written directly.

In general, the definition of an optional-argument function looks like the following.

val f =
fn z =>
let open OptionalArg in
make (D <defaultl>) (D <default2>) ... (D <defaultn>) $
end (fn x1 & x2 & ... & xn =>

<function code goes here>)

Here is the definition of Opt ionalArg.

structure OptionalArg =
struct
val make =

336



MLton Guide (20070826) OptionalArguments

fn z =>
Fold.fold
((id, £n (f, x) => f x),
fn (d, r) => £n func =>
Fold.fold ((id, 4 ()), £n (£, d) =>
let
val d & () = r (id, £ d)
in
func d
end) )

fun D d = Fold.step0O (fn (£, r) =>
(fn ds => £ (d & ds),
fn (f, a & b) =>r (fn x => f a & x, b)))

val ~ =
fn z =>
Fold.stepl (fn (x, (£, _ & d)) => (fn d => £ (x & d), d))

end

OptionalArg.make uses a nested fold. The first fold accumulates the default values in a product,
associated to the right, and a reversal function that converts a product (of the same arity as the number of
defaults) from right associativity to left associativity. The accumulated defaults are used by the second fold,
which recurs over the product, replacing the appropriate component as it encounters optional arguments. The
second fold also constructs a "fill" function, f, that is used to reconstruct the product once the
end-of-arguments is reached. Finally, the finisher reconstructs the product and uses the reversal function to
convert the product from right associative to left associative, at which point it is passed to the user-supplied
function.

Much of the complexity comes from the fact that while recurring over a product from left to right, one wants
it to be right-associative, e.g. look like

a & (bs& (c&d))

but the user function in the end wants the product to be left associative, so that the product argument pattern
can be written without parentheses (since & is left associative).

Labelled optional arguments

In addition to the positional optional arguments described above, it is sometimes useful to have labelled
optional arguments. These allow one to define a function, £, with defaults, say a and b. Then, a caller of £
can supply values for a and b by name. If no value is supplied then the default is used.

Labelled optional arguments are a simple extension of FunctionalRecordUpdate using post composition.
Suppose, for example, that one wants a function £ with labelled optional arguments a and b with default
values 0 and 0. O respectively. If one has a functional-record-update function updateAB for records with a
and b fields, then one can define f in the following way.

val f =
fn z =>
Fold.post

(updateAB {a = 0, b = 0.0},
fn {a, b} => print (concat [Int.toString a, " ",

337



MLton Guide (20070826) OptionalArguments

Real.toString b, "\n"]))

The idea is that f is the post composition (using Fold.post) of the actual code for the function with a
functional-record updater that starts with the defaults.

Here are some example calls to £.

val () = £ S

val () = £ (U#a 13) $

val () = £ (U#a 13) (U#b 17.5) $
val () = £ (U#b 17.5) (U#a 13) $

Notice that a caller can supply neither of the arguments, either of the arguments, or both of the arguments, and
in either order. All that matter is that the arguments be labelled correctly (and of the right type, of course).

Here is another example.

val f =
fn z =>
Fold.post

(updateBCD {b = 0, ¢ = 0.0, d = "<>"},
fn {b, ¢, d} =>

print (concat [Int.toString b, " ",
Real.toString ¢, " ",
d, "\n"1))

Here are some example calls.

val () = £ S
val () = f (U#d "goodbye") S
val () = £ (U#d "hello") (U#b 17) (U#c 19.3) $

Last edited on 2007-08-15 22:06:57 by MatthewFluet.

338



MLton Guide (20070826) OrphanedPages
OrphanedPages
Pages that no other page links to. Also see WantedPages.

1. ZZZOrphanedPages

Last edited on 2004-11-09 14:46:17 by StephenWeeks.

339



MLton Guide (20070826) OtherSites

OtherSites

Other sites that have a MLton page (or more).

o BlAdvogato
o @iDebian GNU/Linux (@developer)

e [GlFreeBSD
o [Glfreshmeat
o Bifreshports
o [GIGNU

o [Blicewalkers
e [BlUbuntu

o [Wiwikipedi

Last edited on 2006-06-16 19:17:13 by StephenWeeks.

340


http://www.advogato.org/proj/mlton/
http://www.advogato.org/proj/mlton/
http://packages.debian.org/mlton
http://packages.debian.org/mlton
http://packages.qa.debian.org/m/mlton.html
http://packages.qa.debian.org/m/mlton.html
http://www.freebsd.org/cgi/ports.cgi?query=mlton&stype=all
http://www.freebsd.org/cgi/ports.cgi?query=mlton&stype=all
http://freshmeat.net/projects/mlton/
http://freshmeat.net/projects/mlton/
http://www.freshports.org/lang/mlton/
http://www.freshports.org/lang/mlton/
http://www.gnu.org/directory/all/mlton.html
http://www.gnu.org/directory/all/mlton.html
http://www.icewalkers.com/
http://www.icewalkers.com/
https://launchpad.net/distros/ubuntu/+source/mlton
https://launchpad.net/distros/ubuntu/+source/mlton
http://en.wikipedia.org/wiki/MLton
http://en.wikipedia.org/wiki/MLton

MLton Guide (20070826) Overloading

Overloading

In Standard ML, constants (like 13, Ow13, 13. 0) are overloaded, meaning that they can denote a constant of
the appropriate type as determined by context. SML defines the overloading classes Int, Real, and Word,
which denote the sets of types that integer, real, and word constants may take on. In MLton, these are defined
as follows.

Int2.int, Int3.1int,..Int32.int, Int64.int, Int.int, IntInf.int,

Int
LargeInt.int,FixedInt.int,Position.int

Real Real32.real,Real64.real,Real.real, LargeReal.real

Word2.word, Word3.word, .. Word32.word, Word64 .word, Word.word,

Word
LargeWord.word, SysWord.word

The Definition allows flexibility in how much context is used to resolve overloading. It says that the context is
no larger than the smallest enclosing structure-level declaration, but that an implementation may require that
a smaller context determines the type. MLton uses the largest possible context allowed by SML in resolving
overloading. If the type of a constant is not determined by context, then it takes on a default type. In MLton,
these are defined as follows.

Int Int.int
Real Real.real
Word Word.word

Other implementations may use a smaller context or different default types.
Also see
e [Bldiscussion of overloading in the Basis Library

Examples

® The following program is rejected.

structure S:

sig
val x: Word8.word
end =
struct
val x = 0wO0
end

The smallest enclosing structure declaration for Ow0 is val x = 0wO0. Hence, OwO0 receives the
default type for words, which is Word.word.

Last edited on 2007-08-15 22:07:01 by MatthewFluet.

341


http://mlton.org/basis/top-level-chapter.html
http://mlton.org/basis/top-level-chapter.html

MLton Guide (20070826) PackedRepresentation
PackedRepresentation

PackedRepresentation is an analysis pass for the SSA2 Intermediatel.anguage, invoked from ToRSSA.

Description

This pass analyzes a SSA2 program to compute a packed representation for each object.

Implementation
@representation.sig @packed—representation.fun

Details and Notes

Has a special case to make sure that t rue is represented as 1 and false is represented as 0.

Last edited on 2006-11-02 17:36:23 by MatthewFluet.

342


http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/backend/representation.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/backend/representation.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/backend/packed-representation.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/backend/packed-representation.fun?view=markup

MLton Guide (20070826) PageSize
PageSize
List of all pages, sorted by their size:

31644 References

30593 @StephenWeeks/MoinEditorB ackup
30250 Fold

29165 @HenryCejtin/MoinEditorBackup
18832 [@VesaKarvonen/MoinEditorB ackup
18728 TypelndexedValues

14401 BasisLibrary

11993 @WesleyTergstra/MoinEditorB ackup
9. 11983 Performance

10. 11491 MLtonProcess

11. 11443 ObjectOrientedProgramming
12. 11188 CommonArg

13. 10814 ConcurrentMLImplementation
14. 9067 CompileTimeOptions

15. 842 6 [@MichaelNorrish/MoinEditorB ackup
16. 8380 ValueRestriction

17. 8363 PrintfGentle

18. 8317 SyntacticConventions
19. 8274 InfixingOperators

20. 7294 FunctionalRecordUpdate
21. 6796 ForL.oops

22. 6777 MLtonThread
23. 6709 PortingML ton
24, 6668 MLtonStructure

25. 6424 MLNLFFIImplementation

26. 6401 Bugs20041109
27. 6353 SMLNJDeviations

28. 6206 Elaborate

29. 5995 PolymorphicEquality
30. 5978 Features

31. 5977 Optional Arguments
32. 5849 MLtonFinalizable
33. 5779 AdmitsEquality

34. 5742 EmacsBgBuildMode
35. 5666 MLtonSignal

36. 5326 CompilationManager
37. 5234 XML
38. 5170 TipsForWritingConciseSML

39. 5153 [@MatthewFluet/MoinEditorB ackup
40. 5051 Release20070826

41. 5000 StandardMI Gotchas
42. 4709 Regions

43. 4702 CallGraph

44. 4696 Credits

45. 4670 TypeChecking
46. 4456 TypeVariableScope

NN R LD =

343


http://mlton.org/StephenWeeks_2fMoinEditorBackup
http://mlton.org/StephenWeeks_2fMoinEditorBackup
http://mlton.org/HenryCejtin_2fMoinEditorBackup
http://mlton.org/HenryCejtin_2fMoinEditorBackup
http://mlton.org/VesaKarvonen_2fMoinEditorBackup
http://mlton.org/VesaKarvonen_2fMoinEditorBackup
http://mlton.org/WesleyTerpstra_2fMoinEditorBackup
http://mlton.org/WesleyTerpstra_2fMoinEditorBackup
http://mlton.org/MichaelNorrish_2fMoinEditorBackup
http://mlton.org/MichaelNorrish_2fMoinEditorBackup
http://mlton.org/MatthewFluet_2fMoinEditorBackup
http://mlton.org/MatthewFluet_2fMoinEditorBackup

MLton Guide (20070826) PageSize

47. 4440 MLBasisExamples

48. 4301 SelfCompiling
49. 4293 Bugs20051202

50. 4283 ReleaseChecklist

51. 4244 FoldOIN

52. 4194 MLtonProfile

53. 4131 [BAdamGoode/MoinEditorB ackup
54. 4104 Printf

55. 4101 Users

56. 4000 SMLNIJLibrary

57. 3961 UniversalType
58. 3758 ReturnStatement

59. 3753 ForeignFunctionInterfaceTypes
60. 3619 Release20051202

61. 3593 VariableArityPolymorphism
62. 3557 Enscript

63. 3518 EqualityTypeVariable

64. 3295 UnresolvedBugs

65. 3209 MLBasisSyntaxAndSemantics
66. 3092 HowProfilingWorks

67. 3052 RunTimeOptions
68. 3026 Fixpoints

69. 2997 NumericLiteral
70. 2995 Arrayl.iteral

71. 2991 Monomorphise
72. 2971 FirstClassPolymorphism

73. 2966 ForeignFunctionInterfaceSyntax
74. 2856 Propertyl.ist

75. 2816 Stabilizers

76. 2806 MLRISCLibrary
77. 2686 Installation

78. 2646 MLtonSocket

79. 2598 CompilerOverview
80. 2568 EmacsDefUseMode
81. 2525 MatchCompile

82. 2495 CrossCompiling

83. 2493 GenerativeException

84. 2463 ProfilingTime

85. 2450 [BChrisClearwater/MoinEditorB ackup
86. 2433 ShowBasis

87. 2422 Emacs

88. 2390 CallingFromCToSML

89. 2366 MLBasisAnnotations

90. 2355 0Caml

91. 2305 RunningOnMinGW

92. 2288 History

93. 2278 MLBasisAvailableLibraries
94. 2270 MLtonPointer

95. 2236 RefFlatten

96. 2159 MLBasisAnnotationExamples
97. 2158 ProfilingCounts

344


http://mlton.org/AdamGoode_2fMoinEditorBackup
http://mlton.org/AdamGoode_2fMoinEditorBackup
http://mlton.org/ChrisClearwater_2fMoinEditorBackup
http://mlton.org/ChrisClearwater_2fMoinEditorBackup

MLton Guide (20070826) PageSize

98. 2139 CKitl.ibrary

99. 2117 LanguageChanges

100. 2000 SimplifyTypes
101. 1942 XMLShrink

102. 1933 Libraries

103. 1921 MLBasis

104. 1917 CompilingWithSMILNJ
105. 1915 WikiTool

106. 1900 SMLofNJStructure
107. 1893 ProductType

108. 1893 Qverloading

109. 1883 FAQ

110. 1872 ConcurrentML

111. 1859 Unicode

112. 1846 CallingFromSMLToC
113. 1835 RunningOnNetBSD
114. 1788 Defunctorize

115. 1751 JesperLouisAndersen

116. 1689 CallingFromSMIL ToCFunctionPointer
117. 1684 VesaKarvonen

118. 1672 MLtonSyslog
119. 1667 Contact

120. 1645 MLtonRlimit
121. 1632 WikiMacros
122. 1627 SSA2

123. 1616 MLtonIntInf

124. 1616 @] esperLouisAndersen/MoinEditorBackup

125. 1562 DefineTypeBeforeUse
126. 1547 Shrink

127. 1547 Scopelnference
128. 1494 Zone

129. 1487 MLmon

130. 1484 MLtonWorld
131. 1465 KnownCase
132. 1458 Projects

133. 1433 EqualityType
134. 1432 MLtonReal

135. 1428 MLtonExn

136. 1416 LocalRef

137. 1415 ProfilingAllocation
138. 1411 SSA

139. 1401 MLtonVector
140. 1362 ToMachine

141. 1348 TypeConstructor
142. 1329 Sources

143. 1314 [@Preferences
144. 1310 MLtonRusage
145. 1289 MLBasisPathMap
146. 1285 ShowProf

147. 1280 Utilities

148. 1272 MLtonlO

345


http://mlton.org/JesperLouisAndersen_2fMoinEditorBackup
http://mlton.org/JesperLouisAndersen_2fMoinEditorBackup
http://mlton.org/Preferences
http://mlton.org/Preferences

MLton Guide (20070826) PageSize

149. 1271 ProfilingTheStack
150. 1270 MLNLFFI

151. 1260 Restore

152. 1258 WishlList

153. 1227 Useless

154. 1218 ImplementSuffix
155. 1213 ManualPage

156. 1210 MLtonPlatform
157. 1209 WebSite

158. 1203 StandardMI Portability
159. 1163 SSASimplify

160. 1158 StandardML

161. 1157 DeadCode

162. 1140 MLtonCont

163. 1136 RunningOnCygwin
164. 1134 LambdaFree

165. 1130 CommonBlock
166. 1126 MLtonRandom
167. 1116 Lazy

168. 1111 Release20041109
169. 1104 Closure

170. 1074 SXML

171. 1048 RSSA

172. 1029 CommonSubexp
173. 1002 @WikiSandBox

174. 998 WholeProgramOptimization

175. 990 RunningOnFreeBSD
176. 963 PolyEqual

177. 94 6 UnsafeStructure
178. 940 Identifier

179. 921 License

180. 902 RunningOnSparc
181. 885 Flatten

182. 881 MLtonGC

183. 880 RunningOnHPPA
184. 876 MLtonWeak
185. 858 GnuMP

186. 856 Documentation
187. 851 SXMLSimplify
188. 837 SSA2Simplify
189. 827 LineDirective

190. 808 XMLSimplifyTypes

191. 784 WesleyTerpstra
192. 784 TalkMI tonHistory

193. 781 Inline
194. 775 Profiling

195. 774 RunningOnDarwin
196. 765 RemoveUnused

197. 757 GenerativeDatatype
198. 754 AST

199. 744 Contify

346


http://mlton.org/WikiSandBox
http://mlton.org/WikiSandBox

MLton Guide (20070826) PageSize

200. 736 EtaExpansion

201. 723 RayRacine

202. 722 Drawbacks

203. 718 Reachability

204. 710 Introducel.oops

205. 702 Redundant

206. 701 RSSASimplify

207. 699 ForeignFunctionlnterface
208. 693 @TemporaryUpload

209. 686 @RayRaCine/MoinEditorBackup
210. 682 GarbageCollection

211. 669 CompilerPassTemplate
212. 668 ToSSA2

213. 661 RunningOnSolaris
214. 661 FrontEnd

215. 660 BISuresh] agannathan/MoinEditorBackup
216. 655 Swerve

217. 654 EditingPages

218. 631 XMLSimplify

219. 629 OpenGL

220. 628 MLtonWord

221. 624 Machine

222. 614 StandardMI .Books
223. 596 OtherSites

224. 590 DefinitionOfStandardML
225. 585 RedundantTests
226. 578 Developers

2217. 575 Multi

228. 560 MLKit

229. 556 PlatformSpecificNotes

230. 551 SureshJagannathan
231. 550 MLtonMonoArray

232, 543 Bug

233. 536 MLtonMonoVector

234, 527 StandardMIImplementations
235. 527 ClosureConvert

236. 525 DeepFlatten

237. 524 AccessControl

238. 523 LLVM

239. 521 Intermediatel anguage

240. 520 CreatingPages
241. 514 SMLNJ

242. 503 Chunkify
243. 501 RSSAShrink

244, 501 PackedRepresentation

245. 498 RunningOnPowerPC
246. 494 PhantomType

247. 487 Looplnvariant
248. 486 CoreML

249, 485 mGTK

250. 480 MichaelNorrish

347


http://mlton.org/TemporaryUpload
http://mlton.org/TemporaryUpload
http://mlton.org/RayRacine_2fMoinEditorBackup
http://mlton.org/RayRacine_2fMoinEditorBackup
http://mlton.org/SureshJagannathan_2fMoinEditorBackup
http://mlton.org/SureshJagannathan_2fMoinEditorBackup

MLton Guide (20070826) PageSize

251. 466 Home

252. 465 MLtonltimer

253. 462 LocalFlatten

254, 457 Globalize

255. 455 Serialization

256. 455 ConstantPropagation
257. 422 HowToAttachFile
258. 421 Poplog

259. 420 Development

260. 412 StandardMI Tutorials
261. 412 SMLSharp

262. 410 @AndreiFormiga/MoinEditorBackup
263. 410 Polyvariance

264. 406 PrecedenceParse

265. 400 TalkStandardML
266. 400 @ReeentChanges
267. 397 TalkMI tonFeatures
268. 397 RunningOnOpenBSD
269. 391 ParallelMove

270. 387 MatthewFluet

271. 385 ToRSSA

272. 382 AllocateRegisters
273. 379 MLtonProcEnv

274. 376 Eclipse

275. 371 SXMILShrink

276. 370 TalkWholeProgram

277. 364 OperatorPrecedence

278. 348 ImplementHandlers

279. 346 SuccessorML

280. 340 MatchCompilation

281. 329 @TomMurphy/MoinEditorB ackup
282. 329 ImperativeTypeVariable

283. 327 MLtonArray

284. 326 ImplementProfiling

285. 319 ImplementExceptions
286. 313 CMinusMinus

287. 309 AndreiFormiga

288. 308 InsertSignalChecks

2809. 306 TalkMI tonApproach
290. 305 InsertLimitChecks

291. 277 TalkFolkl ore

292. 270 TalkHowHigherOrder
293. 266 Pronounce

294, 265 ML

295. 261 MLj

296. 259 Subversion

297. 257 SMINET

298. 254 StandardMI History
299. 244 Bugs20070826

300. 244 TalkFromSMI.To

301. 242 TalkHowPolymorphism

348


http://mlton.org/AndreiFormiga_2fMoinEditorBackup
http://mlton.org/AndreiFormiga_2fMoinEditorBackup
http://mlton.org/RecentChanges
http://mlton.org/RecentChanges
http://mlton.org/TomMurphy_2fMoinEditorBackup
http://mlton.org/TomMurphy_2fMoinEditorBackup

MLton Guide (20070826)

302.
303.
304.
305.
306.
307.
308.
3009.
310.
311.
312.
313.
314.
315.
316.
317.
318.
319.
320.
321.
322.
323.
324.
325.
326.
327.
328.
329.
330.
331.
332.
333.
334.
335S.
336.
337.
338.
339.
340.
341.
342.
343.
344.
345.
346.
347.
348.
349.

242 HaMI et

236 TomMurphy
234 eXene

232 CoreMLSimplify
230 TalkHowModules
230 Immutable

225 ZZZ0OrphanedPages
218 MoscowML

209 fxp

209 Glade

207 SpaceSafety

200 Talk

196 MoinMoin

193 MExperimental

192 HenryCeijtin
190 Variant

176 TalkDiveln

175 JohnnyAndersen
169 StephenWeeks

165 Mutable

152 StyleGuide

141 TrustedGroup

141 RunningOnAMD64
136 TalkTemplate

136 Survey

135 RunningOnX86
129 PolyML

127 LambdaCalculus
125 WantedPages
120 WikiName
118 Alice
112 MikeThomas
97 AdamGoode
92 TILT
86 [BlOldPages
78 OrphanedPages
73 MLtonTextIO
72 MLtonBinlO

69 PageSize

63 RunningOnAIX
61 RunningOnHPUX
59 [@Download

47 Changelog

45 SurveyDone

30 SystemlInfo

26 RunningOnlLinux
15 Index

1 ChrisClearwater

PageSize

(last modified 2004-10-25 16:35:07)

349


http://mlton.org/Experimental
http://mlton.org/Experimental
http://mlton.org/OldPages
http://mlton.org/OldPages
http://mlton.org/Download
http://mlton.org/Download

MLton Guide (20070826) ParallelMove
ParalleIMove

Paralle]lMove is a rewrite pass, agnostic in the Intermediatel.anguage which it produces.

Description

This function computes a sequence of individual moves to effect a parallel move (with possibly overlapping
froms and tos).

Implementation
@parallel—move.sig @parallel—move.fun

Details and Notes

Last edited on 2006-11-02 17:53:17 by MatthewFluet.

350


http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/backend/parallel-move.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/backend/parallel-move.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/backend/parallel-move.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/backend/parallel-move.fun?view=markup

MLton Guide (20070826) Performance

Performance

This page compares the performance of a number of SML compilers on a range of benchmarks. For a

[Blperformance comparison of many different languages, including MLton, see the BiComputer Language
Shootout.

This page compares the following SML compiler versions.

e M1 .ton 20051202
e ML Kit4.1.4

® Moscow ML 2.00
e Poly/ML. 4.1.3

e SMI/NJ 110.57

There are tables for run time, code size, and compile time.

Setup

All benchmarks were compiled and run on a 2.6 GHz Celeron with 2G of RAM. The benchmarks were
compiled with the default settings for all the compilers, except for Moscow ML, which was passed the
-orthodox —-standalone -toplevel switches. The Poly/ML executables were produced by use'ing
the file, followed by a PolyML. commit. The SML/NJ executables were produced by wrapping the entire
program in a 1ocal declaration whose body performs an SMLofNJ.exportFn.

For more details, or if you want to run the benchmarks yourself, please see the @benchmark directory of our
Sources.

All of the benchmarks are available for download from this page. Some of the benchmarks were obtained
from the SML/NJ benchmark suite. Some of the benchmarks expect certain input files to exist in the FIDATA
subdirectory.

o Bhamlet.sml (Fhamlet-input.sml)
o Bray.sml (@lray)

® Wiraytrace.sml (@chess.gml)

o Bivliw.sml (Fndotprod.s)

Run-time ratio

The following table gives the ratio of the run time of each benchmark when compiled by another compiler to
the run time when compiled by MLton. That is, the larger the number, the slower the generated code runs. A
number larger than one indicates that the corresponding compiler produces code that runs more slowly than
MLton. If an entry is *, that means that the corresponding compiler failed to compile the benchmark or that
the benchmark failed to run.

benchmark MLton ML-Kit MosML Poly/ML. SML/NJ
[Bbarnes-hut 1.0 * * * 1.6
Bhoyer 1.0 * 10.1 1.9 3.1
[Blchecksum 1.0 * * * *

351


http://shootout.alioth.debian.org/gp4/benchmark.php?test=all&lang=all
http://shootout.alioth.debian.org/gp4/benchmark.php?test=all&lang=all
http://shootout.alioth.debian.org/gp4/benchmark.php?test=all&lang=mlton&sort=cpu
http://shootout.alioth.debian.org/gp4/benchmark.php?test=all&lang=mlton&sort=cpu
http://shootout.alioth.debian.org/
http://shootout.alioth.debian.org/
http://shootout.alioth.debian.org/
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/benchmark
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/benchmark
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/benchmark/tests/DATA
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/benchmark/tests/DATA
http://mlton.org/pages/Performance/attachments/hamlet.sml
http://mlton.org/pages/Performance/attachments/hamlet.sml
http://mlton.org/pages/Performance/attachments/hamlet-input.sml
http://mlton.org/pages/Performance/attachments/hamlet-input.sml
http://mlton.org/pages/Performance/attachments/ray.sml
http://mlton.org/pages/Performance/attachments/ray.sml
http://mlton.org/pages/Performance/attachments/ray
http://mlton.org/pages/Performance/attachments/ray
http://mlton.org/pages/Performance/attachments/raytrace.sml
http://mlton.org/pages/Performance/attachments/raytrace.sml
http://mlton.org/pages/Performance/attachments/chess.gml
http://mlton.org/pages/Performance/attachments/chess.gml
http://mlton.org/pages/Performance/attachments/vliw.sml
http://mlton.org/pages/Performance/attachments/vliw.sml
http://mlton.org/pages/Performance/attachments/ndotprod.s
http://mlton.org/pages/Performance/attachments/ndotprod.s
http://mlton.org/pages/Performance/attachments/barnes-hut.sml
http://mlton.org/pages/Performance/attachments/barnes-hut.sml
http://mlton.org/pages/Performance/attachments/boyer.sml
http://mlton.org/pages/Performance/attachments/boyer.sml
http://mlton.org/pages/Performance/attachments/checksum.sml
http://mlton.org/pages/Performance/attachments/checksum.sml

MLton Guide (20070826)

[@lcount- graphs
[IDIL_XSimulator

ittt

[ifib
[Biflat-array
Bhamlet
[Blimp-for
[Blknuth-bendix
Bllexgen

[®life

Bllogic
[@imandelbrot
Bimatrix-multiply
®lmds
[Bmerge

[Bimlyacc
[@model-elimination

@m uz

@Blhhucleic
Bloutput1

ipeek
[®lpsdes-random
[Blratio-regions
Blray

[Blraytrace
[Blsimple
[Bsmith-normal-form
[Sitailfib

[Bitak

®itensor

Sltsp

Byan
[Blyector-concat
[Blyector-rev
[Blyliw
[Blwc-inputl
®lwc-scanStream
®lzebra

@ZCI‘H

1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0

30.7
15.2
5.0
2.0

*
*
1.7
*
1.0
1.2

*

34
*
1.2
2.2
*
11.1
22.1
39

*k

60.7

5.0
35.0

63.0
19.8
5.0

30.6
94

34.0
42.5

8.2

78.2

61.4
176.9

34.7
14.8

19.3

51.9
17.0

31.8
15.7
204
41.9

*
&
&

30.2

%

24.2
1.2
1041.6

5.1
4.8
1.7
7.7
1.2
51.1
13.2

1.1
1.2

4.6
235
16.2
17.9
*
2.1
22.3

*

7.3
*

3.2
1.3

*

*

1.0
2.0
2.3

*

7.5
203.7
34

*

0.8
1.3
13.4
3.1
5.6
4.6
1.5
1.4
2.1
1.3
53

7.9
2.2
2.6
4.1
0.8
14.4
11.3
2.7
54
0.8
33
2.4
>1000
14
2.0
7.4
17.7
1.6
20.4
152.4
2.5
17.2
11.5
8.5
2.6

Performance

Note: for SML/NJ, the smith-normal-form benchmark was killed after running for over 25,000 seconds.

352


http://mlton.org/pages/Performance/attachments/count-graphs.sml
http://mlton.org/pages/Performance/attachments/count-graphs.sml
http://mlton.org/pages/Performance/attachments/DLXSimulator.sml
http://mlton.org/pages/Performance/attachments/DLXSimulator.sml
http://mlton.org/pages/Performance/attachments/fft.sml
http://mlton.org/pages/Performance/attachments/fft.sml
http://mlton.org/pages/Performance/attachments/fib.sml
http://mlton.org/pages/Performance/attachments/fib.sml
http://mlton.org/pages/Performance/attachments/flat-array.sml
http://mlton.org/pages/Performance/attachments/flat-array.sml
http://mlton.org/pages/Performance/attachments/hamlet.sml
http://mlton.org/pages/Performance/attachments/hamlet.sml
http://mlton.org/pages/Performance/attachments/imp-for.sml
http://mlton.org/pages/Performance/attachments/imp-for.sml
http://mlton.org/pages/Performance/attachments/knuth-bendix.sml
http://mlton.org/pages/Performance/attachments/knuth-bendix.sml
http://mlton.org/pages/Performance/attachments/lexgen.sml
http://mlton.org/pages/Performance/attachments/lexgen.sml
http://mlton.org/pages/Performance/attachments/life.sml
http://mlton.org/pages/Performance/attachments/life.sml
http://mlton.org/pages/Performance/attachments/logic.sml
http://mlton.org/pages/Performance/attachments/logic.sml
http://mlton.org/pages/Performance/attachments/mandelbrot.sml
http://mlton.org/pages/Performance/attachments/mandelbrot.sml
http://mlton.org/pages/Performance/attachments/matrix-multiply.sml
http://mlton.org/pages/Performance/attachments/matrix-multiply.sml
http://mlton.org/pages/Performance/attachments/md5.sml
http://mlton.org/pages/Performance/attachments/md5.sml
http://mlton.org/pages/Performance/attachments/merge.sml
http://mlton.org/pages/Performance/attachments/merge.sml
http://mlton.org/pages/Performance/attachments/mlyacc.sml
http://mlton.org/pages/Performance/attachments/mlyacc.sml
http://mlton.org/pages/Performance/attachments/model-elimination.sml
http://mlton.org/pages/Performance/attachments/model-elimination.sml
http://mlton.org/pages/Performance/attachments/mpuz.sml
http://mlton.org/pages/Performance/attachments/mpuz.sml
http://mlton.org/pages/Performance/attachments/nucleic.sml
http://mlton.org/pages/Performance/attachments/nucleic.sml
http://mlton.org/pages/Performance/attachments/output1.sml
http://mlton.org/pages/Performance/attachments/output1.sml
http://mlton.org/pages/Performance/attachments/peek.sml
http://mlton.org/pages/Performance/attachments/peek.sml
http://mlton.org/pages/Performance/attachments/psdes-random.sml
http://mlton.org/pages/Performance/attachments/psdes-random.sml
http://mlton.org/pages/Performance/attachments/ratio-regions.sml
http://mlton.org/pages/Performance/attachments/ratio-regions.sml
http://mlton.org/pages/Performance/attachments/ray.sml
http://mlton.org/pages/Performance/attachments/ray.sml
http://mlton.org/pages/Performance/attachments/raytrace.sml
http://mlton.org/pages/Performance/attachments/raytrace.sml
http://mlton.org/pages/Performance/attachments/simple.sml
http://mlton.org/pages/Performance/attachments/simple.sml
http://mlton.org/pages/Performance/attachments/smith-normal-form.sml
http://mlton.org/pages/Performance/attachments/smith-normal-form.sml
http://mlton.org/pages/Performance/attachments/tailfib.sml
http://mlton.org/pages/Performance/attachments/tailfib.sml
http://mlton.org/pages/Performance/attachments/tak.sml
http://mlton.org/pages/Performance/attachments/tak.sml
http://mlton.org/pages/Performance/attachments/tensor.sml
http://mlton.org/pages/Performance/attachments/tensor.sml
http://mlton.org/pages/Performance/attachments/tsp.sml
http://mlton.org/pages/Performance/attachments/tsp.sml
http://mlton.org/pages/Performance/attachments/tyan.sml
http://mlton.org/pages/Performance/attachments/tyan.sml
http://mlton.org/pages/Performance/attachments/vector-concat.sml
http://mlton.org/pages/Performance/attachments/vector-concat.sml
http://mlton.org/pages/Performance/attachments/vector-rev.sml
http://mlton.org/pages/Performance/attachments/vector-rev.sml
http://mlton.org/pages/Performance/attachments/vliw.sml
http://mlton.org/pages/Performance/attachments/vliw.sml
http://mlton.org/pages/Performance/attachments/wc-input1.sml
http://mlton.org/pages/Performance/attachments/wc-input1.sml
http://mlton.org/pages/Performance/attachments/wc-scanStream.sml
http://mlton.org/pages/Performance/attachments/wc-scanStream.sml
http://mlton.org/pages/Performance/attachments/zebra.sml
http://mlton.org/pages/Performance/attachments/zebra.sml
http://mlton.org/pages/Performance/attachments/zern.sml
http://mlton.org/pages/Performance/attachments/zern.sml

MLton Guide (20070826) Performance

Code size

The following table gives the code size of each benchmark in bytes. The size for MLton and the ML Kit is the
sum of text and data for the standalone executable as reported by size. The size for Moscow ML is the size
in bytes of the executable a . out. The size for Poly/ML is the difference in size of the database before the
session start and after the commit. The size for SML/NJ is the size of the heap file created by exportFn and
does not include the size of the SML/NJ runtime system (approximately 100K). A * in an entry means that the
compiler failed to compile the benchmark.

benchmark MLton ML-Kit MosML Poly/ML SML/NJ
[Bbarnes-hut 103,231 * * * 433,216
Bhoyer 138,518 163,204 116,300 122,880 526,376
[@lchecksum 52,794 * * * *
[Blcount-graphs 66,838 84,124 84,613 98,304 454,776
IDILXSimulator 129,398  * * * *

[Biff 64,797 80,240 84,046 65,536 434,256
[Bifib 47,738 18,588 79,892 49,152 415,488
[Biflat-array 47,762 23,820 80,034 49,152 410,680
[Bhamlet 1,256,813 * * * 1,412,360
[Blimp-for 47,626 19,372 80,040 57,344 400,424
[Blknuth-bendix 109,126 93,400 88,439 180,224 431,144
[Bllexgen 203,559 208,332 104,883 196,608 501,824
[Bl]ife 66,130 78,084 83,390 65,536 414,760
[Bllogic 106,614 116,880 87,251 114,688 440,360
[@imandelbrot 47,690 77,004 81,340 57,344 404,520
[Bimatrix-multiply 49,181 87,016 82,417 57,344 435,256
[Blmds 77,646 % * * *
[@imerge 49,318 24,296 80,090 49,152 400,432
[Simlyacc 507,431 473,748 148,286 2,850,816 820,336
[Blmodel-elimination 638,084  * * * 1,009,880
Bimpuz 50,594 73,232 82,382 81,920 408,616
Blnucleic 199,181 258,552 * 221,184 487,480
Bloutput] 80,720 63,336 80,187 49,152 399,400
[Blpeek 76,302 62,092 81,621 57,344 403,544
[Blpsdes-random 48,402 25,196 * * 421,944
[Blratio-regions 73,914 95,924 87,482 73,728 443,448
[Blray 183,243 108,848 89,859 147,456 493,712
[hraytrace 265,332 * * * 636,112
[Blsimple 222,914 192,032 94,396 475,136 756,840
[Bsmith-normal-form 181,686  * * 131,072 558,224
[Bitailfib 47,434 18,804 79,943 57,344 399,400
[Sitak 47,818 18,580 79,908 57,344 411,392
[ensor 97,677  * * * 450,672

353


http://mlton.org/pages/Performance/attachments/barnes-hut.sml
http://mlton.org/pages/Performance/attachments/barnes-hut.sml
http://mlton.org/pages/Performance/attachments/boyer.sml
http://mlton.org/pages/Performance/attachments/boyer.sml
http://mlton.org/pages/Performance/attachments/checksum.sml
http://mlton.org/pages/Performance/attachments/checksum.sml
http://mlton.org/pages/Performance/attachments/count-graphs.sml
http://mlton.org/pages/Performance/attachments/count-graphs.sml
http://mlton.org/pages/Performance/attachments/DLXSimulator.sml
http://mlton.org/pages/Performance/attachments/DLXSimulator.sml
http://mlton.org/pages/Performance/attachments/fft.sml
http://mlton.org/pages/Performance/attachments/fft.sml
http://mlton.org/pages/Performance/attachments/fib.sml
http://mlton.org/pages/Performance/attachments/fib.sml
http://mlton.org/pages/Performance/attachments/flat-array.sml
http://mlton.org/pages/Performance/attachments/flat-array.sml
http://mlton.org/pages/Performance/attachments/hamlet.sml
http://mlton.org/pages/Performance/attachments/hamlet.sml
http://mlton.org/pages/Performance/attachments/imp-for.sml
http://mlton.org/pages/Performance/attachments/imp-for.sml
http://mlton.org/pages/Performance/attachments/knuth-bendix.sml
http://mlton.org/pages/Performance/attachments/knuth-bendix.sml
http://mlton.org/pages/Performance/attachments/lexgen.sml
http://mlton.org/pages/Performance/attachments/lexgen.sml
http://mlton.org/pages/Performance/attachments/life.sml
http://mlton.org/pages/Performance/attachments/life.sml
http://mlton.org/pages/Performance/attachments/logic.sml
http://mlton.org/pages/Performance/attachments/logic.sml
http://mlton.org/pages/Performance/attachments/mandelbrot.sml
http://mlton.org/pages/Performance/attachments/mandelbrot.sml
http://mlton.org/pages/Performance/attachments/matrix-multiply.sml
http://mlton.org/pages/Performance/attachments/matrix-multiply.sml
http://mlton.org/pages/Performance/attachments/md5.sml
http://mlton.org/pages/Performance/attachments/md5.sml
http://mlton.org/pages/Performance/attachments/merge.sml
http://mlton.org/pages/Performance/attachments/merge.sml
http://mlton.org/pages/Performance/attachments/mlyacc.sml
http://mlton.org/pages/Performance/attachments/mlyacc.sml
http://mlton.org/pages/Performance/attachments/model-elimination.sml
http://mlton.org/pages/Performance/attachments/model-elimination.sml
http://mlton.org/pages/Performance/attachments/mpuz.sml
http://mlton.org/pages/Performance/attachments/mpuz.sml
http://mlton.org/pages/Performance/attachments/nucleic.sml
http://mlton.org/pages/Performance/attachments/nucleic.sml
http://mlton.org/pages/Performance/attachments/output1.sml
http://mlton.org/pages/Performance/attachments/output1.sml
http://mlton.org/pages/Performance/attachments/peek.sml
http://mlton.org/pages/Performance/attachments/peek.sml
http://mlton.org/pages/Performance/attachments/psdes-random.sml
http://mlton.org/pages/Performance/attachments/psdes-random.sml
http://mlton.org/pages/Performance/attachments/ratio-regions.sml
http://mlton.org/pages/Performance/attachments/ratio-regions.sml
http://mlton.org/pages/Performance/attachments/ray.sml
http://mlton.org/pages/Performance/attachments/ray.sml
http://mlton.org/pages/Performance/attachments/raytrace.sml
http://mlton.org/pages/Performance/attachments/raytrace.sml
http://mlton.org/pages/Performance/attachments/simple.sml
http://mlton.org/pages/Performance/attachments/simple.sml
http://mlton.org/pages/Performance/attachments/smith-normal-form.sml
http://mlton.org/pages/Performance/attachments/smith-normal-form.sml
http://mlton.org/pages/Performance/attachments/tailfib.sml
http://mlton.org/pages/Performance/attachments/tailfib.sml
http://mlton.org/pages/Performance/attachments/tak.sml
http://mlton.org/pages/Performance/attachments/tak.sml
http://mlton.org/pages/Performance/attachments/tensor.sml
http://mlton.org/pages/Performance/attachments/tensor.sml

MLton Guide (20070826)

Blisp

®ltyan
[@lyector-concat
Blyector-rev
lvliw
Blwc-inputl
[Blwc-scanStream
[$zebra

@zern

Compile time

82,190
134,910
49,018
48,246
393,762
101,850
109,106
141,146
91,087

97,716 86,146
137,800 91,586
23,924 80,194
24,104 80,078

*

%

129,212 85,771
129,708 85,947
41,532 83,422

*

k

%

425,024

196,608 477,272

49,152
57,344
*

49,152
49,152
90,112

%

410,680
410,680
731,304
404,520
405,544
419,896
479,384

Performance

The following table gives the compile time of each benchmark in seconds. A * in an entry means that the
compiler failed to compile the benchmark.

benchmark
[Blbarnes-hut
®hoyer
[Bichecksum
[@lcount- graphs
[GIDI_XSimulator
ittt

®ifib
[Blflat-array
®hamlet
[Sfimp-for
[Slknuth-bendix
Bllexgen

[hife

Bllogic
[Blmandelbrot
@matrix—multiply
®lnds5

[Bimerge

@mlyacc
[@model-elimination

@m Uz

®ihucleic
@output 1
Bipeck
[lpsdes-random
[Blratio-regions

MLton ML-Kit MosML Poly/ML SML/NJ

8.28
8.14
5.45
6.12
9.81
5.95
5.45
5.33
85.70
5.37
7.09
11.02
5.84
7.02
541
5.39
6.01
5.41
24.770
25.04
5.41
14.24
6.05
6.04
5.39
6.63

*

8.99

*

2.06
*
1.32
0.60
0.61
k
0.73
4.11
7.21
2.16
4.82
0.75
0.77
*
0.62
40.69
*
1.07
24.79
0.68
0.70
0.75
4.02

* *

0.39 0.12
* *

0.14 0.05
* *

0.11 0.05
0.05 0.02
0.04 0.01
k k

0.05 0.01
0.19 0.12
0.40 0.26
0.10 0.04
0.22 0.09
0.06 0.02
0.06 0.01
* *

0.06 0.02
3.35 1.08
* *

0.07 0.03
* 0.36
0.05 0.01
0.05 0.02
k k

0.21 0.11

1.37
3.20

*

0.90
*
0.69
0.22
0.25
88.87
0.25
1.60
3.63
0.64
1.68
0.29
0.30
*
0.26
18.04
28.79
0.45
2.78
0.23
0.25
64.13
1.50

354


http://mlton.org/pages/Performance/attachments/tsp.sml
http://mlton.org/pages/Performance/attachments/tsp.sml
http://mlton.org/pages/Performance/attachments/tyan.sml
http://mlton.org/pages/Performance/attachments/tyan.sml
http://mlton.org/pages/Performance/attachments/vector-concat.sml
http://mlton.org/pages/Performance/attachments/vector-concat.sml
http://mlton.org/pages/Performance/attachments/vector-rev.sml
http://mlton.org/pages/Performance/attachments/vector-rev.sml
http://mlton.org/pages/Performance/attachments/vliw.sml
http://mlton.org/pages/Performance/attachments/vliw.sml
http://mlton.org/pages/Performance/attachments/wc-input1.sml
http://mlton.org/pages/Performance/attachments/wc-input1.sml
http://mlton.org/pages/Performance/attachments/wc-scanStream.sml
http://mlton.org/pages/Performance/attachments/wc-scanStream.sml
http://mlton.org/pages/Performance/attachments/zebra.sml
http://mlton.org/pages/Performance/attachments/zebra.sml
http://mlton.org/pages/Performance/attachments/zern.sml
http://mlton.org/pages/Performance/attachments/zern.sml
http://mlton.org/pages/Performance/attachments/barnes-hut.sml
http://mlton.org/pages/Performance/attachments/barnes-hut.sml
http://mlton.org/pages/Performance/attachments/boyer.sml
http://mlton.org/pages/Performance/attachments/boyer.sml
http://mlton.org/pages/Performance/attachments/checksum.sml
http://mlton.org/pages/Performance/attachments/checksum.sml
http://mlton.org/pages/Performance/attachments/count-graphs.sml
http://mlton.org/pages/Performance/attachments/count-graphs.sml
http://mlton.org/pages/Performance/attachments/DLXSimulator.sml
http://mlton.org/pages/Performance/attachments/DLXSimulator.sml
http://mlton.org/pages/Performance/attachments/fft.sml
http://mlton.org/pages/Performance/attachments/fft.sml
http://mlton.org/pages/Performance/attachments/fib.sml
http://mlton.org/pages/Performance/attachments/fib.sml
http://mlton.org/pages/Performance/attachments/flat-array.sml
http://mlton.org/pages/Performance/attachments/flat-array.sml
http://mlton.org/pages/Performance/attachments/hamlet.sml
http://mlton.org/pages/Performance/attachments/hamlet.sml
http://mlton.org/pages/Performance/attachments/imp-for.sml
http://mlton.org/pages/Performance/attachments/imp-for.sml
http://mlton.org/pages/Performance/attachments/knuth-bendix.sml
http://mlton.org/pages/Performance/attachments/knuth-bendix.sml
http://mlton.org/pages/Performance/attachments/lexgen.sml
http://mlton.org/pages/Performance/attachments/lexgen.sml
http://mlton.org/pages/Performance/attachments/life.sml
http://mlton.org/pages/Performance/attachments/life.sml
http://mlton.org/pages/Performance/attachments/logic.sml
http://mlton.org/pages/Performance/attachments/logic.sml
http://mlton.org/pages/Performance/attachments/mandelbrot.sml
http://mlton.org/pages/Performance/attachments/mandelbrot.sml
http://mlton.org/pages/Performance/attachments/matrix-multiply.sml
http://mlton.org/pages/Performance/attachments/matrix-multiply.sml
http://mlton.org/pages/Performance/attachments/md5.sml
http://mlton.org/pages/Performance/attachments/md5.sml
http://mlton.org/pages/Performance/attachments/merge.sml
http://mlton.org/pages/Performance/attachments/merge.sml
http://mlton.org/pages/Performance/attachments/mlyacc.sml
http://mlton.org/pages/Performance/attachments/mlyacc.sml
http://mlton.org/pages/Performance/attachments/model-elimination.sml
http://mlton.org/pages/Performance/attachments/model-elimination.sml
http://mlton.org/pages/Performance/attachments/mpuz.sml
http://mlton.org/pages/Performance/attachments/mpuz.sml
http://mlton.org/pages/Performance/attachments/nucleic.sml
http://mlton.org/pages/Performance/attachments/nucleic.sml
http://mlton.org/pages/Performance/attachments/output1.sml
http://mlton.org/pages/Performance/attachments/output1.sml
http://mlton.org/pages/Performance/attachments/peek.sml
http://mlton.org/pages/Performance/attachments/peek.sml
http://mlton.org/pages/Performance/attachments/psdes-random.sml
http://mlton.org/pages/Performance/attachments/psdes-random.sml
http://mlton.org/pages/Performance/attachments/ratio-regions.sml
http://mlton.org/pages/Performance/attachments/ratio-regions.sml

MLton Guide (20070826)

Blray 9.51
[Blraytrace 13.92
[lsimple 11.40
Blsmith-normal-form 8.90
[ailfib 5.35
[Bltak 5.36
[Gltensor 8.75
[Bltsp 6.50
[Bltyan 8.86
[Blyector-concat 5.52
[Blvector-rev 5.33
[Slvliw 18.28
[Blwc-inputl 6.85
[Slwc-scanStream 7.07
[®zebra 8.57
[lzern 6.20

3.02

13.19

0.64
0.62

1.93
6.25
0.68
0.64

0.68
0.69
2.30

0.15

0.43

0.05
0.05

0.15
0.30
0.05
0.05

0.07
0.06
0.09

0.08

0.21
0.10
0.02
0.01

0.17
0.01
0.02

0.02
0.02
0.04

1.03
5.08
3.76
2.25
0.24
0.22
2.81
0.66
2.28
0.25
0.26
13.12
0.27
0.29
0.78
0.65

Performance

Last edited on 2006-11-02 17:55:30 by MatthewFluet.

355


http://mlton.org/pages/Performance/attachments/ray.sml
http://mlton.org/pages/Performance/attachments/ray.sml
http://mlton.org/pages/Performance/attachments/raytrace.sml
http://mlton.org/pages/Performance/attachments/raytrace.sml
http://mlton.org/pages/Performance/attachments/simple.sml
http://mlton.org/pages/Performance/attachments/simple.sml
http://mlton.org/pages/Performance/attachments/smith-normal-form.sml
http://mlton.org/pages/Performance/attachments/smith-normal-form.sml
http://mlton.org/pages/Performance/attachments/tailfib.sml
http://mlton.org/pages/Performance/attachments/tailfib.sml
http://mlton.org/pages/Performance/attachments/tak.sml
http://mlton.org/pages/Performance/attachments/tak.sml
http://mlton.org/pages/Performance/attachments/tensor.sml
http://mlton.org/pages/Performance/attachments/tensor.sml
http://mlton.org/pages/Performance/attachments/tsp.sml
http://mlton.org/pages/Performance/attachments/tsp.sml
http://mlton.org/pages/Performance/attachments/tyan.sml
http://mlton.org/pages/Performance/attachments/tyan.sml
http://mlton.org/pages/Performance/attachments/vector-concat.sml
http://mlton.org/pages/Performance/attachments/vector-concat.sml
http://mlton.org/pages/Performance/attachments/vector-rev.sml
http://mlton.org/pages/Performance/attachments/vector-rev.sml
http://mlton.org/pages/Performance/attachments/vliw.sml
http://mlton.org/pages/Performance/attachments/vliw.sml
http://mlton.org/pages/Performance/attachments/wc-input1.sml
http://mlton.org/pages/Performance/attachments/wc-input1.sml
http://mlton.org/pages/Performance/attachments/wc-scanStream.sml
http://mlton.org/pages/Performance/attachments/wc-scanStream.sml
http://mlton.org/pages/Performance/attachments/zebra.sml
http://mlton.org/pages/Performance/attachments/zebra.sml
http://mlton.org/pages/Performance/attachments/zern.sml
http://mlton.org/pages/Performance/attachments/zern.sml

MLton Guide (20070826) PhantomType
PhantomType

A phantom type is a type that has no run-time representation, but is used to force the type checker to ensure
invariants at compile time. This is done by augmenting a type with additional arguments (phantom type
variables) and expressing constraints by choosing phantom types to stand for the phantom types in the types
of values.

References

® BlumeOl1
¢ dimensions
¢ C type system
¢ FluetPucella02
¢ subtyping
e socket module in Basis Library

Last edited on 2005-12-02 04:23:48 by StephenWeeks.

356



MLton Guide (20070826)

PlatformSpecificNotes

Here are notes about using MLton on the following platforms.

Operating Systems

* AIX

e Cygwin

e Darwin

® FreeBSD
e HPUX

e Linux

e MinGW

e NetBSD

® OpenBSD
e Solaris

Architectures

e AMD64
e HPPA
e PowerPC

L4 arc

* X86
Also see

¢ PortingMI ton

PlatformSpecificNotes

Last edited on 2007-08-13 01:29:13 by MatthewFluet.

357



MLton Guide (20070826) PolyEqual
PolyEqual

PolyEqual is an optimization pass for the SSA Intermediatel anguage, invoked from SSASimplify.

Description
This pass implements polymorphic equality.
Implementation

@poly—egual.sig @Qoly—egual.fun

Details and Notes

For each datatype, tycon, and vector type, it builds and equality function and translates calls to
MLton_equal into calls to that function.

Also generates calls to Int Inf_equal and Word_equal.

For tuples, it does the equality test inline; i.e., it does not create a separate equality function for each tuple
type.

All equality functions are created only if necessary, i.e., if equality is actually used at a type.
Optimizations:
e for datatypes that are enumerations, do not build a case dispatch, just use MLt on_eq, as the backend

will represent these as ints
¢ deep equality always does an MLt on_eq test first

Last edited on 2007-08-15 22:07:04 by MatthewFluet.

358


http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/poly-equal.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/poly-equal.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/poly-equal.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/poly-equal.fun?view=markup

MLton Guide (20070826) PolyML
PolyML

[BPoly/ML is a Standard ML Compiler.

Also see

® Matthews95

Last edited on 2006-09-04 20:25:25 by StephenWeeks.

359


http://www.polyml.org/
http://www.polyml.org/

MLton Guide (20070826) PolymorphicEquality
PolymorphicEquality

Polymorphic equality is a built-in function in Standard ML that compares two values of the same type for
equality. It is specified as

val = : '"'a * '"'a -> bool

The ' ' a in the specification are equality type variables, and indicate that polymorphic equality can only be
applied to values of an gquality type. It is not allowed in SML to rebind =, so a programmer is guaranteed that
= always denotes polymorphic equality.

. Equality of ground types

. Equality of reals

. Equality of functions

. Equality of immutable types
. Equality of mutable values

. Equality of datatypes

. Implementation
. Also see

01NN kW=

Equality of ground types

Ground types like char, int, and word may be compared (to values of the same type). For example,
13 = 14 istype correct and yields false.

Equality of reals

The one ground type that can not be compared is real. So, 13.0 = 14.0 is not type correct. One can use
Real . == to compare reals for equality, but beware that this has different algebraic properties than
polymorphic equality.

See [@http://mlton.org/basis/real.html for a discussion of why real is not an equality type.

Equality of functions

Comparison of functions is not allowed.

Equality of immutable types

Polymorphic equality can be used on immutable values like tuples, records, lists, and vectors. For example,

is type correct and yields t rue.

360


http://mlton.org/basis/real.html
http://mlton.org/basis/real.html

MLton Guide (20070826) PolymorphicEquality

Equality on immutable values is computed by structure, which means that values are compared by recursively
descending the data structure until ground types are reached, at which point the ground types are compared
with primitive equality tests (like comparison of characters). So, the expression

(1, 2, 31 = [1, 1 +1, 1 + 1 + 1]
is guaranteed to yield t rue, even though the lists may occupy different locations in memory.
Because of structural equality, immutable values can only be compared if their components can be compared.

For example, [1, 2, 3] canbe compared,but [1.0, 2.0, 3.0] cannot. The SML type system uses
equality types to ensure that structural equality is only applied to valid values.

Equality of mutable values

In contrast to immutable values, polymorphic equality of mutable values (like ref cells and arrays) is
performed by pointer comparison, not by structure. So, the expression

ref 13 = ref 13
is guaranteed to yield false, even though the ref cells hold the same contents.

Because equality of mutable values is not structural, arrays and refs can be compared even if their components
are not equality types. Hence, the following expression is type correct (and yields true).

let

val r = ref 13.0
in

r = r
end

Equality of datatypes

Polymorphic equality of datatypes is structural. Two values of the same datatype are equal if they are of the
same yariant and if the variant's arguments are equal (recursively). So, with the datatype

datatype t = A | Bof t
thenB (B A) = B Ais type correct and yields false, whileA = AandB A = B Avyield true.

As polymorphic equality descends two values to compare them, it uses pointer equality whenever it reaches a
mutable value. So, with the datatype

datatype t = A of int ref |

thenA (ref 13) = A (ref 13) istype correct and yields false, because the pointer equality on the
two ref cells yields false.

One weakness of the SML type system is that datatypes do not inherit the special property of the re f and
array type constructors that allows them to be compared regardless of their component type. For example,
after declaring

datatype 'a t = A of 'a ref

361



MLton Guide (20070826) PolymorphicEquality

one might expect to be able to compare two values of type real t, because pointer comparison on a ref cell
would suffice. Unfortunately, the type system can only express that a user-defined datatype admits equality or
not. In this case, t admits equality, which means that int t can be compared but that real t cannot. We
can confirm this with the program

datatype 'a t = A of 'a ref
fun £ (x: real t, y: real t) = x =y

on which MLton reports the following error.

Error: z.sml 2.34.
Function applied to incorrect argument.
expects: [<equality>] * [<equality>]
but got: [<non-equality>] * [<non-equality>]
in: = (x, V)

Implementation

Polymorphic equality is implemented by recursively descending the two values being compared, stopping as
soon as they are determined to be unequal, or exploring the entire values to determine that they are equal.
Hence, polymorphic equality can take time proportional to the size of the smaller value.

MLton uses some optimizations to improve performance.

® When computing structural equality, first do a pointer comparison. If the comparison yields t rue,
then stop and return t rue, since the structural comparison is guaranteed to do so. If the pointer
comparison fails, then recursively descend the values.

e If a datatype is an enum (e.g. datatype t = A | B | C), then a single comparison suffices to
compare values of the datatype. No case dispatch is required to determine whether the two values are
of the same yariant.

® When comparing a known constant non-value-carrying variant, use a single comparison. For example,
the following code will compile into a single comparison for A = x.

datatype t = A | B | C of
if A = x then ...
® When comparing a small constant IntInf.int to another Int Inf.int, use a single comparison

against the constant. No case dispatch is required.

Also see

e AdmitsEqualit
e EqualitvType
e EqualityTypeVariable

Last edited on 2007-07-08 22:57:41 by MatthewFluet.

362



MLton Guide (20070826) Polyvariance

Polyvariance

Polyvariance is an optimization pass for the SXML Intermediatel anguage, invoked from SXMLSimplify.

Description

This pass duplicates a higher-order, 1et bound function at each variable reference, if the cost is smaller than
some threshold.

Implementation
@polyvariance.sig @polyvariance.fun

Details and Notes

Last edited on 2006-11-02 17:48:41 by MatthewFluet.

363


http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/xml/polyvariance.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/xml/polyvariance.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/xml/polyvariance.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/xml/polyvariance.fun?view=markup

MLton Guide (20070826) Poplog
Poplog

BIPOPLOG is a development environment that includes implementations of a number of languages, including
Standard ML.

While POPLOG is actively developed, the ML support predates SML'97, and there is no support for the
BasisLibrary.

Here is a document on @Mixed—language programming in ML and Pop-11.

Last edited on 2005-10-09 23:12:14 by StephenWeeks.

364


http://www.cs.bham.ac.uk/research/poplog/poplog.info.html
http://www.cs.bham.ac.uk/research/poplog/poplog.info.html
http://www.cs.bham.ac.uk/research/poplog/doc/pmlhelp/mlinpop
http://www.cs.bham.ac.uk/research/poplog/doc/pmlhelp/mlinpop

MLton Guide (20070826) PortingMLton

PortingMLton

Porting MLton to a new target platform (architecture or OS) involves the following steps.

1. Make the necessary changes to the scripts, runtime system, Basis Library implementation, and
compiler.

2. Get the regressions working using a cross compiler.

3. Cross compile MLton and bootstrap on the target.

MLton has a native code generator only for AMD64 and X86, so, if you are porting to another architecture,
you must use the C code generator. These notes do not cover building a new native code generator.

Some of the following steps will not be necessary if MLton already supports the architecture or operating
system you are porting to.

What code to change

e Scripts.
¢ Inbin/platform, add new cases to define SHOST_0OS and SHOST_ARCH.
¢ Inbin/upgrade-basis,
¢ add new cases to set Sarch and Sos.
¢ add new cases in the code for MLt on.Plat form to define Arch.t, 0S.t,
Arch.all,and 0S.all.
® Runtime system.

The goal of this step is to be able to successfully run make in the runt ime directory on the target
machine.
¢ Inplatform.h, add a new case to include platform/<os>.h.
¢ Inplatform/<os>.h:
¢ include platform-specific includes.
¢ define MLton_Platform_OS_host.
O define all of the HAS_ * macros.
¢ Inplatform/<os>.c implement any platform-dependent functions that the runtime
needs.
¢ Inbasis/Real/class.c, add the architecture specific code to implement
Real<N>.class (i.e. to determine the class of a floating point number. It would be nice to
implement this code (portably) in the Basis Library implementation some day.
¢ Add rounding mode control to IEEEReal.c for the new arch.
¢ Compile and install the GnuMP. This varies from platform to platform. In
platform/<os>.h, you need to include the appropriate gmp . h.
¢ Make sure the definition of ReturnToC in include/x86-main.h is correct.
® Basis Library implementation (basis—-library/*)
¢ Inmisc/primitive.sml,
0 Add a new variant to the MLton.Platform.Arch.t datatype.
0 Add a new variant to the MLton.Platform.OS.t datatype.
¢ modify the constants that define host to match with
MLton_Platform_OS_host,assetin runtime/platform/<os>.h.
¢ Inmlton/platform. {sig, sml} addanew variant.
¢ In sml-nj/sml-nj.sml, modify getOSKind.

365



MLton Guide (20070826) PortingMLton

¢ Look at all the uses of MLton.Plat form in the Basis Library implementation and see if
you need to do anything special. You might use the following command to see where to look.

find basis-library -type f | xargs grep 'MLton\.Platform'

If in doubt, leave the code alone and wait to see what happens when you run the regression
tests. Here's some that will likely need to be modified.
0 real/pack-real.sml: definition of isBigEndian
¢ Compiler.
¢ Inlib/mlton-stubs/ runmake links toensurethatplatform.sig hasthe
changes made to the basis. Then, update m1ton. sml to add any new variants in
MLton.Platform.

The string used to identify a particular architecture or operating system must be the same (except for possibly
case of letters) in the scripts, runtime, and basis library. Inmlton/main/main. fun, MLton itself uses the
basis library conversions to and from strings:

MLton.Platform. {Arch,0S}.{from,to}String

If the there is a mismatch, you may see the error message st range arch or strange os.

Running the regressions with a cross compiler

When porting to a new platform, it is always best to get all (or as many as possible) of the regressions working
before moving to a self compile. It is easiest to do this by modifying and rebuilding the compiler on a working
machine and then running the regressions with a cross compiler. It is not easy to build a gcc cross compiler, so
we recommend generating the C and assembly on a working machine (using MLton's —target and
—-stop g flags, copying the generated files to the target machine, then compiling and linking there.

1. Remake the compiler on a working machine.

2. Use bin/add-cross to add support for the new target. In particular, this should create
build/lib/<target>/ with the platform-specific necessary cross-compilation information.

3. Run the regression tests with the cross-compiler. To cross-compile all the tests, do

bin/regression —-cross <target>

This will create all the executables. Then, copy bin/regression and the regression directory
to the target machine, and do

bin/regression —-run-only
This should run all the tests.

Repeat this step, interleaved with appropriate compiler modifications, until all the regressions pass.

Bootstrap

Once you've got all the regressions working, you can build MLton for the new target. As with the regressions,
the idea for bootstrapping is to generate the C and assembly on a working machine, copy it to the target
machine, and then compile and link there. Here's the sequence of steps.

366



MLton Guide (20070826) PortingMLton

1. On a working machine, with the newly rebuilt compiler, in the m1ton directory, do:

mlton —-stop g —-target <target> mlton.cm
2. Copy to the target machine.
3. On the target machine, move the libraries to the right place. That is, in build/1ib, do:

rm -rf self target-map
mv <target> self

4. On the target machine, compile and link MLton. That is, in the mlton directory, do something like:

gcc —c —Ibuild/lib/include -Ibuild/lib/self/include -01 -w mlton/mlton.*.[cS]
gcc —o build/lib/mlton-compile \
-Lbuild/lib/self \
-L/usr/local/lib \
mlton.*.o \
—lmlton -lgmp -lgdtoa -1m
5. At this point, MLton should be working and you can finish the rest of a usual make on the target
machine.

make script constants targetmap mlbpathmap world libraries tools install
There are other details to get right, like making sure that the tools directories were clean so that the tools are
rebuilt on the new platform, but hopefully this structure works. Once you've got a compiler on the target

machine, you should test it by running all the regressions normally (i.e. without the —~cross flag) and by
running a couple rounds of self compiles.

Also see

The above description is based on the following emails sent to the MLton list.

° @http://mlton.org/pipermail/mlton/2002—Oct0ber/0 13110.html
o Bihttp://mlton.org/pipermail/mlton/2004-July/016029.html

Last edited on 2007-07-12 18:42:07 by MatthewFluet.

367


http://mlton.org/pipermail/mlton/2002-October/013110.html
http://mlton.org/pipermail/mlton/2002-October/013110.html
http://mlton.org/pipermail/mlton/2004-July/016029.html
http://mlton.org/pipermail/mlton/2004-July/016029.html

MLton Guide (20070826) PrecedenceParse
PrecedenceParse

PrecedenceParse is an analysis/rewrite pass for the AST Intermediatel.anguage, invoked from Elaborate.

Description

This pass rewrites AST function clauses, expressions, and patterns to resolve OperatorPrecedence.
Implementation

[@lprecedence-parse.sig Mprecedence-parse.fun

Details and Notes

Last edited on 2006-11-02 17:51:45 by MatthewFluet.

368


http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/elaborate/precedence-parse.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/elaborate/precedence-parse.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/elaborate/precedence-parse.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/elaborate/precedence-parse.fun?view=markup

MLton Guide (20070826) Printf

Printf

Programmers coming from C or Java often ask if Standard ML has a print £ function. It does not. However,
it is possible to implement your own version with only a few lines of code.

Here is a definition for print f and fprintf, along with format specifiers for booleans, integers, and reals.

structure Printf =
struct
fun $ (_, f) = £ (fn p => p ()) ignore
fun fprintf out £ = £ (out, id)
val printf = fn z => fprintf TextIO.stdOut z

fun one ((out, f), make) g =
g (out, fn r =>
f (fn p =>
make (fn s =>
r (fn () => (p (); TextIO.output (out, s))))))
fun ° x s = one (x, fn f => f s)
fun spec to x = one (x, fn f => f o to)

val B = fn z => spec Bool.toString z

val I = fn z => spec Int.toString =z

val R = fn z => spec Real.toString =z
end

Here's an example use.

val () = printf ""Int="I'" Bool="B'" Real="R'"\n" $ 1 false 2.0
This prints the following.

Int=1 Bool=false Real=2.0

In general, a use of print f looks like

printf <specl> ... <specn> $ <argl> ... <argm>

where each <speci> is either a specifier like B, I, or R, or is an inline string, like * "foo". A backtick (")
must precede each inline string. Each <argi> must be of the appropriate type for the corresponding
specifier.

SML printf is more powerful than its C counterpart in a number of ways. In particular, the function
produced by print £ is a perfectly ordinary SML function, and can be passed around, used multiple times,
etc. For example:

val f: int -> bool -> unit = printf ""Int="I'" Bool="B "\n" $
val () = £ 1 true
val () = £ 2 false

The definition of print £ is even careful to not print anything until it is fully applied. So, examples like the
following will work as expected.

val f: int -> bool -> unit = printf ""Int="I'" Bool="B "\n" $ 13
val () = £ true
val () = £ false

369



MLton Guide (20070826) Printf

It is also easy to define new format specifiers. For example, suppose we wanted format specifiers for
characters and strings.

val C = fn z => spec Char.toString z
val S fn z => spec (fn s => s) z

One can define format specifiers for more complex types, e.g. pairs of integers.

val I2 =
fn z =>
spec (fn (i, 3) =>

concat ["(", Int.toString i, ", ", Int.toString j, ")"])

Here's an example use.

val () = printf ""Test "I2'" a string "S "\n" $ (1, 2) "hello"

Printf via fold

Printf is best viewed as a special case of variable-argument Fold that inductively builds a function as it
processes its arguments. Here is the definition of a Print £ structure in terms of fold. The structure is
equivalent to the above one, except that it uses the standard $ instead of a specialized one.

structure Printf =
struct
fun fprintf out =
Fold.fold ((out, id), £n (_, f) => f (fn p => p ()) ignore)

val printf = fn z => fprintf TextIO.stdOut z

fun one ((out, f), make) =
(out, £fn r =>
f (fn p =>
make (fn s =>
r (En () => (p (); TextIO.output (out, s))))))
val = =
fn z => Fold.stepl (fn (s, x) => one (x, fn f => f s5)) =z

fun spec to = Fold.stepO (fn x => one (x, fn f => f o to))

val B = fn z => spec Bool.toString =z

val I = fn z => spec Int.toString =z

val R = fn z => spec Real.toString z
end

Viewing printf as a fold opens up a number of possibilities. For example, one can name parts of format
strings using the fold idiom for naming sequences of steps.

val IB = fn u => Fold.fold u ""Int="I"" Bool="B
val () = printf IB'" "IB "\n" $ 1 true 3 false

One can even parametrize over partial format strings.

fun XB X = fn u => Fold.fold u ""X="X"" Bool="B

370



MLton Guide (20070826) Printf

val () = printf (XB I)'" "(XB R) "\n" $ 1 true 2.0 false

Also see

e PrintfGentle
e Functional Unparsin

Last edited on 2007-08-15 22:07:07 by MatthewFluet.

371



MLton Guide (20070826) PrintfGentle

PrintfGentle

This page provides a gentle introduction and derivation of Printf, with sections and arrangement more suitable
to a talk.

Introduction

SML does not have print f£. Could we define it ourselves?

val () = printf ("here's an int %d and a real %f.\n", 13, 17.0)
val () = printf ("here's three values (%d, %£, %f).\n", 13, 17.0, 19.0)

What could the type of print f be?

This obviously can't work, because SML functions take a fixed number of arguments. Actually they take one
argument, but if that's a tuple, it can only have a fixed number of components.

From tupling to currying
What about currying to get around the typing problem?

val () printf "here's an int %d and a real %£f.\n" 13 17.0
val () = printf "here's three values (%d, %f, %£f).\n" 13 17.0 19.0

That fails for a similar reason. We need two types for printf.

val printf: string -> int -> real -> unit
val printf: string -> int -> real -> real -> unit

This can't work, because print £ can only have one type. SML doesn't support programmer-defined
overloading.

Overloading and dependent types

Even without worrying about number of arguments, there is another problem. The type of print £ depends
on the format string.

val () = printf "here's an int %d and a real %f.\n" 13 17.0
val () printf "here's a real %f and an int %d.\n" 17.0 13

Now we need

val printf: string -> int -> real -> unit
val printf: string -> real -> int -> unit

Again, this can't possibly working because SML doesn't have overloading, and types can't depend on values.

372



MLton Guide (20070826) PrintfGentle

Idea: express type information in the format string

If we express type information in the format string, then different uses of print £ can have different types.

type 'a t (* the type of format strings *)
val printf: 'a t -> 'a
infix D F

val fsl: (int -> real -> unit) t = "here's an int "D" and a real "F".\n"
val fs2: (int -> real -> real -> unit) t =
"here's three values ("D", "F", "F").\n"
val () = printf fsl1l 13 17.0
val () = printf fs2 13 17.0 19.0

Now, our two calls to print f type check, because the format string specializes print f to the appropriate
type.

The types of format characters

What should the type of format characters D and F be? Each format character requires an additional argument
of the appropriate type to be supplied to printf.

Idea: guess the final type that will be needed for print f the format string and verify it with each format
character.

type ('a, 'b) t (* 'a = rest of type to verify, 'b = final type *)
val ° : string -> ('a, 'a) t (* guess the type, which must be verified *)

val D: (int -> 'a, 'b) t * string -> ('a, 'b) t (* consume an int *)
val F: (real -> 'a, 'b) t * string -> ('a, 'b) t (* consume a real *)
val printf: (unit, 'a) t -> 'a

Don't worry. In the end, type inference will guess and verify for us.

Understanding guess and verify

Now, let's build up a format string and a specialized print£.

infix D F

val f0O = ""here's an int "
val f1 = fO D " and a real "
val f2 = f1 F ".\n"

val p = printf f2

These definitions yield the following types.

val f0: (int -> real -> unit, int -> real -> unit) t
val fl: (real -> unit, int -> real -> unit) t
val f2: (unit, int -> real -> unit) t

val p: int -> real -> unit

So, p is a specialized print f function. We could use it as follows

val ()
val ()

p 13 17.0
p 14 19.0

373



MLton Guide (20070826) PrintfGentle

Type checking this using a functor

signature PRINTF =

sig
type ('a, 'b) t
val ° : string -> ('a, 'a) t
val D: (int -> 'a, 'b) t * string -> ('a, 'b) t
val F: (real -> 'a, 'b) t * string -> ('a, 'b) t
val printf: (unit, 'a) t -> 'a

end

functor Test (P: PRINTF) =
struct
open P
infix D F

val () = printf (' "here's an int "D" and a real "F".\n") 13 17.0

val () = printf (' "here's three values ("D", "F ", "F").\n") 13 17.0 19.0
end

Implementing Printf

Think of a format character as a formatter transformer. It takes the formatter for the part of the format string
before it and transforms it into a new formatter that first does the left hand bit, then does its bit, then continues
on with the rest of the format string.

structure Printf: PRINTF =
struct
datatype ('a, 'b) t = T of (unit -> 'a) -> 'b
fun printf (T £f) = £ (£n () => ())
fun ° s = T (fn a => (print s; a ()))
fun D (T £, s) =

T (fn g => £ (fn () => fn 1 =>
(print (Int.toString i); print s; g ())))

T (fn g => £ (fn () => fn i =>
(print (Real.toString i); print s; g ())))
end

Testing printf

structure 72 = Test (Printf)

User-definable formats

The definition of the format characters is pretty much the same. Within the Print f structure we can define a
format character generator.

val newFormat: ('a -> string) -> ('a -> 'b, 'c) t * string -> ('b, 'c) t =
fn toString => £n (T £, s) =>
T (fn th => £ (fn () => fn a => (print (toString a); print s ; th ())))

374



MLton Guide (20070826)

val D = £n z => newFormat Int.toString z
val F fn z => newFormat Real.toString z

A core Printf

We can now have a very small PRINTF signature, and define all the format strings externally to the core

module.

signature PRINTF =

sig
type ('a, 'b) t
val ° : string -> ('a, 'a) t
val newFormat: ('a -> string) -> ('a -> 'b, 'c) t * string -> ('b,
val printf: (unit, 'a) t -> 'a
end

structure Printf: PRINTF =
struct
datatype ('a, 'b) t = T of (unit -> 'a) -> 'b

fun printf (T £f) = £ (£n () => ())
fun ° s = T (fn a => (print s; a ()))
fun newFormat toString (T £, s) =
T (£fn th =>
f (fn () => £fn a =>
(print (toString a)
; print s

i th ())))
end

Extending to fprintf

One can implement fprintf by threading the outstream through all the transformers.

signature PRINTF =

sig
type ('a, 'b) t
val ° : string -> ('a, 'a) t
val fprintf: (unit, 'a) t * TextIO.outstream -> 'a
val newFormat: ('a -> string) -> ('a -> 'b, 'c) t * string -> ('b,
val printf: (unit, 'a) t -> 'a
end

structure Printf: PRINTF =
struct
type out = TextIO.outstream
val output = TextIO.output

datatype ('a, 'b) t = T of (out -> 'a) -> out —> 'b
fun fprintf (T £, out) = £ (fn _ => ()) out

fun printf t = fprintf (t, TextIO.stdOut)

fun ° s = T (fn a => f£n out => (output (out, s); a out))

PrintfGentle

375



MLton Guide (20070826) PrintfGentle

fun newFormat toString (T £, s) =
T (fn g =>
f (£fn out => £n a =>
(output (out, toString a)
; output (out, s)

;i g out)))
end

Notes

¢ esson: instead of using dependent types for a function, express the the dependency in the type of the
argument.

e [f printf is partially applied, it will do the printing then and there. Perhaps this could be fixed with
some kind of terminator.

A syntactic or argument terminator is not necessary. A formatter can either be eager (as above) or lazy
(as below). A lazy formatter accumulates enough state to print the entire string. The simplest lazy
formatter concatenates the strings as they become available:

structure PrintflLazyConcat: PRINTF =
struct

datatype ('a, 'b) t = T of (string -> 'a) -> string -> 'b
fun printf (T f) = f print ""
fun ° s = T (fn th => £n s' => th (s' *~ s8))

fun newFormat toString (T £, s) =
T (fn th =>
f (fn s' => £fn a =>
th (s' »~ toString a » s)))
end

It is somewhat more efficient to accumulate the strings as a list:

structure PrintflazyList: PRINTFEF =
struct
datatype ('a, 'b) t = T of (string list -> 'a) -> string list -> 'b

fun printf (T f) = £ (List.app print o List.rev) []
fun ° s =T (fn th => fn ss => th (s::ss))
fun newFormat toString (T £, s) =
T (fn th =>
f (fn ss => fn a =>

th (s::toString a::ss)))
end

Also see

e Printf
e Functional Unparsin

Last edited on 2007-07-08 20:54:24 by MatthewFluet.

376



MLton Guide (20070826) ProductType

ProductType

Standard ML has special syntax for products (tuples). A product type is written as

tl * t2 * ... * tN

and a product pattern is written as

(pl, p2, ..., pN)

In most situations the syntax is quite convenient. However, there are situations where the syntax is
cumbersome. There are also situations in which it is useful to construct and destruct n-ary products
inductively, especially when using Fold.

In such situations, it is useful to have a binary product datatype with an infix constructor defined as follows.

datatype ('a, 'b) product = & of 'a * 'b
infix &

With these definitions, one can write an n-ary product as a nested binary product quite conveniently.
xl & x2 & ... & xn

Because of left associativity, this is the same as

(((x1 & xX2) & ...) & xn)

Because & is a constructor, the syntax can also be used for patterns.

The symbol & is inspired by the Curry-Howard isomorphism: the proof of a conjunction (A & B) is a pair of
proofs (a, b).

Example: parser combinators

A typical parser combinator library provides a combinator that has a type of the form.
'a parser * 'b parser -> ('a * 'b) parser

and produces a parser for the concatenation of two parsers. When more than two parsers are concatenated, the
result of the resulting parser is a nested structure of pairs

(...((pl, p2), p3)..., pN)

which is somewhat cumbersome.

By using a product type, the type of the concatenation combinator then becomes
'a parser * 'b parser -> ('a, 'b) product parser

While this doesn't stop the nesting, it makes the pattern significantly easier to write. Instead of

377



MLton Guide (20070826)

(...0(pL, P2), P3)..., PN)
the pattern is written as
pl & P2 & pP3 & ... & PN

which is considerably more concise.

Also see

e VariableArityPolymorphism
e Utilities

ProductType

Last edited on 2007-08-26 19:59:19 by MatthewFluet.

378



MLton Guide (20070826) Profiling
Profiling

With MLton and m1prof, you can profile your program to find out bytes allocated, execution counts, or time
spent in each function. To profile you program, compile with ~-profile kind, where kind is one of alloc,
count, or t ime. Then, run the executable, which will write an m1mon . out file when it finishes. You can
then run m1prof on the executable and the m1mon . out file to see the performance data.

Here are the three kinds of profiling that MLton supports.

e ProfilingAllocation
e ProfilingCounts
e ProfilingTime

Going further

¢ CallGraphs to visualize profiling data.

® HowProfilingWorks

e MLmon

* ML tonProfile to selectively profile parts of your program.
e ProfilingTheStack

e ShowProf

Last edited on 2007-07-08 20:58:34 by MatthewFluet.

379



MLton Guide (20070826)

ProfilingAllocation

ProfilingAllocation

With MLton and m1prof, you can profile your program to find out how many bytes each function allocates.
To do so, compile your program with -profile alloc. For example, suppose that 1ist—-rev.sml is

the following.

fun append (11, 12) =
case 11 of
[1 => 12
| x :: 11 => x :: append (11, 12)

fun rev 1 =
case 1 of
(1 => [l

| x :: 1 => append (rev 1, [x])
val 1 = List.tabulate (1000, £fn i => 1)
val =1 + hd (rev 1)

Compile and run 1ist-rev as follows.

o\

mlton -profile alloc list-rev.sml
./list-rev
mlprof -show-line true list-rev mlmon.out

o

o\

6,030,136 bytes allocated (108,336 bytes by GC)

function cur
append list-rev.sml: 1 97.6%
<gc> 1.8%
<main> 0.4%
rev list-rev.sml: 6 0.2%

The data shows that most of the allocation is done by the append function defined on line 1 of

list-rev.sml. The table also shows how special functions like gc and main are handled: they are printed

with surrounding brackets. C functions are displayed similarly. In this example, the allocation done by the
garbage collector is due to stack growth, which is usually the case.

The run-time performance impact of allocation profiling is noticeable, because it inserts additional C calls for

object allocation.

Compile with ~-profile alloc -profile-branch true to find out how much allocation is done in

each branch of a function; see ProfilingCounts for more details on ~-profile-branch.

Last edited on 2006-11-02 17:51:52 by MatthewFluet.

380



MLton Guide (20070826)

ProfilingCounts

ProfilingCounts

With MLton and m1prof, you can profile your program to find out how many times each function is called

and how many times each branch is taken. To do so, compile your program with

-profile count -profile-branch true. For example, suppose that tak.sml contains the

following.

structure Tak =

struct
fun takl (x, y, z) =
let
fun tak2 (x, y, z) =
if y >= x
then z
else
takl (tak2 (x - 1, vy, z),
tak2 (y - 1, z, x),
tak2 (z - 1, %, y))
in
if y >= x
then z
else
takl (tak2 (x - 1, y, z),
tak2 (y - 1, z, x),
tak2 (z - 1, x, y))
end
end

val rec f =
fn 0 => ()

| ~1 => print "this branch is not taken\n"

| n => (Tak.takl (18, 12, 6) ; f (n-1))
val _ = £ 5000

fun uncalled () = ()

Compile with count profiling and run the program.

% mlton —-profile count -profile-branch true tak.sml

% ./tak

Display the profiling data, along with raw counts and file positions.

)

623,610,002 ticks

function cur
Tak.takl.tak2 tak.sml: 5 38.2% (238,
Tak.takl.tak2.<true> tak.sml: 7 27.5% (171,
Tak.takl tak.sml: 3 10.7% (67,
Tak.takl.<true> tak.sml: 14 10.7% (67,
Tak.takl.tak2.<false> tak.sml: 9 10.7% (67,
Tak.takl.<false> tak.sml: 16 2. (12,

f tak.sml: 23
f.<branch> tak.sml: 25
f.<branch> tak.sml: 23
uncalled tak.sml: 29

o° o° oo

O OO OO JJJu N
oe

o\

O O O O

% mlprof -raw true -show-line true tak mlmon.

out

530,000
510,000
025,000
025,000
020,000
490,000
(5,001
(5,000
(1

(0

381



MLton Guide (20070826) ProfilingCounts

o\

f.<branch> tak.sml: 24 0.0 (0)

Branches are displayed with lexical nesting followed by <branch> where the function name would normally
be, or <true> or <false> for if-expressions. It is best to run mlprof with —show-1ine true to help
identify the branch.

One use of —-profile count is as a code-coverage tool, to help find code in your program that hasn't been
tested. For this reason, m1prof displays functions and branches even if they have a count of zero. As the
above output shows, the branch on line 24 was never taken and the function defined on line 29 was never
called. To see zero counts, it is best to run mlprof with —-raw true, since some code (e.g. the branch on
line 23 above) will show up with 0. 0% but may still have been executed and hence have a nonzero raw count.

Last edited on 2007-08-21 03:44:16 by MatthewFluet.

382



MLton Guide (20070826) ProfilingTheStack

ProfilingTheStack

For all forms of Profiling, you can gather counts for all functions on the stack, not just the currently executing
function. To do so, compile your program with -profile-stack true. For example, suppose that
list-rev.sml contains the following.

fun append (11, 12) =
case 11 of
[1 => 12
| x :: 11 => x :: append (11, 12)

fun rev 1 =
case 1 of
(1 => [l

| x :: 1 => append (rev 1, [x])
val 1 = List.tabulate (1000, £fn i => 1)
val =1 + hd (rev 1)

Compile with stack profiling and then run the program.

% mlton -profile alloc -profile-stack true list-rev.sml
% ./list-rev

Display the profiling data.

% mlprof -show-line true list-rev mlmon.out
6,030,136 bytes allocated (108,336 bytes by GC)

function cur stack GC
append list-rev.sml: 1 97.6% 97.6% 1.4%
<gc> 1.8% 0.0% 1.8%
<main> 0.4% 98.2% 1.8%
rev list-rev.sml: 6 0.2% 97.6% 1.8%

In the above table, we see that rev, defined on line 6 of 1ist—-rev.sml, is only responsible for 0.2% of the
allocation, but is on the stack while 97.6% of the allocation is done by the user program and while 1.8% of the
allocation is done by the garbage collector.

The run-time performance impact of ~-profile-stack true can be noticeable since there is some extra
bookkeeping at every nontail call and return.

Last edited on 2006-11-02 17:42:31 by MatthewFluet.

383



MLton Guide (20070826)

ProfilingTime

ProfilingTime

With MLton and m1prof, you can profile your program to find out how much time is spent in each function
over an entire run of the program. To do so, compile your program with -profile time. For example,

suppose that tak . sm1 contains the following.

structure Tak =

struct
fun takl (x, y, z) =
let
fun tak2 (x, y, z) =
if y >= x
then z
else
takl (tak2 (x - 1, vy, z),
tak2 (y - 1, z, x),
tak2 (z - 1, x, y))
in
if y >= x
then z
else
takl (tak2 (x - 1, y, z),
tak2 (y - 1, z, x),
tak2 (z - 1, x, y))
end
end

val rec f =
fn 0 => ()
| ~1 => print "this branch is not taken\n"
| n => (Tak.takl (18, 12, 6) ; f (n-1))

val _ = £ 5000

fun uncalled () = ()

Compile with time profiling and run the program.

$ mlton -profile time tak.sml
% ./tak

Display the profiling data.

% mlprof tak mlmon.out

6.00 seconds of CPU time (0.00 seconds GC)
function cur

Tak.takl.tak2 75.8%

Tak.takl 24.2%

This example shows how m1prof indicates lexical nesting: as a sequence of period-separated names
indicating the structures and functions in which a function definition is nested. The profiling data shows that
roughly three-quarters of the time is spent in the Tak . tak1.tak2 function, while the rest is spent in

Tak.takl.

Display raw counts in addition to percentages with —raw true.

384



MLton Guide (20070826) ProfilingTime

% mlprof -raw true tak mlmon.out
6.00 seconds of CPU time (0.00 seconds GC)
function cur raw

Tak.takl.tak2 75.8% (4.55s)
Tak.takl 24.2% (1.45s)

Display the file name and line number for each function in addition to its name with ~show-1ine true.

% mlprof -show-line true tak mlmon.out
6.00 seconds of CPU time (0.00 seconds GC)
function cur

Tak.takl.tak2 tak.sml: 5 75.8%
Tak.takl tak.sml: 3 24.2%

Time profiling is designed to have a very small performance impact. However, in some cases there will be a
run-time performance cost, which may perturb the results. There is more likely to be an impact with

—codegen c than —codegen native.

You can also compile with ~-profile time -profile-branch true to find out how much time is
spent in each branch of a function; see ProfilingCounts for more details on ~-profile-branch.

Caveats

With —-profile time, use of the following in your program will cause a run-time error, since they would
interfere with the profiler signal handler.

e MLton.Itimer.set (MLton.Itimer.Prof, ...)
e MLton.Signal.setHandler (MLton.Signal.prof, ...)

Also, because of the random sampling used to implement —-profile time, itis bestto have a long running
program (at least tens of seconds) in order to get reasonable time

Last edited on 2006-11-02 17:38:19 by MatthewFluet.

385



MLton Guide (20070826) Projects

Projects

We have lots of ideas for projects to improve MLton, many of which we do not have time to implement, or at
least haven't started on yet. Here is a list of some of those improvements, ranging from the easy (1 week) to
the difficult (several months). If you have any interest in working on one of these, or some other improvement
to MLton not listed here, please send mail to EAMLton @mlton.org.

e Port to new platform: Windows (native, not Cygwin or MinGW), ...
¢ Source-level debugger
e Heap profiler
e Interfaces to libraries: OpenGL, ...
¢ Additional constant types: Real80, ...
¢ An IDE (possibly integrated with Eclipse)
¢ Port MLRISC and use for code generation
e Optimizations
¢ Improved closure representation
Right now, MLton's closure conversion algorithm uses a simple flat closure to represent each
function.
¢ Elimination of array bounds checks in loops
¢ Elimination of overflow checks on array index computations
¢ Common-subexpression elimination of repeated array subscripts
¢ Loop-invariant code motion, especially for tuple selects
¢ Loop unrolling, especially for small loops
¢ Auto-vectorization, for MMX/SSE/3DNow/AltiVec (see the [Blwork done on GCC)
¢ Optimize MLt on_eq: pointer equality is necessarily false when one of the arguments is
freshly allocated in the block
e Analyses
¢ Uncaught exception analysis

Last edited on 2007-08-23 17:09:17 by MatthewFluet.

386


mailto:MLton@mlton.org
mailto:MLton@mlton.org
http://gcc.gnu.org/projects/tree-ssa/vectorization.html
http://gcc.gnu.org/projects/tree-ssa/vectorization.html

MLton Guide (20070826) Pronounce

Pronounce

Here is how "MLton" sounds.

"MLton" is pronounced in two syllables, with stress on the first syllable. The first syllable sounds like the
word mill (as in "steel mill"), the second like the word tin (as in "cookie tin").

Last edited on 2005-12-02 00:54:13 by StephenWeeks.

387


http://mlton.org/pages/Pronounce/attachments/pronounce-mlton.mp3
http://mlton.org/pages/Pronounce/attachments/pronounce-mlton.mp3

MLton Guide (20070826) PropertyList
PropertyList

A property list is a dictionary-like data structure into which properties (name-value pairs) can be inserted and
from which properties can be looked up by name. The term comes from the Lisp language, where every
symbol has a property list for storing information, and where the names are typically symbols and keys can be
any type of value.

Here is an SML signature for property lists such that for any type of value a new property can be dynamically
created to manipulate that type of value in a property list.

signature PROPERTY_LIST =
sig
type t

val new: unit -> t
val newProperty: unit -> {add: t * 'a -> unit,
peek: t -> 'a option}
end

Here is a functor demonstrating the use of property lists. It first creates a property list, then two new properties
(of different types), and adds a value to the list for each property.

functor Test (P: PROPERTY_LIST) =
struct
val pl = P.new ()

val {add = addInt: P.t * int -> unit, peek = peekInt} = P.newProperty ()
val {add = addReal: P.t * real -> unit, peek = peekReal} = P.newProperty ()

val () = addInt (pl, 13)

val () = addReal (pl, 17.0)

val sl = Int.toString (valOf (peekInt pl))

val s2 = Real.toString (valOf (peekReal pl))

val () = print (concat [s1l, " ", s2, "\n"])
end

Applied to an appropriate implementation PROPERTY_LIST, the Test functor will produce the following
output.

13 17.0

Implementation

Because property lists can hold values of any type, their implementation requires a UniversalType. Given that,
a property list is simply a list of elements of the universal type. Adding a property adds to the front of the list,
and looking up a property scans the list.

functor PropertyList (U: UNIVERSAL_TYPE): PROPERTY_LIST =
struct
datatype t = T of U.t list ref

fun new () = T (ref [])

fun 'a newProperty () =
let

388



MLton Guide (20070826) PropertyList

val (inject, out) = U.embed ()
fun add (T r, a: 'a): unit = r := inject a :: (!r)
fun peek (T r) =
Option.map (valOf o out) (List.find (isSome o out) (!'r))
in
{add = add, peek = peek}
end

end

If U: UNIVERSAL_TYPE, then we can test our code as follows.
structure 7 = Test (PropertylList (U))

Of course, a serious implementation of property lists would have to handle duplicate insertions of the same
property, as well as the removal of elements in order to avoid space leaks.

Also see

MLton relies heavily on property lists for attaching information to syntax tree nodes in its intermediate
languages. See Mproperty-list.sig @property-list.fun.

The MLRISCLibrary uses property lists extensively.

Last edited on 2007-08-23 13:55:21 by MatthewFluet.

389


http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/lib/mlton/basic/property-list.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/lib/mlton/basic/property-list.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/lib/mlton/basic/property-list.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/lib/mlton/basic/property-list.fun?view=markup

MLton Guide (20070826) RSSA

RSSA

RSSA is an Intermediatel anguage, translated from SSA2 by ToRSSA, optimized by RSSASimplify, and
translated by ToMachine to Machine.

Description

RSSA is a Intermediatel .anguage that makes representation decisions explicit.

Implementation

@rssa.sig [Glrssa.fun

Type Checking

The new type language is aimed at expressing bit-level control over layout and associated packing of data
representations. There are singleton types that denote constants, other atomic types for things like integers and
reals, and arbitrary sum types and sequence (tuple) types. The big change to the type system is that type
checking is now based on subtyping, not type equality. So, for example, the singleton type OxXFFFFEEBB
whose only inhabitant is the eponymous constant is a subtype of the type Word32.

Details and Notes

SSA is an abbreviation for Static Single Assignment. The RSSA Intermediatel.anguage is a variant of SSA.

Last edited on 2006-11-02 17:35:24 by MatthewFluet.

390


http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/backend/rssa.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/backend/rssa.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/backend/rssa.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/backend/rssa.fun?view=markup

MLton Guide (20070826) RSSAShrink

RSSAShrink

RSSAShrink is an optimization pass for the RSSA Intermediatel.anguage.

Description

This pass implements a whole family of compile-time reductions, like:

e constant folding, copy propagation
¢ inline the Got o to a block with a unique predecessor

Implementation

@shrink.sig [Slshrink. fun
@shrink.sig [Slshrink. fun

Details and Notes

Last edited on 2006-11-02 17:48:32 by MatthewFluet.

391


http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/shrink.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/shrink.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/shrink.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/shrink.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/shrink.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/shrink.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/shrink.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/shrink.fun?view=markup

MLton Guide (20070826)

RSSASimplify

RSSASimplify

The optimization passes for the RSSA Intermediatel.anguage are collected and controlled by the Backend

functor (@backend.sig Mlbackend.fun).
The following optimization pass is implemented:
e RSSAShrink
The following implementation passes are implemented:
¢ ImplementHandlers
¢ ImplementProfilin
e Insertl imitChecks
¢ InsertSignalChecks
The optimization passes can be controlled from the command-line by the options
® —-diag-pass <pass> -- keep diagnostic info for pass

¢ —drop-pass <pass> -- omit optimization pass
® —keep-pass <pass> -- keep the results of pass

Last edited on 2006-11-02 17:52:35 by MatthewFluet.

392


http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/backend/backend.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/backend/backend.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/backend/backend.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/backend/backend.fun?view=markup

MLton Guide (20070826) RayRacine

RayRacine

Using SML in some Semantic Web stuff. Anyone interested in similar, please contact me. GreyLensman on
#sml on IRC or rracine at this domain adelphia with a dot here net.

Current areas of coding.

. Pretty solid, high performance Rete implementation - base functionality is complete.

. N3 parser - mostly complete

. RDF parser based on fxg - not started.

. Swerve HTTP server - 1/2 done.

. SPARQL implementation - not started.

. Persistent engine based on BerkelyDB - not started.

. Native implementation of Postgresql protocol - underway, ways to go.

. I also have a small change to the MLton compiler to add PackWord<N> - changes compile but
needs some more work, clean-up and unit tests.

0N LN AW~

Last edited on 2007-07-08 21:14:28 by MatthewFluet.

393



MLton Guide (20070826) Reachability

Reachability

Reachability is a notion dealing with the graph of heap objects maintained at runtime. Nodes in the graph are
heap objects and edges correspond to the pointers between heap objects. As the program runs, it allocates new
objects (adds nodes to the graph), and those new objects can contain pointers to other objects (new edges in
the graph). If the program uses mutable objects (refs or arrays), it can also change edges in the graph.

At any time, the program has access to some finite set of root nodes, and can only ever access nodes that are
reachable by following edges from these root nodes. Nodes that are unreachable can be garbage collected.

Also see

e MI tonFinalizable
e MI tonWeak

Last edited on 2006-08-21 19:41:42 by StephenWeeks.

394



MLton Guide (20070826) Redundant

Redundant

Redundant is an optimization pass for the SSA Intermediatel anguage, invoked from SSASimplify.

Description

m

Implementation

[Blredundant. sig [lredundant.fun

Details and Notes

The reason Redundant got put in was due to some output of the ClosureConvert pass converter where the
environment record, or components of it, were passed around in several places. That may have been more
relevant with polyvariant analyses (which are long gone). But it still seems possibly relevant, especially with
more aggressive flattening, which should reveal some fields in nested closure records that are redundant.

Last edited on 2006-11-02 17:53:25 by MatthewFluet.

395


http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/redundant.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/redundant.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/redundant.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/redundant.fun?view=markup

MLton Guide (20070826) RedundantTests
RedundantTests

RedundantTests is an optimization pass for the SSA Intermediatel anguage, invoked from SSASimplify.

Description

This pass simplifies conditionals whose results are implied by a previous conditional test.

Implementation

@redundant—tests.sig [Blredundant-tests.fun

Details and Notes

An additional test will sometimes eliminate the overflow test when adding or subtracting 1. In particular, it
will eliminate it in the following cases:

if x <y
then ... x + 1 ...
else ...y — 1 ...

Last edited on 2006-11-02 17:37:46 by MatthewFluet.

396


http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/redundant-tests.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/redundant-tests.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/redundant-tests.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/redundant-tests.fun?view=markup

MLton Guide (20070826) RefFlatten

RefFlatten

Refflatten is an optimization pass for the SSA2 Intermediatel.anguage, invoked from SSA2Simplify.

Description

This pass flattens a re f cell into its containing object. The idea is to replace, where possible, a type like
(int ref * real)

with a type like
(int [m] * real)

where the [m] indicates a mutable field of a tuple.

Implementation

@ref—flatten.sig [Blref-flatten.fun

Details and Notes

The savings is obvious, I hope. We avoid an extra heap-allocated object for the re £, which in the above case
saves two words. We also save the time and code for the extra indirection at each get and set. There are lots of
useful data structures (singly-linked and doubly-linked lists, union-find, Fibonacci heaps, ...) that I believe we
are paying through the nose right now because of the absence of ref flattening.

The idea is to compute for each occurrence of a ref type in the program whether or not that re f can be
represented as an offset of some object (constructor or tuple). As before, a unification-based whole-program
with deep abstract values makes sure the analysis is consistent.

The only syntactic part of the analysis that remains is the part that checks that for a variable bound to a value
constructed by Ref_ref:

¢ the object allocation is in the same block. This is pretty draconian, and it would be nice to generalize
it some day to allow flattening as long as the ref allocation and object allocation "line up
one-to-one" in the same loop-free chunk of code.

¢ updates occur in the same block (and hence it is safe-for-space because the containing object is still
alive). It would be nice to relax this to allow updates as long as it can be proved that the container is
live.

Prevent flattening of unit refs.
RefFlatten is safe for space. The idea is to prevent a re f being flattened into an object that has a component

of unbounded size (other than possibly the ref itself) unless we can prove that at each point the ref is live,
then the containing object is live too. I used a pretty simple approximation to liveness.

Last edited on 2007-08-15 22:07:14 by MatthewFluet.

397


http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/ref-flatten.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/ref-flatten.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/ref-flatten.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/ref-flatten.fun?view=markup

MLton Guide (20070826) References

References

A

e [BlAn Experimental Analysis of Self-Adjusting Computation Umut Acar, Guy Blelloch, Matthias
Blume, and Kanat Tangwongsan. PLDI 2006.

e [BiCompiling with Continuations (laddall). ISBN 0521416957. Andrew W. Appel. Cambridge
University Press, 1992.

* [BIA Critique of Standard ML.. Andrew W. Appel. JEP 1993.

¢ Shrinking Lambda Expressions in Linear Time. Andrew Appel and Trevor Jim. JEP 1997.

o @iModern Compiler Implementation in ML (®laddall). ISBN 0521582741 Andrew W. Appel.
Cambridge University Press, 1998.

e [BlTree Pattern Matching for ML.. Marianne Baudinet, David MacQueen. 1985.
Describes the match compiler used in an early version of SML/NJ.

¢ WCompiling Standard ML to Java Bytecodes. Nick Benton, Andrew Kennedy, and George Russell.
ICFP 1998.

¢ Wnterlanguage Working Without Tears: Blending SMIL with Java. Nick Benton and Andrew
Kennedy. ICEP 1999.

¢ lWExceptional Syntax. Nick Benton and Andrew Kennedy. JEP 2001.

e [BlAdventures in Interoperability: The SMIL.NET Experience. Nick Benton, Andrew Kennedy, and
Claudio Russo. PPDP 2004.

¢ WShrinking Reductions in SMI..NET. Nick Benton, Andrew Kennedy, Sam Lindley and Claudio
Russo. IFL 2004.
Describes a linear-time implementation of an Appel-Jim shrinker, using a mutable IL, and shows that
it yields nice speedups in SML.NET's compile times. There are also benchmarks showing that
SML.NET when compiled by MLton runs roughly five times faster than when compiled by SML/NJ.

e [BEmbedded Interpreters. Nick Benton. JEP 2005.

o [WThe Edinburgh SMI Library. Dave Berry. University of Edinburgh Technical Report
ECS-LFCS-91-148, 1991.

¢ [BIA semantics for ML concurrency primitives. Dave Berry, Robin Milner, and David N. Turner.
POPIL. 1992.

¢ Lessons From the Design of a Standard ML Library. Dave Berry. JEP 1993.

¢ WCompiling SML to Java Bytecode. Peter Bertelsen. Master's Thesis, 1998.
¢ W00 Programming styles in MIL.. Bernard Berthomieu. LAAS Report #2000111, 2000.

° @No—Longer—Foreign: Teaching an ML compiler to speak C "natively". Matthias Blume. BABEL
2001.

° ortable library descriptions for Standard ML.. Matthias Blume. 2001.

e [@IDestructors. Finalizers. and Synchronization. Hans Boehm. POPL 2003.

Discusses a number of issues in the design of finalizers. Many of the design choices are consistent with
MlLtonFinalizable.

398


http://ttic.uchicago.edu/~umut/papers/pldi06.html
http://ttic.uchicago.edu/~umut/papers/pldi06.html
http://us.cambridge.org/titles/catalogue.asp?isbn=0521416957
http://us.cambridge.org/titles/catalogue.asp?isbn=0521416957
http://www.addall.com/New/submitNew.cgi?query=0-521-41695-7&type=ISBN&location=10000&state=&dispCurr=USD
http://www.addall.com/New/submitNew.cgi?query=0-521-41695-7&type=ISBN&location=10000&state=&dispCurr=USD
http://citeseer.ist.psu.edu/appel92critique.html
http://citeseer.ist.psu.edu/appel92critique.html
http://us.cambridge.org/titles/catalogue.asp?isbn=0521582741
http://us.cambridge.org/titles/catalogue.asp?isbn=0521582741
http://www.addall.com/New/submitNew.cgi?query=0-521-58274-1&type=ISBN&location=10000&state=&dispCurr=USD
http://www.addall.com/New/submitNew.cgi?query=0-521-58274-1&type=ISBN&location=10000&state=&dispCurr=USD
http://citeseer.ist.psu.edu/baudinet85tree.html
http://citeseer.ist.psu.edu/baudinet85tree.html
http://citeseer.ist.psu.edu/benton98compiling.html
http://citeseer.ist.psu.edu/benton98compiling.html
http://citeseer.ist.psu.edu/benton99interlanguage.html
http://citeseer.ist.psu.edu/benton99interlanguage.html
http://citeseer.ist.psu.edu/388363.html
http://citeseer.ist.psu.edu/388363.html
http://www.research.microsoft.com/~nick/p53-Benton.pdf
http://www.research.microsoft.com/~nick/p53-Benton.pdf
http://research.microsoft.com/~akenn/sml/ShrinkingReductionsInSMLNet.pdf
http://research.microsoft.com/~akenn/sml/ShrinkingReductionsInSMLNet.pdf
http://research.microsoft.com/~nick/benton03.pdf
http://research.microsoft.com/~nick/benton03.pdf
http://www.lfcs.inf.ed.ac.uk/reports/91/ECS-LFCS-91-148/index.html
http://www.lfcs.inf.ed.ac.uk/reports/91/ECS-LFCS-91-148/index.html
http://portal.acm.org/citation.cfm?id=143191
http://portal.acm.org/citation.cfm?id=143191
http://citeseer.ist.psu.edu/bertelsen98compiling.html
http://citeseer.ist.psu.edu/bertelsen98compiling.html
http://www.laas.fr/~bernard/oo/ooml.html
http://www.laas.fr/~bernard/oo/ooml.html
http://citeseer.ist.psu.edu/blume01nolongerforeign.html
http://citeseer.ist.psu.edu/blume01nolongerforeign.html
http://ttic.uchicago.edu/~blume/pgraph/proposal.pdf
http://ttic.uchicago.edu/~blume/pgraph/proposal.pdf
http://citeseer.ist.psu.edu/640926.html
http://citeseer.ist.psu.edu/640926.html

MLton Guide (20070826) References

C

o BiFlow-directed Closure Conversion for Typed Languages. Henry Cejtin, Suresh Jagannathan, and
Stephen Weeks. ESOP 2000.
Describes MLton's closure-conversion algorithm, which translates from its simply-typed higher-order
intermediate language to its simply-typed first-order intermediate language.

o [BIA Parallel, Real-Time Garbage Collector. Perry Cheng and Guy E. Blelloch. PLDI 2001.

o W0QuickCheck: A Lightweight Tool for Random Testing of Haskell Programs. Koen Claessen and
John Hughes. ICEP 2000.

* [@Proper Tail Recursion and Space Efficiency. William D. Clinger. PLDI 1998.
o BIAdding Threads to Standard ML. Eric C. Cooper and J. Gregory Morrisett. CMU Technical Report
CMU-CS-90-186, 1990.

e 9Stream Fusion: From Lists to Streams to Nothing at All. Duncan Coutts, Roman Leshchinskiy, and
Don Stewart. Submitted for publication. April 2007.

¢ W Principal Type-Schemes for Functional Programs. Luis Damas and Robin Milner. POPL 1982.
e [BFunctional Unparsing. Olivier Danvy. BRICS Technical Report RS 98-12, 1998.
e [BIExhancements to eXene. Dustin B. Deboer. Master of Science Thesis, 2005.
Describes ways to improve widget concurrency, handling of input focus, X resources and selections.

e [BA Concurrent. Generational Garbage Collector for a Multithreaded Implementation of MI.. Damien
Doligez and Xavier Leroy. POPL 1993.

e [BModular Type Classes. Derek Dreyer, Robert Harper, Manuel M.T. Chakravarty. University of
Chicago Technical Report TR-2007-02, 2006.

¢ WPrincipal Type Schemes for Modular Programs. Derek Dreyer and Matthias Blume. ESOP 2007.
o [ElExtensional Polymorphism. Catherin Dubois, Francois Rouaix, and Pierre Weis. POPL 1995.

An extension of ML that allows the definition of ad-hoc polymorphic functions by inspecting the type of their
argument.

E

o BiGarbage Collection Safety for Region-based Memory Management. Martin Elsman. TLDI 2003.
o BIType-Specialized Serialization with Sharing Martin Elsman. University of Copenhagen. IT
University Technical Report TR-2004-43, 2004.

o [@The Little MLer (Bladdall). ISBN 026256114X. Matthias Felleisen and Dan Freidman. The MIT
Press, 1998.

o [BIK|ll-Safe Synchronization Abstractions. Matthew Flatt and Robert Bruce Findler. PLDI 2004.

* BiContification Using Dominators. Matthew Fluet and Stephen Weeks. ICEP 2001.
Describes contification, a generalization of tail-recursion elimination that is an optimization
operating on MLton's static single assignment (SSA) intermediate language.

e BiPhantom Types and Subtyping. Matthew Fluet and Riccardo Pucella. TCS 2002.

e [@Generic Polymorphism in ML. J. Furuse. JELA 2001.

399


http://mlton.org/pages/References/attachments/CejtinEtAl00.pdf
http://mlton.org/pages/References/attachments/CejtinEtAl00.pdf
http://citeseer.ist.psu.edu/493194.html
http://citeseer.ist.psu.edu/493194.html
http://www.md.chalmers.se/~koen/Papers/quick.ps
http://www.md.chalmers.se/~koen/Papers/quick.ps
http://citeseer.ist.psu.edu/clinger98proper.html
http://citeseer.ist.psu.edu/clinger98proper.html
http://citeseer.ist.psu.edu/cooper90adding.html
http://citeseer.ist.psu.edu/cooper90adding.html
http://www.cse.unsw.edu.au/~dons/papers/CLS07.html
http://www.cse.unsw.edu.au/~dons/papers/CLS07.html
http://portal.acm.org/citation.cfm?id=582176
http://portal.acm.org/citation.cfm?id=582176
http://citeseer.ist.psu.edu/danvy98functional.html
http://citeseer.ist.psu.edu/danvy98functional.html
http://www.cis.ksu.edu/~stough/eXene/dusty-thesis.pdf
http://www.cis.ksu.edu/~stough/eXene/dusty-thesis.pdf
http://citeseer.ist.psu.edu/doligez93concurrent.html
http://citeseer.ist.psu.edu/doligez93concurrent.html
http://ttic.uchicago.edu/~dreyer/papers/mtc/main-long.pdf
http://ttic.uchicago.edu/~dreyer/papers/mtc/main-long.pdf
http://ttic.uchicago.edu/~dreyer/papers/infmod/main-short.pdf
http://ttic.uchicago.edu/~dreyer/papers/infmod/main-short.pdf
ftp://ftp.inria.fr/INRIA/Projects/cristal/Francois.Rouaix/generics.dvi.Z
ftp://ftp.inria.fr/INRIA/Projects/cristal/Francois.Rouaix/generics.dvi.Z
http://www.it-c.dk/research/mlkit/papers.html
http://www.it-c.dk/research/mlkit/papers.html
http://www.itu.dk/people/mael/papers.html
http://www.itu.dk/people/mael/papers.html
http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=4787
http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=4787
http://www3.addall.com/New/submitNew.cgi?query=026256114X&type=ISBN
http://www3.addall.com/New/submitNew.cgi?query=026256114X&type=ISBN
http://www.cs.utah.edu/plt/kill-safe/
http://www.cs.utah.edu/plt/kill-safe/
http://mlton.org/pages/References/attachments/FluetWeeks01.ps.gz
http://mlton.org/pages/References/attachments/FluetWeeks01.ps.gz
http://arxiv.org/abs/cs.PL/0403034
http://arxiv.org/abs/cs.PL/0403034
http://pauillac.inria.fr/~furuse/publications/jfla2001.ps.gz
http://pauillac.inria.fr/~furuse/publications/jfla2001.ps.gz

MLton Guide (20070826) References

The formalism behind G'CAML, which has an approach to ad-hoc polymorphism based on Dubois95, the
differences being in how type checking works an an improved compilation approach for typecase that does
the matching at compile time, not run time.

G

o [BIA Multi-Threaded Higher-order User Interface Toolkit. Emden R. Gansner and John H. Reppy.
User Interface Software, 1993.

o [BiThe Standard ML Basis Library. (8laddall) ISBN 0521794781. Emden R. Gansner and John H.
Reppy. Cambridge University Press, 2004.
An introduction and overview of the Basis Library, followed by a detailed description of each module.
The module descriptions are also available Blonline.

° @Region—based Memory Management in Cyclone. Dan Grossman, Greg Morrisett, Trevor Jim,
Michael Hicks, Yanling Wang, and James Cheney. PLDI 2002.

¢ WCombining Region Inference and Garbage Collection. Niels Hallenberg, Martin Elsman, and Mads
Tofte. PLDI 2002.

¢ Wntroduction to Programming Using SML (Bladdall). ISBN 0201398206. Michael R. Hansen, Hans
Rischel. Addison-Wesley, 1999.

¢ W Typing First-Class Continuations in ML. Robert Harper, Bruce F. Duba, and David MacQueen. JEP
1993.

¢ 90n the Type Structure of Standard ML. Robert Harper and John C. Mitchell. TOPLAS 1992.

¢ WOn the Practicality and Desirability of Highly-concurrent. Mostly-functional Programming. Carl H.
Hauser and David B. Benson. ACSD 2004.

Describes the use of Concurrent ML in implementing the Ped text editor. Argues that using large
numbers of threads and message passing style are is a practical and effective ways of modularizing a
program.

o [BIA Functional Description of TeX's Formula Layout. Reinhold Heckmann and Reinhard Wilhelm.
JEP 1997.

e WSafe and Flexible Memory Management in Cyclone. Mike Hicks, Greg Morrisett, Dan Grossman,
and Trevor Jim. University of Maryland Technical Report CS-TR-4514, 2003.

¢ WCompiling HOI 4 to Native Code. Joe Hurd. TPHOL.s 2004.

Describes a port of HOL from Moscow ML to MLton, the difficulties encountered in compiling large
programs, and the speedups achieved (roughly 10x).

I
J

. @Garbage Collection: Algorithms for Automatic Memory Management (@laddall). ISBN
0471941484. Richard Jones. John Wiley & Sons, 1999.

o [BMistakes and Ambiguities in the Definition of Standard ML. Stefan Kahrs. University of Edinburgh
Technical Report ECS-LFCS-93-257, 1993.

400


http://citeseer.ist.psu.edu/gansner93multithreaded.html
http://citeseer.ist.psu.edu/gansner93multithreaded.html
http://titles.cambridge.org/catalogue.asp?isbn=0521794781
http://titles.cambridge.org/catalogue.asp?isbn=0521794781
http://www3.addall.com/New/submitNew.cgi?query=0521794781&type=ISBN
http://www3.addall.com/New/submitNew.cgi?query=0521794781&type=ISBN
http://mlton.org/basis/
http://mlton.org/basis/
http://www.eecs.harvard.edu/~greg/cyclone/
http://www.eecs.harvard.edu/~greg/cyclone/
http://www.it-c.dk/research/mlkit/papers.html
http://www.it-c.dk/research/mlkit/papers.html
http://www.it.dtu.dk/introSML
http://www.it.dtu.dk/introSML
http://www3.addall.com/New/submitNew.cgi?query=0201398206&type=ISBN
http://www3.addall.com/New/submitNew.cgi?query=0201398206&type=ISBN
http://citeseer.comp.nus.edu.sg/11210.html
http://citeseer.comp.nus.edu.sg/11210.html
http://citeseer.ist.psu.edu/harper92type.html
http://citeseer.ist.psu.edu/harper92type.html
http://doi.ieeecomputersociety.org/10.1109/CSD.2004.1309122
http://doi.ieeecomputersociety.org/10.1109/CSD.2004.1309122
http://rw4.cs.uni-sb.de/~heckmann/abstracts/neuform.html
http://rw4.cs.uni-sb.de/~heckmann/abstracts/neuform.html
http://www.eecs.harvard.edu/~greg/cyclone/
http://www.eecs.harvard.edu/~greg/cyclone/
http://www.cl.cam.ac.uk/~jeh1004/research/papers/fasthol.pdf
http://www.cl.cam.ac.uk/~jeh1004/research/papers/fasthol.pdf
http://www.cs.kent.ac.uk/people/staff/rej/gcbook/gcbook.html
http://www.cs.kent.ac.uk/people/staff/rej/gcbook/gcbook.html
http://www3.addall.com/New/submitNew.cgi?query=0471941484&type=ISBN
http://www3.addall.com/New/submitNew.cgi?query=0471941484&type=ISBN
http://www.cs.kent.ac.uk/pubs/1993/569/index.html
http://www.cs.kent.ac.uk/pubs/1993/569/index.html

MLton Guide (20070826) References

There are also the [@laddenda published in 1996.
Describes a number of problems with the 1990 Definition, many of which were fixed in the 1997
Definition.

e [BiPickler Combinators. Andrew Kennedy. JEP 2004.

e Wsmi2java: A Source To Source Translator. Justin Koser, Haakon Larsen, Jeffrey A. Vaughan.
DPCOOL 2003.

o [BFaster Algorithms for Finding Minimal Consistent DFAs. Kevin Lang. 1999.
¢ WIMGTK: An SML binding of Gtk+. Ken Larsen and Henning Niss. USENIX Annual Technical

Conference, 2004.

o [BiThe ZINC Experiment: an Economical Implementation of the ML Language. Xavier Leroy.
Technical report 117, INRIA, 1990.
A detailed explanation of the design and implementation of a bytecode compiler and interpreter for
ML with a machine model aimed at efficient implementation.

* [@Polymorphism by Name for References and Continuations. Xavier Leroy. POPL 1993.
o [BIMLRISC Annotations. Allen Leung and Lal George. 1998.

o [BAsynchronous Exceptions in Haskell. Simon Marlow, Simon Peyton Jones, Andy Moran and John
Reppy. PLDI 2001.
An asynchronous exception is a signal that one thread can send to another, and is useful for the
receiving thread to treat as an exception so that it can clean up locks or other state relevant to its
current context.
There are a couple of earlier versions of this paper floating around, from August and November 2000.
Make sure and get the official version from May 2001 (linked above).

e [BAn Ideal Model for Recursive Polymorphic Types. David MacQueen, Gordon Plotkin, Ravi Sethi.
POPL 1984.

e [BIA Distributed Concurrent Implementation of Standard ML. David Matthews. University of
Edinburgh Technical Report ECS-LFCS-91-174, 1991.

¢ WPapers on Poly/ML. David C. J. Matthews. University of Edinburgh Technical Report
ECS-LFCS-95-335, 1995.

¢ WThat About Wraps it Up: Using FIX to Handle Errors Without Exceptions. and Other Programming
Tricks. Bruce J. McAdam. University of Edinburgh Technical Report ECS-LFCS-97-375, 1997.

o [BIA Just-In-Time Backend for Moscow ML 2.00 in SML. Bjarke Meier, Kristian NA rgaard. Masters
Thesis, 2003.
A just-in-time compiler using GNU Lightning, showing a speedup of up to four times over Moscow
ML's usual bytecode interpreter.
The full report is only available in Danish.

¢ A Theory of Type Polymorphism in Programming. Robin Milner. Journal of Computer and System
Sciences, 1978.

e [BHow ML Evolved. Robin Milner. Polymorphism--The ML/LCF/Hope Newsletter, 1983.

¢ WCommentary on Standard ML (®lonline pdf). (#laddall) ISBN 0262631327. Robin Milner and
Mads Tofte. The MIT Press, 1990.
Introduces and explains the notation and approach used in The Definition of Standard ML.

e [®The Definition of Standard ML. (laddall) ISBN 0262631326. Robin Milner, Mads Tofte, and
Robert Harper. The MIT Press, 1990.

401


http://www.cs.kent.ac.uk/~smk/errors-new.ps.Z
http://www.cs.kent.ac.uk/~smk/errors-new.ps.Z
http://research.microsoft.com/~akenn/fun/picklercombinators.pdf
http://research.microsoft.com/~akenn/fun/picklercombinators.pdf
http://www.cs.princeton.edu/~hlarsen/work/dpcool-paper.pdf
http://www.cs.princeton.edu/~hlarsen/work/dpcool-paper.pdf
http://citeseer.nj.nec.com/lang99faster.html
http://citeseer.nj.nec.com/lang99faster.html
http://www.it-c.dk/~hniss/publications/freenix2004.pdf
http://www.it-c.dk/~hniss/publications/freenix2004.pdf
http://citeseer.ist.psu.edu/leroy90zinc.html
http://citeseer.ist.psu.edu/leroy90zinc.html
http://pauillac.inria.fr/~xleroy/leroy.html
http://pauillac.inria.fr/~xleroy/leroy.html
http://citeseer.ist.psu.edu/637416.html
http://citeseer.ist.psu.edu/637416.html
http://www.haskell.org/~simonmar/papers/async.ps.gz
http://www.haskell.org/~simonmar/papers/async.ps.gz
http://portal.acm.org/citation.cfm?id=800017.800528
http://portal.acm.org/citation.cfm?id=800017.800528
http://www.lfcs.inf.ed.ac.uk/reports/91/ECS-LFCS-91-174/index.html
http://www.lfcs.inf.ed.ac.uk/reports/91/ECS-LFCS-91-174/index.html
http://www.lfcs.inf.ed.ac.uk/reports/95/ECS-LFCS-95-335/
http://www.lfcs.inf.ed.ac.uk/reports/95/ECS-LFCS-95-335/
http://www.lfcs.inf.ed.ac.uk/reports/97/ECS-LFCS-97-375/
http://www.lfcs.inf.ed.ac.uk/reports/97/ECS-LFCS-97-375/
http://www.lfcs.inf.ed.ac.uk/reports/97/ECS-LFCS-97-375/
http://www.itu.dk/stud/speciale/bmkn/
http://www.itu.dk/stud/speciale/bmkn/
http://www.dcs.ed.ac.uk/home/stg/tutorial/papers/evolved.pdf
http://www.dcs.ed.ac.uk/home/stg/tutorial/papers/evolved.pdf
http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=8988
http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=8988
http://www.itu.dk/people/tofte/publ/1991commentaryBody.pdf
http://www.itu.dk/people/tofte/publ/1991commentaryBody.pdf
http://www3.addall.com/New/submitNew.cgi?query=0262631327&type=ISBN
http://www3.addall.com/New/submitNew.cgi?query=0262631327&type=ISBN
http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=7945
http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=7945
http://www3.addall.com/New/submitNew.cgi?query=0262631326&type=ISBN
http://www3.addall.com/New/submitNew.cgi?query=0262631326&type=ISBN

MLton Guide (20070826) References

Superseded by The Definition of Standard ML (Revised). Accompanied by the Commentary on
Standard ML.

e [8IThe Definition of Standard ML (Revised). (#laddall) ISBN 0262631814. Robin Milner, Mads
Tofte, Robert Harper, and David MacQueen. The MIT Press, 1997.
A terse and formal specification of Standard ML's syntax and semantics. Supersedes an older version.
o [@iPrinciples and a Preliminary Design for ML.2000. The ML2000 working group, 1999.

o BlAutomatic Code Generation from Coloured Petri Nets for an Access Control System. Kjeld H.
Mortensen. Workshop on Practical Use of Coloured Petri Nets and Design/CPN, 1999.

o BiProcs and Locks: a Portable Multiprocessing Platform for Standard ML of New Jersey. J. Gregory
Morrisett and Andrew Tolmach. PPoPP 1993.

o BIML Grid Programming with ConCert. Tom Murphy VII. ML 2006.

o Bifxp - Processing Structured Documents in SML. Andreas Neumann. Scottish Functional
Programming Workshop, 1999.
Describes @lfxp, an XML parser implemented in Standard ML.

¢ WParsing and Querying XML Documents in SML.. Andreas Neumann. Doctoral Thesis, 1999.

o BiCompiling ML Polymorphism with Explicit Layout Bitmap. Huu-Duc Nguyen and Atsushi Ohori.
PPDP 2006.

¢ WPurely Functional Data Structures. ISBN 0521663504. Chris Okasaki. Cambridge University Press,
1999.

o [GIA Simple Semantics for ML, Polymorphism. Atsushi Ohori. EPCA 1989.

o [GIA Polymorphic Record Calculus and Its Compilation. Atsushi Ohori. TOPLLAS 1995.

e [BIAn Unboxed Operational Semantics for ML, Polymorphism. Atsushi Ohori and Tomonobu
Takamizawa. LASC 1997.

¢ W Type-Directed Specialization of Polymorphism. Atsushi Ohori. IC 1999.

o [BIML For the Working Programmer (®laddall) ISBN 052156543X. Larry C. Paulson. Cambridge
University Press, 1996.

o [BiThe HiPE/x86 Erlang Compiler: System Description and Performance Evaluation. Mikael
Pettersson, Konstantinos Sagonas, and Erik Johansson. ELOPS 2002.
Describes a native x86 Erlang compiler and a comparison of many different native x86 compilers
(including MLton) and their register usage and call stack implementations.

o [BiReactive Programming in Standard ML. Riccardo R. Puccella. 1998. ICCL 1998.

e BiConcurrent Programming in ML. Norman Ramsey. Princeton University Technical Report
CS-TR-262-90, 1990.

e BEmbedding an Interpreted Language Using Higher-Order Functions and Types. Norman Ramsey.
IVME 2003.

402


http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=3874
http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=3874
http://www3.addall.com/New/submitNew.cgi?query=0262631814&type=ISBN
http://www3.addall.com/New/submitNew.cgi?query=0262631814&type=ISBN
http://www.cs.cmu.edu/~rwh/papers/ml2000/ml2000.pdf
http://www.cs.cmu.edu/~rwh/papers/ml2000/ml2000.pdf
http://www.daimi.au.dk/CPnets/workshop99/papers/Mortensen.ps.gz
http://www.daimi.au.dk/CPnets/workshop99/papers/Mortensen.ps.gz
http://portal.acm.org/affiliated/citation.cfm?id=155353
http://portal.acm.org/affiliated/citation.cfm?id=155353
http://www.cs.cmu.edu/~tom7/papers/grid-ml06.pdf
http://www.cs.cmu.edu/~tom7/papers/grid-ml06.pdf
http://citeseer.ist.psu.edu/412760.html
http://citeseer.ist.psu.edu/412760.html
http://atseidl2.informatik.tu-muenchen.de/~berlea/Fxp/
http://atseidl2.informatik.tu-muenchen.de/~berlea/Fxp/
http://citeseer.ist.psu.edu/neumann99parsing.html
http://citeseer.ist.psu.edu/neumann99parsing.html
http://www.pllab.riec.tohoku.ac.jp/~ohori/research/NguyenOhoriPPDP06.pdf
http://www.pllab.riec.tohoku.ac.jp/~ohori/research/NguyenOhoriPPDP06.pdf
http://us.cambridge.org/titles/catalogue.asp?isbn=0521663504
http://us.cambridge.org/titles/catalogue.asp?isbn=0521663504
http://www.pllab.riec.tohoku.ac.jp/~ohori/research/fpca89.pdf
http://www.pllab.riec.tohoku.ac.jp/~ohori/research/fpca89.pdf
http://www.pllab.riec.tohoku.ac.jp/~ohori/research/toplas95.pdf
http://www.pllab.riec.tohoku.ac.jp/~ohori/research/toplas95.pdf
http://www.pllab.riec.tohoku.ac.jp/~ohori/research/jlsc97.pdf
http://www.pllab.riec.tohoku.ac.jp/~ohori/research/jlsc97.pdf
http://www.pllab.riec.tohoku.ac.jp/~ohori/research/ic98.pdf
http://www.pllab.riec.tohoku.ac.jp/~ohori/research/ic98.pdf
http://www.cl.cam.ac.uk/users/lcp/MLbook/
http://www.cl.cam.ac.uk/users/lcp/MLbook/
http://www3.addall.com/New/submitNew.cgi?query=052156543X&type=ISBN
http://www3.addall.com/New/submitNew.cgi?query=052156543X&type=ISBN
http://user.it.uu.se/~happi/publications/flops02.pdf
http://user.it.uu.se/~happi/publications/flops02.pdf
http://citeseer.ist.psu.edu/pucella98reactive.html
http://citeseer.ist.psu.edu/pucella98reactive.html
http://citeseer.ist.psu.edu/ramsey90concurrent.html
http://citeseer.ist.psu.edu/ramsey90concurrent.html
http://www.eecs.harvard.edu/~nr/pubs/embed-abstract.html
http://www.eecs.harvard.edu/~nr/pubs/embed-abstract.html

MLton Guide (20070826) References

e [BAn Expressive Language of Signatures. Norman Ramsey, Kathleen Fisher, and Paul Govereau.
ICFP 2005.

o @Widening Integer Arithmetic. Kevin Redwine and Norman Ramsey. CC 2004.
Describes a method to implement numeric types and operations (like Int 31 or Word1 7) for sizes
smaller than that provided by the processor.

® Synchronous Operations as First-Class Values. John Reppy. PLDI 1988.

o BiConcurrent Programming in ML (#laddall). ISBN 0521480892. John Reppy. Cambridge University
Press, 1999.
Covers ConcurrentML.

o ElDefinitional Interpreters Revisited. John C. Reynolds. HOSC 1998.

o ElDefinitional Interpreters for Higher-Order Programming Languages John C. Reynolds. HOSC 1998.
o [@iDefects in the Revised Definition of Standard ML.. Andreas Rossberg. 2001.

¢ BiDual-Mode Garbage Collection. Patrick M. Sansom. Workshop on the Parallel Implementation of
Functional Languages, 1991.

o [BiWhen Do Match-Compilation Heuristics Matter. Kevin Scott and Norman Ramsey. University of
Virginia Technical Report CS-2000-13, 2000.
Modified SML/NJ to experimentally compare a number of match-compilation heuristics and showed
that choice of heuristic usually does not significantly affect code size or run time.

e [BIML Pattern Match Compilation and Partial Evaluation. Peter Sestoft. Partial Evaluation, 1996.
Describes the derivation of the match compiler used in Moscow ML.

o WSpace-Efficient Closure Representations. Zhong Shao and Andrew W. Appel. LEP 2006.

o BiUnix System Programming with Standard ML. Anthony L. Shipman. 2002.
Includes a description of the Swerve HTTP server written in SML.

e [BiCalcul Statique des Applications de Modules Parametres. Julien Signoles. JELA 2003.
Describes a defunctorizer for OCaml, and compares it to existing defunctorizers, including MLton.

o Bilncremental Execution of Transformation Specifications. Ganesh Sittampalam, Oege de Moor, and
Ken Friis Larsen. POPL 2004.
Mentions a port from Moscow ML to MLton of @MuDDY, an SML wrapper around the 8BuDDY
BDD package.

o [BIA Separate Compilation Extension to Standard ML. David Swasey, Tom Murphy VII, Karl Crary
and Robert Harper. ML 2006.

e [BINo Assembly Required: Compiling Standard ML to C. David Tarditi, Peter Lee, and Anurag
Acharya. 1990.

¢ WObject-oriented programming and Standard ML. Lars Thorup and Mads Tofte. ML, 1994.

¢ Type Inference for Polymorphic References. Mads Tofte. IC 1990.

o [BIA Debugger for Standard ML.. Andrew Tolmach and Andrew W. Appel. JEP 1995.

¢ WCombining Closure Conversion with Closure Analysis using Algebraic Types. Andrew Tolmach.
TIC 1997.
Describes a closure-conversion algorithm for a monomorphic IL. The algorithm uses a
unification-based flow analysis followed by defunctionalization and is similar to the approach used in

MLton CejtinEtAl0Q.

° rom ML to Ada: Strongly-typed Language Interoperability via Source Translation. Andrew
Tolmach and Dino Oliva. JEP 1998.

403


http://www.eecs.harvard.edu/~nr/pubs/els-abstract.html
http://www.eecs.harvard.edu/~nr/pubs/els-abstract.html
http://citeseer.ist.psu.edu/670348.html
http://citeseer.ist.psu.edu/670348.html
http://us.cambridge.org/titles/catalogue.asp?isbn=0521480892
http://us.cambridge.org/titles/catalogue.asp?isbn=0521480892
http://www3.addall.com/New/submitNew.cgi?query=0521480892&type=ISBN
http://www3.addall.com/New/submitNew.cgi?query=0521480892&type=ISBN
ftp://ftp.cs.cmu.edu/user/jcr/defintintro.ps.gz
ftp://ftp.cs.cmu.edu/user/jcr/defintintro.ps.gz
ftp://ftp.cs.cmu.edu/user/jcr/defint.ps.gz
ftp://ftp.cs.cmu.edu/user/jcr/defint.ps.gz
http://www.ps.uni-sb.de/hamlet/defects.pdf
http://www.ps.uni-sb.de/hamlet/defects.pdf
http://citeseer.ist.psu.edu/sansom91dualmode.html
http://citeseer.ist.psu.edu/sansom91dualmode.html
http://citeseer.ist.psu.edu/scott00when.html
http://citeseer.ist.psu.edu/scott00when.html
http://citeseer.ist.psu.edu/sestoft96ml.html
http://citeseer.ist.psu.edu/sestoft96ml.html
http://flint.cs.yale.edu/flint/publications/closure.html
http://flint.cs.yale.edu/flint/publications/closure.html
http://mlton.org/pages/References/attachments/Shipman02.pdf
http://mlton.org/pages/References/attachments/Shipman02.pdf
http://www.lri.fr/~signoles/publis/jfla2003.ps.gz
http://www.lri.fr/~signoles/publis/jfla2003.ps.gz
http://citeseer.ist.psu.edu/sittampalam04incremental.html
http://citeseer.ist.psu.edu/sittampalam04incremental.html
http://www.itu.dk/research/muddy/
http://www.itu.dk/research/muddy/
http://sourceforge.net/projects/buddy
http://sourceforge.net/projects/buddy
http://www.cs.cmu.edu/~tom7/papers/smlsc2-ml06.pdf
http://www.cs.cmu.edu/~tom7/papers/smlsc2-ml06.pdf
http://citeseer.ist.psu.edu/tarditi90no.html
http://citeseer.ist.psu.edu/tarditi90no.html
http://citeseer.ist.psu.edu/60712.html
http://citeseer.ist.psu.edu/60712.html
http://citeseer.ist.psu.edu/tolmach93debugger.html
http://citeseer.ist.psu.edu/tolmach93debugger.html
http://citeseer.ist.psu.edu/tolmach97combining.html
http://citeseer.ist.psu.edu/tolmach97combining.html
http://web.cecs.pdx.edu/~apt/jfp98.ps
http://web.cecs.pdx.edu/~apt/jfp98.ps

MLton Guide (20070826) References

Describes a compiler for RML, a core SML-like language. The compiler is similar in structure to MLton,
using monomorphisation, defunctionalization, and optimization on a first-order IL.

U

o BiElements of ML Programming (laddall). ISBN 0137903871. Jeffrey D. Ullman. Prentice-Hall,
1998.

<

o [BIA Types-as-Sets Semantics for Milner-Style Polymorphism. Mitchell Wand. POPL 1984.
o BiManaging Memory with Types. Daniel C. Wang. PhD Thesis.

Chapter 6 describes an implementation of a type-preserving garbage collector for MLton.
o [BiType-Preserving Garbage Collectors. Daniel C. Wang and Andrew W. Appel. POPL 2001.
Shows how to modify MLton to generate a strongly typed garbage collector as part of a program.
o BiProgramming With Recursion Schemes. Daniel C. Wang and Tom Murphy VII.
Describes a programming technique for data abstraction, along with benchmarks of MLton and other
SML compilers.
o BiRecursion Schemes as Abstract Interfaces. Daniel C. Wang and Tom Murphy. JEP.
o BiWhole-Program Compilation in MLton. Stephen Weeks. ML 2006.
¢ WSimple Imperative Polymorphism. Andrew Wright. LASC, 8(4):343-355, 1995.

The origin of the ValueRestriction.

X
Y

e BEncoding Types in ML-like Languages. Zhe Yang. ICEP 1998.

o 9Stabilizers: A Modular Checkpointing Abstraction for Concurrent Functional Programs. Lukasz
Ziarek, Philip Schatz, and Suresh Jagannathan. ICFP 2006.

Abbreviations

¢ ACSD = International Conference on Application of Concurrency to System Design

¢ BABEL = Workshop on multi-language infrastructure and interoperability

¢ CC = International Conference on Compiler Construction

¢ DPCOOL = Workshop on Declarative Programming in the Context of OO Languages

¢ ESOP = European Symposium on Programming

¢ FLOPS = Symposium on Functional and Logic Programming

¢ FPCA = Conference on Functional Programming Languages and Computer Architecture
¢ HOSC = Higher-Order and Symbolic Computation

¢ |C = Information and Computation

404


http://www-db.stanford.edu/~ullman/emlp.html
http://www-db.stanford.edu/~ullman/emlp.html
http://www3.addall.com/New/submitNew.cgi?query=0137903871&type=ISBN
http://www3.addall.com/New/submitNew.cgi?query=0137903871&type=ISBN
http://portal.acm.org/citation.cfm?id=800527
http://portal.acm.org/citation.cfm?id=800527
http://ncstrl.cs.princeton.edu/expand.php?id=TR-640-01
http://ncstrl.cs.princeton.edu/expand.php?id=TR-640-01
http://www.cs.princeton.edu/~danwang/Papers/tpsrvgc/
http://www.cs.princeton.edu/~danwang/Papers/tpsrvgc/
http://www-2.cs.cmu.edu/~tom7/papers/wang-murphy-recursion.pdf
http://www-2.cs.cmu.edu/~tom7/papers/wang-murphy-recursion.pdf
http://www.cs.princeton.edu/~danwang/drafts/recursion-schemes.pdf
http://www.cs.princeton.edu/~danwang/drafts/recursion-schemes.pdf
http://mlton.org/pages/References/attachments/060916-mlton.pdf
http://mlton.org/pages/References/attachments/060916-mlton.pdf
http://citeseer.ist.psu.edu/wright95simple.html
http://citeseer.ist.psu.edu/wright95simple.html
http://citeseer.ist.psu.edu/53925.html
http://citeseer.ist.psu.edu/53925.html
http://www.cs.purdue.edu/homes/suresh/abstracts.html#icfp06
http://www.cs.purdue.edu/homes/suresh/abstracts.html#icfp06

MLton Guide (20070826) References

¢ ICCL = IEEE International Conference on Computer Languages

¢ |CFP = International Conference on Functional Programming

¢ [FL = International Workshop on Implementation and Application of Functional Languages
¢ [VME = Workshop on Interpreters, Virtual Machines and Emulators

¢ JFLA = Journees Francophones des Langages Applicatifs

¢ JFP = Journal of Functional Programming

e LASC = Lisp and Symbolic Computation

e LFP = Lisp and Functional Programming

® ML = Workshop on ML

¢ PLDI = Conference on Programming Language Design and Implementation

® POPL = Symposium on Principles of Programming Languages

¢ PPDP = International Conference on Principles and Practice of Declarative Programming
® PPoPP = Principles and Practice of Parallel Programming

e TCS = IFIP International Conference on Theoretical Computer Science

¢ TIC = Types in Compilation

e TLDI = Workshop on Types in Language Design and Implementation

® TOPLAS = Transactions on Programming Languages and Systems

® TPHOLSs = International Conference on Theorem Proving in Higher Order Logics

Last edited on 2007-08-23 00:55:54 by MatthewFluet.

405



MLton Guide (20070826) Regions
Regions

In region-based memory management, the heap is divided into a collection of regions into which objects are
allocated. At compile time, either in the source program or through automatic inference, allocation points are
annotated with the region in which the allocation will occur. Typically, although not always, the regions are
allocated and deallocated according to a stack discipline.

MLton does not use region-based memory management; it uses traditional GarbageCollection. We have
considered integrating regions with MLton, but in our opinion it is far from clear that regions would provide
MLton with improved performance, while they would certainly add a lot of complexity to the compiler and
complicate reasoning about and achieving SpaceSafety. Region-based memory management and garbage
collection have different strengths and weaknesses; it's pretty easy to come up with programs that do
significantly better under regions than under GC, and vice versa. We believe that it is the case that common
SML idioms tend to work better under GC than under regions.

One common argument for regions is that the region operations can all be done in (approximately) constant
time; therefore, you eliminate GC pause times, leading to a real-time GC. However, because of space safety
concerns (see below), we believe that region-based memory management for SML must also include a
traditional garbage collector. Hence, to achieve real-time memory management for MLton/SML, we believe
that it would be both easier and more efficient to implement a traditional real-time garbage collector than it
would be to implement a region system.

Regions, the ML Kit, and space safety

The ML Kit pioneered the use of regions for compiling Standard ML. The ML Kit maintains a stack of
regions at run time. At compile time, it uses region inference to decide when data can be allocated in a
stack-like manner, assigning it to an appropriate region. The ML Kit has put a lot of effort into improving the
supporting analyses and representations of regions, which are all necessary to improve the performance.

Unfortunately, under a pure stack-based region system, space leaks are inevitable in theory, and costly in
practice. Data for which region inference can not determine the lifetime is moved into the global region
whose lifetime is the entire program. There are two ways in which region inference will place an object to the
global region.

e When the inference is too conservative, that is, when the data is used in a stack-like manner but the
region inference can't figure it out.

® When data is not used in a stack-like manner. In this case, correctness requires region inference to
place the object

This global region is a source of space leaks. No matter what region system you use, there are some programs
such that the global region must exist, and its size will grow to an unbounded multiple of the live data size.
For these programs one must have a GC to achieve space safety.

To solve this problem, the ML Kit has undergone work to combine garbage collection with region-based
memory management. HallenbergEtAl02 and Elsman03 describe the addition of a garbage collector to the ML
Kit's region-based system. These papers provide convincing evidence for space leaks in the global region.
They show a number of benchmarks where the memory usage of the program running with just regions is a
large multiple (2, 10, 50, even 150) of the program running with regions plus GC.

406



MLton Guide (20070826) Regions

These papers also give some numbers to show the ML Kit with just regions does better than either a system
with just GC or a combined system. Unfortunately, a pure region system isn't practical because of the lack of
space safety. And the other performance numbers are not so convincing, because they compare to an old
version of SML/NJ and not at all with MLton. It would be interesting to see a comparison with a more serious
collector.

Regions, Garbage Collection, and Cyclone

One possibility is to take Cyclone's approach, and provide both region-based memory management and
garbage collection, but at the programmer's option (GrossmanEtA102, HicksEtA103).

One might ask whether we might do the same thing -- i.e., provide a MLt on . Regions structure with

explicit region based memory management operations, so that the programmer could use them when
appropriate. MatthewFluet has thought about this question

@http:/lwww.cs.cornell.edu/People/ﬂuet/rgn—monad/index.html

Unfortunately, his conclusion is that the SML type system is too weak to support this option, although there
might be a "poor-man's" version with dynamic checks.

Last edited on 2005-09-06 23:20:00 by MatthewFluet.

407


http://www.cs.cornell.edu/People/fluet/rgn-monad/index.html
http://www.cs.cornell.edu/People/fluet/rgn-monad/index.html

MLton Guide (20070826) Release20041109

Release20041109

This is an archived public release of MLton, version 20041109.

Changes since the last public release

e New platforms:
¢ x86: FreeBSD 5.x, OpenBSD
¢ PowerPC: Darwin (MacOSX)
 Support for the ML Basis system, a new mechanism supporting programming in the very large,
separate delivery of library sources, and more.
¢ Support for dynamic libraries.
e Support for ConcurrentMIL. (CML).
e New structures: Int2, Int3, ..., Int31 and Word2, Word3, ..., Word31.
¢ Front-end bug fixes and improvements.
¢ A new form of profiling with ~-profile count, which can be used to test code coverage.
® A bytecode generator, available via ~codegen bytecode.
® Representation improvements:
¢ Tuples and datatypes are packed to decrease space usage.
¢ Ref cells may be unboxed into their containing object.
¢ Arrays of tuples may represent the tuples unboxed.

For a complete list of changes and bug fixes since 20040227, see the Bichangelog.

Also see
¢ Bugs20041109

Last edited on 2007-08-24 20:25:55 by MatthewFluet.

408


http://mlton.org/cgi-bin/viewsvn.cgi/*checkout*/mlton/tags/on-20041109-release/doc/changelog
http://mlton.org/cgi-bin/viewsvn.cgi/*checkout*/mlton/tags/on-20041109-release/doc/changelog

MLton Guide (20070826) Release20051202

Release20051202

This is an archived public release of MLton, version 20051202.

Changes since the last public release

e The MLton license is now BSD-style instead of the GPL.
e New platforms: X86/MinGW and HPPA/Linux.
¢ Improved and expanded documentation, based on the MLton wiki.
e Compiler.
¢ improved exception history.
¢ Command-line switches.
¢ Added: —as-opt, -mlb-path-map, ~target-as—opt, —~target-cc—-opt.
¢ Removed: —native, —sequence—-unit, —-warn-match, —-warn-unused.
¢ [ anguage.
¢ FEI syntax changes and extensions.
0 Added: _symbol.
¢ Changed: _export, _import.
0 Removed: _ffi.
+ ML Basis annotations.
¢ Added: allowFFI, nonexhaustiveExnMatch, nonexhaustiveMatch,
redundantMatch, sequenceNonUnit.
0 Deprecated: allowExport,allowImport, sequenceUnit, warnMatch.
e Libraries.
o Basis Library.
¢ Added: Intl, Wordl.
o MLton structure.
0 Added: Process.create, ProcEnv.setgroups, Rusage ..measureGC,
Socket.fdToSock, Socket.Ctl.getError.
¢ Changed: MLton.Platform.Arch.
o Other libraries.
¢ Added: ckit, ML-NLFFI library, SMI/NJ library.
¢ Tools.
¢ Updates of mllex and mlyacc from SML/NJ.
¢ Added mlinlffigen.
¢ Profiling supports better inclusion/exclusion of code.

For a complete list of changes and bug fixes since Release20041109, see the @ichangelog and Bugs20041109.

20051202 binary packages

® x86

¢ BICygwin 1.5.18-1

¢ [BiFreeBSD 5.4

¢ Linux
0 [@iDebian sid
0 [BDebian stable (Sarge)
0 BIRedHat 7.1-9.3 FC1-FC4
0 [ltgz for other distributions (glibc 2.3)

409


http://mlton.org/cgi-bin/viewsvn.cgi/*checkout*/mlton/tags/on-20051202-release/doc/changelog
http://mlton.org/cgi-bin/viewsvn.cgi/*checkout*/mlton/tags/on-20051202-release/doc/changelog
http://mlton.org/pages/Download/attachments/mlton-20051202-1.i386-cygwin.tgz
http://mlton.org/pages/Download/attachments/mlton-20051202-1.i386-cygwin.tgz
http://mlton.org/pages/Download/attachments/mlton-20051202-1.i386-freebsd.tbz
http://mlton.org/pages/Download/attachments/mlton-20051202-1.i386-freebsd.tbz
http://mlton.org/pages/Download/attachments/mlton_20051202-1_i386.deb
http://mlton.org/pages/Download/attachments/mlton_20051202-1_i386.deb
http://mlton.org/pages/Download/attachments/mlton_20051202-1_i386.stable.deb
http://mlton.org/pages/Download/attachments/mlton_20051202-1_i386.stable.deb
http://mlton.org/pages/Download/attachments/mlton-20051202-1.i386.rpm
http://mlton.org/pages/Download/attachments/mlton-20051202-1.i386.rpm
http://mlton.org/pages/Download/attachments/mlton-20051202-1.i386-linux.tgz
http://mlton.org/pages/Download/attachments/mlton-20051202-1.i386-linux.tgz

MLton Guide (20070826)

¢ [BMinGW

¢ [GINetBSD 2.0.2

¢ [Bi0penBSD 3.7
e PowerPC

¢ [@Darwin 7.9.0 (Mac OS X)
® Sparc

¢ [@ISolaris 8

20051202 source packages

¢ [isource tgz
e Debian ®ldsc, @diff.gz, @orig.tar.gz

e RedHat [Elsource rpm

Packages available at other sites
e [BDebian

° reeBSD
e Fedora Core [8l4 [€5

e [(BUbuntu

Also see

® Bugs20051202

o [BM1 ton Guide (20051202). A snapshot of the MLton wiki at the time of release.

Release20051202

Last edited on 2007-08-26 19:56:57 by MatthewFluet.

410


http://mlton.org/pages/Download/attachments/mlton-20051202-1.i386-mingw.tgz
http://mlton.org/pages/Download/attachments/mlton-20051202-1.i386-mingw.tgz
http://mlton.org/pages/Download/attachments/mlton-20051202-1.i386-netbsd.tgz
http://mlton.org/pages/Download/attachments/mlton-20051202-1.i386-netbsd.tgz
http://mlton.org/pages/Download/attachments/mlton-20051202-1.i386-openbsd.tgz
http://mlton.org/pages/Download/attachments/mlton-20051202-1.i386-openbsd.tgz
http://mlton.org/pages/Download/attachments/mlton-20051202-1.powerpc-darwin.tgz
http://mlton.org/pages/Download/attachments/mlton-20051202-1.powerpc-darwin.tgz
http://mlton.org/pages/Download/attachments/mlton-20051202-1.sparc-solaris.tgz
http://mlton.org/pages/Download/attachments/mlton-20051202-1.sparc-solaris.tgz
http://mlton.org/pages/Download/attachments/mlton-20051202-1.src.tgz
http://mlton.org/pages/Download/attachments/mlton-20051202-1.src.tgz
http://mlton.org/pages/Download/attachments/mlton_20051202-1.dsc
http://mlton.org/pages/Download/attachments/mlton_20051202-1.dsc
http://mlton.org/pages/Download/attachments/mlton_20051202-1.diff.gz
http://mlton.org/pages/Download/attachments/mlton_20051202-1.diff.gz
http://mlton.org/pages/Download/attachments/mlton_20051202.orig.tar.gz
http://mlton.org/pages/Download/attachments/mlton_20051202.orig.tar.gz
http://mlton.org/pages/Download/attachments/mlton-20051202-1.src.rpm
http://mlton.org/pages/Download/attachments/mlton-20051202-1.src.rpm
http://packages.debian.org/cgi-bin/search_packages.pl?searchon=names&version=all&exact=1&keywords=mlton
http://packages.debian.org/cgi-bin/search_packages.pl?searchon=names&version=all&exact=1&keywords=mlton
http://www.freebsd.org/cgi/ports.cgi?query=mlton&stype=all
http://www.freebsd.org/cgi/ports.cgi?query=mlton&stype=all
http://fedoraproject.org/extras/4/i386/repodata/repoview/mlton-0-20051202-8.fc4.html
http://fedoraproject.org/extras/4/i386/repodata/repoview/mlton-0-20051202-8.fc4.html
http://fedoraproject.org/extras/5/i386/repodata/repoview/mlton-0-20051202-8.fc5.html
http://fedoraproject.org/extras/5/i386/repodata/repoview/mlton-0-20051202-8.fc5.html
http://packages.ubuntu.com/dapper/devel/mlton
http://packages.ubuntu.com/dapper/devel/mlton
http://mlton.org/guide/20051202/
http://mlton.org/guide/20051202/

MLton Guide (20070826) Release20070826

Release20070826

Here you can download the latest public release of MLton, version 20070826. Elsewhere you can download
newer, [@lExperimental releases.

Changes since the last public release

e New platforms:
¢ AMD64/Linux, AMD64/FreeBSD
¢ HPPA/HPUX
¢ PowerPC/AIX
¢ X86/Darwin (Mac OS X)
e Compiler.
¢ Support for 64-bit platforms.
¢ Native amd64 codegen.
¢ Compile-time options.
0 Added: —~codegen amdé64, ~codegen x86, —-default-type type,
-profile-val {false|true}.
¢ Changed: —stop f (file listing now includes .m1b files).
¢ Bytecode codegen.
¢ Support for exception history.
¢ Support for profiling.

¢ [ anguage.
¢ MI Basis annotations.
¢ Removed: allowExport, allowImport, sequenceUnit, warnMatch.
e Libraries.
¢ Basis Library.
Q¢ Added: PackWordl6Big, PackWordl6Little, PackWord64Big,
PackWorde4Little.
0 Bug Fixes: see Bchangelog.
¢ ML ton structure.
¢ Added: MLTON_MONO_ARRAY, MLTON_MONO_VECTOR, MLTON_REAL,
MLton.BinIO.tempPrefix, MLton.CharArray,MLton.CharVector,
MLton.Exn.defaultTopLevelHandler,
MLton.Exn.getTopLevelHandler,MLton.Exn.setTopLevelHandler,
MLton.IntInf.BigWord,Mlton.IntInf.SmallInt,
MLton.LargeReal, MLton.LargeWord, MLton.Real, MLton.Real32,
MLton.Real64,MLton.Rlimit.R1im, MLton.TextIO.tempPrefix,
MLton.Vector.create,MLton.Word.bswap, MLton.Word8.bswap,
MLton.Wordl6, MLton.Word32, MLton.Word64, MLton.Word8Array,
MLton.Word8Vector.
¢ Changed: MLton.Array.unfoldi,MLton.IntInf.rep, MLton.Rlimit,
MLton.Vector.unfoldi.
0 Deprecated: MLton . Socket.
¢ Other libraries.
¢ Added: MLRISC library.

¢ Updated: ckit library, SMI/NJ library.
¢ Tools.

For a complete list of changes and bug fixes since Release20051202, see the @ichangelog and Bugs20051202.
411


http://mlton.org/Experimental
http://mlton.org/Experimental
http://mlton.org/cgi-bin/viewsvn.cgi/*checkout*/mlton/tags/on-20070826-release/doc/changelog
http://mlton.org/cgi-bin/viewsvn.cgi/*checkout*/mlton/tags/on-20070826-release/doc/changelog
http://mlton.org/cgi-bin/viewsvn.cgi/*checkout*/mlton/tags/on-20070826-release/doc/changelog
http://mlton.org/cgi-bin/viewsvn.cgi/*checkout*/mlton/tags/on-20070826-release/doc/changelog

MLton Guide (20070826) Release20070826
20070826 binary packages

20070826 source packages

Packages available at other sites

e [BIDebian
¢ [BlFreeBSD
e [BlFedora
e [BUbuntu

Also see

® Bugs20070826
o [BIMLton Guide (20070826). A snapshot of the MLton wiki at the time of release.

Last edited on 2007-08-26 20:57:03 by MatthewFluet.

412


http://packages.debian.org/cgi-bin/search_packages.pl?keywords=mlton&searchon=names&version=all&release=all
http://packages.debian.org/cgi-bin/search_packages.pl?keywords=mlton&searchon=names&version=all&release=all
http://www.freebsd.org/cgi/ports.cgi?query=mlton&stype=all
http://www.freebsd.org/cgi/ports.cgi?query=mlton&stype=all
http://koji.fedoraproject.org/koji/packageinfo?packageID=2541
http://koji.fedoraproject.org/koji/packageinfo?packageID=2541
http://packages.ubuntu.com/cgi-bin/search_packages.pl?keywords=mlton&searchon=names&version=all&release=all
http://packages.ubuntu.com/cgi-bin/search_packages.pl?keywords=mlton&searchon=names&version=all&release=all
http://mlton.org/guide/20070826/
http://mlton.org/guide/20070826/

MLton Guide (20070826) ReleaseChecklist

ReleaseChecklist

Advance preparation for release

e Catch up on doc/changelog documentation.
¢ Write summary of changes from previous release.
e Update doc/README with relevant changes.
e Update man/ {mlton,mlprof} .1 with relevant changes and set dates.
® Wiki
¢ Check OrphanedPages and WantedPages.
¢ FPeatures page should by synchronized with doc/README.
¢ Catch up on Credits acknowledgements.
¢ Create ReleaseYYYYMM?? (i.e., forthcoming release) based on ReleaseVVVVLLCC (i.e.,
previous release).
¢ Update summary from doc/changelog.
¢ Update attachment, SVN, and Wiki links to estimated release date.
¢ Comment out lists and attachment links under YYYYMM?? binary packages
and YYYYMM?? bsources.
O Ensure page has #acl All:
¢ Create BugsYYYYMM?? based on BugsVVVVLLCC.
¢ Update SVN and Wiki links to estimated release date.
¢ Spell check pages.

Prepare Wiki for tagging
This ensures that the guide distributed with the release looks updated for the release.

¢ Rename ReleaseYYYYMM?? to ReleaseYYYYMMDD with proper release date.
¢ Update attachment, SVN, and Wiki links to proper release date.
¢ Rename BugsYYYYMM?? to BugsYYYYMMDD with proper release date.
¢ Update SVN and Wiki links to proper release date.
¢ Update ReleaseVVVVLLCC.
¢ Change intro to
"This is an archived public release of MLton, version VVVVLLCC."
e Update [@Download.
¢ Change Include (ReleaseVVVVLLCC, "Release VVVVLLCC") to
Include (ReleaseYYYYMMDD, "Release YYYYMMDD").
¢ Update Home with note of new release.
¢ Change What's new? textto
Please try out our new release, [:ReleaseYYYYMMDD:MLton YYYYMMDD].
* Clear [@Experimental.

Prepare sources for tagging

¢ Run bin/grab-wiki to update doc/guide.
¢ Check that doc/guide /20070826 has proper release date.
¢ Make sure that ReleaseYYYYMMDD and BugsYYYYMMDD are added to the repository.
¢ Make sure that ReleaseYYYYMM?? and BugsYYYYMM?? are removed from the
repository (if they were added during the advanced preparation).

413


http://mlton.org/Download
http://mlton.org/Download
http://mlton.org/Experimental
http://mlton.org/Experimental

MLton Guide (20070826) ReleaseChecklist

¢ Commit changes to doc/guide.
® Check that doc/changelog has proper date.

Tag sources

e Shell commands:

svn copy -m "Tagging YYYYMMDD release" svn+ssh://mlton.org/svnroot/mlton/trunk svn+ssh:/
Packaging
Source release

e Shell commands:

svn checkout svn+ssh://mlton.org/svnroot/mlton/tags/on-YYYYMMDD-release mlton-YYYYMMDD
cd mlton-YYYYMMDD

make clean clean—-svn version VERSION=YYYYMMDD RELEASE=1

cd ..

tar —-czpvf mlton-YYYYMMDD-1.src.tgz mlton-YYYYMMDD

¢ Update ReleaseYYYYMMDD with mlton-YYYYMMDD-1.src.tgz attachment.

Binary releases

* Download source release (m1ton-YYYYMMDD-1.src.tgz from EDownload).
¢ Shell commands:

tar -xzpvf mlton-YYYYMMDD-1l.src.tgz
cd mlton-YYYYMMDD
make
e [f your platform doesn't have htmldoc, please build or get m1ton—guide.pdf and copy to
doc/guide.
¢ Shell commands:

make install
cd install
tar -czpvf ../mlton-YYYYMMDD-1.ARCH-OS.tgz *

¢ Update ReleaseYYYYMMDD with ml1ton-YYYYMMDD~-1.ARCH-OS. tgz attachment.

Package releases

¢ Debian: 77?7
¢ Red Hat: Fedora 8 will have MLton packaged soon after the release, at least for 32-bit arches. Fedora
7 and 6 will likely follow.

Website

® basis gets a snapshot of Blhttp://standardml.org/Basis.
¢ changelog gets a copy of doc/changelog.
® guide/YYYYMMDD gets a copy of doc/guide.
¢ Need to run sed to replace 20070826 with YYYYMMDD.

414


http://mlton.org/Download
http://mlton.org/Download
http://standardml.org/Basis
http://standardml.org/Basis

MLton Guide (20070826) ReleaseChecklist

¢ copy guide/YYYYMMDD/Home to guide/YYYYMMDD/index.html.

Announce release

¢ Send mail to
¢ EIMLton @mlton.org
¢ EIMLton-user@mlton.org
¢ Esml-list@cs.cmu.edu (aka Elnews:comp.lang.ml)
¢ Elwn @lwn.net (linux weekly news)
® Post to

¢ Elnews:comp.lang.functional
e Update OtherSites that have MLton pages.

Misc.

¢ dupload Debian package.
e Generate new Performance numbers.

Last edited on 2007-08-26 20:56:07 by MatthewFluet.

415


mailto:MLton@mlton.org
mailto:MLton@mlton.org
mailto:MLton-user@mlton.org
mailto:MLton-user@mlton.org
mailto:sml-list@cs.cmu.edu
mailto:sml-list@cs.cmu.edu
mailto:lwn@lwn.net
mailto:lwn@lwn.net

MLton Guide (20070826) RemoveUnused

RemoveUnused

RemoveUnused is an optimization pass for both the SSA and SSA2 Intermediatel.anguages, invoked from
SSASimplify and SSA2Simplify.

Description

This pass aggressively removes unused:

e datatypes

e datatype constructors

e datatype constructor arguments

e functions

e function arguments

e function returns

® blocks

¢ block arguments

e statements (variable bindings)

¢ handlers from non-tail calls (mayRaise analysis)
e continuations from non-tail calls (mayReturn analysis)

Implementation

@remove—unused.sig [Blremove-unused.fun @remove—unusedlsig [Blremove-unused?.fun

Details and Notes

Last edited on 2006-11-02 17:51:34 by MatthewFluet.

416


http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/remove-unused.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/remove-unused.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/remove-unused.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/remove-unused.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/remove-unused2.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/remove-unused2.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/remove-unused2.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/remove-unused2.fun?view=markup

MLton Guide (20070826) Restore

Restore

Restore is a rewrite pass for the SSA and SSA2 Intermediatel anguages, invoked from KnownCase and
LocalRef.

Description
This pass restores the SSA condition for a violating SSA or SSA2 program; the program must satisfy:

Every path from the root to a use of a variable (excluding globals) passes through a def of that variable.

Implementation

@restore.sig [Blrestore.fun
@restorelsig [Blrestore2.fun

Details and Notes

Based primarily on Section 19.1 of Modern Compiler Implementation in ML.
The main deviation is the calculation of liveness of the violating variables, which is used to predicate the
insertion of phi arguments. This is due to the algorithm's bias towards imperative languages, for which it

makes the assumption that all variables are defined in the start block and all variables are "used" at exit.

This is "optimized" for restoration of functions with small numbers of violating variables -- use bool vectors
to represent sets of violating variables.

Also, we use a Promise.t to suspend part of the dominance frontier computation.

Last edited on 2006-11-02 17:34:12 by MatthewFluet.

417


http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/restore.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/restore.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/restore.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/restore.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/restore2.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/restore2.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/restore2.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/restore2.fun?view=markup

MLton Guide (20070826) ReturnStatement

ReturnStatement

Programmers coming from languages that have a ret urn statement, such as C, Java, and Python, often ask
how one can translate functions that return early into SML. This page briefly describes a number of ways to
translate uses of return to SML.

Conditional iterator function

A conditional iterator function, such as ¥lfind, Blexists, or Ball is probably what you want in most cases.
Unfortunately, it might be the case that the particular conditional iteration pattern that you want isn't provided
for your data structure. Usually the best alternative in such a case is to implement the desired iteration pattern
as a higher-order function. For example, to implement a £ ind function for arrays (which already Mlexists)
one could write

fun find predicate array = let
fun loop 1 =
if i = Array.length array then

NONE
else if predicate (Array.sub (array, 1)) then
SOME (Array.sub (array, 1))
else
loop (i+1)
in
loop O
end

Of course, this technique, while probably the most common case in practice, applies only if you are essentially
iterating over some data structure.

Escape handler

Probably the most direct way to translate code using return statements is to basically implement return
using exception handling. The mechanism can be packaged into a reusable module with the signature

(Blexit.sig):

*

Signature for exit (or escape) handlers.

Note that the implementation necessarily uses exception handling. This
is to make proper resource handling possible. Exceptions raised by the
implementation can be caught by wildcard exception handlers. Wildcard

exception handlers should generally reraise exceptions after performing
their effects.

%k % % % ok % %

*)
signature EXIT = sig
type 'a t
(** The type of exits. *)

val within : ('a t -> 'a) -> 'a
(**
* Sets up an exit and passes it to the given function. The function

* may then return normally or by calling {to} with the exit and a
* return value. For example,
*

418


http://mlton.org/basis/list.html#SIG:LIST.find:VAL
http://mlton.org/basis/list.html#SIG:LIST.find:VAL
http://mlton.org/basis/list.html#SIG:LIST.exists:VAL
http://mlton.org/basis/list.html#SIG:LIST.exists:VAL
http://mlton.org/basis/list.html#SIG:LIST.all:VAL
http://mlton.org/basis/list.html#SIG:LIST.all:VAL
http://mlton.org/basis/array.html#SIG:ARRAY.findi:VAL
http://mlton.org/basis/array.html#SIG:ARRAY.findi:VAL
http://mlton.org/cgi-bin/viewsvn.cgi/mltonlib/trunk/com/ssh/extended-basis/unstable/public/control/exit.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mltonlib/trunk/com/ssh/extended-basis/unstable/public/control/exit.sig?view=markup

MLton

Guide (20070826) ReturnStatement

*> Exit.within
*> (fn 1 =>
*> if condition then
x> Exit.to 1 1
x> else
*> 2)
*
* evaluates either to {1} or to {2} depending on the {condition}.
*
* Note that the function receiving the exit is called from a non-tail
* position.
*)
val to : 'a t -> 'a —> 'b
(**

*

{to 1 v} returns from the {within} invocation that introduced the

* exit {1} with the value {v}. Evaluating {to 1 v} outside of the

* {within} invocation that introduced {1} is a programming error and
* raises an exception.

*

* Note that the type variable {'b} only appears as the return type.
* This means that {to} doesn't return normally to the caller and can
* be called from a context of any type.
*)

val call : (('a -—> 'b) —> 'a) —> 'a

(**
* Simpler, but less flexibly typed, interface to {within} and {to}.
* Specifically, {call f} is equivalent to {within (f o to)}.
*)

end

(_Typing First-Class Continuations in ML discusses the typing of a related construct.) The implementation
(Blexit.sml) is straightforward:

structure Exit :> EXIT = struct
type 'a t = 'a -> exn

fun within block = let

in

exception EscapedExit of 'a

block EscapedExit
handle EscapedExit value => value

end

fun to exit value = raise exit value

fun call block = within (block o to)

end

Here is an example of how one could implement a £ind function given an app function:

fun appToFind (app : ('a —-> unit) -> 'b -> unit)
(predicate : 'a -> Dbool)
(data : 'b) =
Exit.call

(fn return =>
(app (fn x =>
if predicate x then
return (SOME x)

419


http://mlton.org/cgi-bin/viewsvn.cgi/mltonlib/trunk/com/ssh/extended-basis/unstable/detail/control/exit.sml?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mltonlib/trunk/com/ssh/extended-basis/unstable/detail/control/exit.sml?view=markup

MLton Guide (20070826) ReturnStatement

else

())
data
; NONE))

In the above, as soon as the expression predicate x evaluates to t rue the app invocation is terminated.

Continuation-passing Style (CPS)

A general way to implement complex control patterns is to use [BICPS. In CPS, instead of returning normally,
functions invoke a function passed as an argument. In general, multiple continuation functions may be passed
as arguments and the ordinary return continuation may also be used. As an example, here is a function that
finds the leftmost element of a binary tree satisfying a given predicate:

datatype 'a tree = LEAF | BRANCH of 'a tree * 'a * 'a tree

fun find predicate = let
fun recurse continue =
fn LEAF =>

continue ()
| BRANCH (lhs, elem, rhs) =>
recurse
(fn () =>
if predicate elem then
SOME elem
else
recurse continue rhs)
1lhs
in
recurse (fn () => NONE)
end

Note that the above function returns as soon as the leftmost element satisfying the predicate is found.

Last edited on 2007-03-06 06:55:52 by VesaKarvonen.

420


http://en.wikipedia.org/wiki/Continuation-passing_style
http://en.wikipedia.org/wiki/Continuation-passing_style

MLton Guide (20070826) RunTimeOptions

RunTimeOptions

Executables produced by MLton take command line arguments that control the runtime system. These
arguments are optional, and occur before the executable's usual arguments. To use these options, the first
argument to the executable must be @MLt on. The optional arguments then follow, must be terminated by ——,
and are followed by any arguments to the program. The optional arguments are not made available to the
SML program via CommandLine.arguments. For example, a valid call to hello-world is:

hello-world @MLton gc-summary fixed-heap 10k -- a b c
In the above example, CommandLine.arguments () = ["a", "b", "c"].

It is allowed to have a sequence of @MLt on arguments, as in:

hello-world @MLton gc-summary —- @MLton fixed-heap 10k -- a b c
Run-time options can also control MLton, as in

mlton @MLton fixed-heap 0.5g —- foo.sml

Options

¢ fixed-heap x{k|K|m|M|g|G}
Use a fixed size heap of size x, where x is a real number and the trailing letter indicates its units.
korkK 1024

morM 1,048,576
gorG 1,073,741,824
A value of 0 means to use almost all the RAM present on the machine.

The heap size used by £ixed-heap includes all memory allocated by SML code, including memory
for the stack (or stacks, if there are multiple threads). It does not, however, include any memory used
for code itself or memory used by C globals, the C stack, or malloc.

® gc-messages
Print a message at the start and end of every garbage collection.

® gc-summary
Print a summary of garbage collection statistics upon program termination.

¢ load-world world
Restart the computation with the file specified by world, which must have been created by a call to
MLton.World. save by the same executable. See MLtonWorld.

*max—heap x{k|KIm|M|g|G}
Run the computation with an automatically resized heap that is never larger than x, where x is a real
number and the trailing letter indicates the units as with £ ixed-heap. The heap size for max-heap
is accounted for as with fixed-heap.

® no-load-world
Disable 1oad-world. This can be used as an argument to the compiler via
—-runtime no-load-world to create executables that will not load a world. This may be useful
to ensure that set-uid executables do not load some strange world.

®ram-slop x
Multiply x by the amount of RAM on the machine to obtain what the runtime views as the amount of

421



MLton Guide (20070826) RunTimeOptions

RAM it can use. Typically x is less than 1, and is used to account for space used by other programs
running on the same machine.

® stop
Causes the runtime to stop processing @MLt on arguments once the next —— is reached. This can be
used as an argument to the compiler via ~runtime stop to create executables that don't process
any @MLton arguments.

Last edited on 2007-08-23 04:01:26 by MatthewFluet.

422



MLton Guide (20070826)

RunningOnAIX

MLton runs fine on AIX.

Also see

® RunningOnPowerPC

RunningOnAIX

Last edited on 2007-07-12 19:01:02 by MatthewFluet.

423



MLton Guide (20070826) RunningOnAMDG64

RunningOnAMDG64

MLton runs fine on the amd64 architecture.

On amd64, MLton supports native code generation (—codegen native or —codegen amd64).

Last edited on 2007-07-08 20:19:47 by MatthewFluet.

424



MLton Guide (20070826) RunningOnCygwin
RunningOnCygwin

MLton runs on the BICygwin emulation layer, which provides a Posix-like environment while running on
Windows. To run MLton with Cygwin, you must first install Cygwin on your Windows machine. To do this,
visit the Cygwin site from your Windows machine and run their setup . exe script. Then, you can unpack
the MLton binary t gz in your Cygwin environment.

To run MLton cross-compiled executables on Windows, you must install the Cygwin d11 on the Windows
machine.

Known issues

¢ Time profiling is disabled.

¢ Cygwin's mmap emulation is less than perfect. Sometimes it interacts badly with
Posix.Process. fork. For idiomatic uses of fork plus exec, you can instead use the
MLton.Process. spawn family of functions, which work on all our platforms.

¢ Cygwin's mmap emulation does not make available as much contiguous virtual address space as using
the Windows VirtualAlloc function. Earlier versions of MLton used VirtualAlloc instead of
mmap, but that no longer works.

Also see

¢ RunningOnMinGW

Last edited on 2006-07-20 19:36:31 by StephenWeeks.

425


http://www.cygwin.com/
http://www.cygwin.com/

MLton Guide (20070826) RunningOnDarwin

RunningOnDarwin

MLton runs fine on Darwin (and on Mac OS X).

* MLton requires the GnuMP library, which is available via [@Fink or BMacPorts.

Known issues

¢ ProfilingTime may give inaccurate results on multi-processor machines. The SIGPROF signal, used
to sample the profiled program, is supposed to be delivered 100 times a second (i.e., at 10000us
intervals), but there can be delays of over 1 minute between the delivery of consecutive SIGPROF
signals. A more complete description may be found ®lhere and Ehere.

Also see

e RunningOnPowerPC

¢ RunningOnX86

Last edited on 2007-08-13 19:03:38 by MatthewFluet.

426


http://fink.sourceforge.net/
http://fink.sourceforge.net/
http://macports.com
http://macports.com
http://lists.apple.com/archives/Unix-porting/2007/Aug/msg00000.html
http://lists.apple.com/archives/Unix-porting/2007/Aug/msg00000.html
http://lists.apple.com/archives/Darwin-dev/2007/Aug/msg00045.html
http://lists.apple.com/archives/Darwin-dev/2007/Aug/msg00045.html

MLton Guide (20070826) RunningOnFreeBSD

RunningOnFreeBSD

MLton runs fine on [#FreeBSD.

MLton is available as a BlFreeBSD [@port.

Known issues

¢ Executables often run more slowly than on a comparable Linux machine. We conjecture that part of
this is due to costs due to heap resizing and kernel zeroing of pages. Any help in solving the problem
would be appreciated.

¢ FreeBSD defaults to a datasize limit of 512M, even if you have more than that amount of memory in
the computer. Hence, your MLton process will be limited in the amount of memory it has. To fix this
problem, turn up the datasize and the default datasize available to a process: Edit /boot/loader.conf to
set the limits. For example, the setting

kern.maxdsiz="671088640"
kern.dfldsiz="671088640"
kern.maxssiz="134217728"

will give a process 640M of datasize memory, default to 640M available and set 128M of stack size
memory.

Last edited on 2007-07-08 20:19:56 by MatthewFluet.

427


http://www.freebsd.org/
http://www.freebsd.org/
http://www.freebsd.org/
http://www.freebsd.org/
http://www.freebsd.org/cgi/ports.cgi?query=mlton&stype=all
http://www.freebsd.org/cgi/ports.cgi?query=mlton&stype=all

MLton Guide (20070826) RunningOnHPPA

RunningOnHPPA

MLton runs fine on the HPPA architecture.

Known issues

e When compiling for HPPA, MLton targets the 32-bit HPPA architecture.

® When compiling for HPPA, MLton doesn't support native code generation (-codegen native).
Hence, performance is not as good as it might be and compile times are longer. Also, the quality of
code generated by gcc is important. By default, MLton calls gcc —01. You can change this by
calling MLton with ~cc—opt -02. We have seen this speed up some programs by as much as 30%,
especially those involving floating point; however, it can also more than double compile times.

® When compiling for HPPA, MLton uses —~align 8 by default. While this speeds up reals, it also
may increase object sizes. If your program does not make significant use of reals, you might see a
speedup with —align 4.

Last edited on 2007-07-08 20:20:00 by MatthewFluet.

428



MLton Guide (20070826)
RunningOnHPUX
MLton runs fine on HPUX.
Also see

¢ RunningOnHPPA

RunningOnHPUX

Last edited on 2007-07-08 20:27:02 by MatthewFluet.

429



MLton Guide (20070826) RunningOnLinux

RunningOnLinux

MLton runs fine on Linux.

Last edited on 2007-07-08 20:20:04 by MatthewFluet.

430



MLton Guide (20070826) RunningOnMinGW

RunningOnMinGW

MLton runs on [@MinGW, a library for porting Unix applications to Windows. Some library functionality is
missing or changed.

Known issues

® To compile MLton on MinGW:

¢ The GnuMP library is required.

¢ The Bash shell is required. If you are using a prebuilt MSY'S, you probably want to symlink

bash to sh.

e Many functions are unimplemented and will raise SysErr.

¢ MLton.Itimer.set
MLton.ProcEnv.setgroups
MLton.Process.kill
MLton.Process.reap
MLton.World.load
OS.FileSys.readLink
0S.I0.poll
OS.Process.terminate
Posix.FileSys.chown
Posix.FileSys.fchown
Posix.FileSys.fpathconf
Posix.FileSys.link
Posix.FileSys.mkfifo
Posix.FileSys.pathconf
Posix.FileSys.readlink
Posix.FileSys.symlink
Posix.IO.dupfd
Posix.IO.getfd
Posix.IO.getfl
Posix.IO.getlk
Posix.IO.setfd
Posix.IO.setfl
Posix.IO.setlkw
Posix.IO.setlk
Posix.ProcEnv.ctermid
Posix.ProcEnv.getegid
Posix.ProcEnv.geteuid
Posix.ProcEnv.getgid
Posix.ProckEnv.getgroups
Posix.ProcEnv.getlogin
Posix.ProcEnv.getpgrp
Posix.ProcEnv.getpid
Posix.ProcEnv.getppid
Posix.ProcEnv.getuid
Posix.ProckEnv.setgid
Posix.ProcEnv.setpgid
Posix.ProcEnv.setsid
Posix.ProcEnv.setuid

L 2R ZBR B R JEE JER JER JER 2R 2R R JEE JEE R JER R JEE R JEE JEE JEE JER JER JEE R JEE JEE JEE JER JER JER JER R R JEE R 2

431


http://mingw.org
http://mingw.org

MLton Guide (20070826)

Posix
Posix
Posix
Posix
Posix
Posix
Posix
Posix
Posix
Posix
Posix

Posix

L IR ZBR JER 2R JEE JER JEE JER R R 2R JEE JER JEE R R JER JEE JEE JEE JER R 2R 2R R 4

.ProcEnv
.ProcEnv.
.ProcEnv.
.Process.
.Process.
.Process.
.Process.
.Process.
.Process
.Process
.Process
Posix.

SysDB.g

.SysDB.g
Posix.
Posix.
Posix.
Posix.
Posix.
Posix.
Posix.
Posix.
Posix.
Unix.kill
Unix.reap
UnixSock.fromAddr
UnixSock.toAddr

SysDB.g
TTY.TC.
TTY.TC.
TTY.TC.
TTY.TC.
TTY.TC.
TTY.TC.
TTY.TC.
TTY.TC.

.sysconf
times
ttyname
exece
execp
exit
fork
kill
.pause
.waitpid_nh
.waitpid
etgrgid
etgrnam
etpwuid
drain
flow
flush
getattr
getpgrp
sendbreak
setattr

setpgrp

RunningOnMinGW

Last edited on 2007-07-08 20:20:09 by MatthewFluet.

432



MLton Guide (20070826) RunningOnNetBSD

RunningOnNetBSD

MLton runs fine on NetBSD.

Installing the correct packages for NetBSD

The NetBSD system installs 3rd party packages by a mechanism known as pkgsrc. This is a tree of Makefiles
which when invoked downloads the source code, builds a package and installs it on the system. In order to run
MLton on NetBSD, you will have to install several packages for it to work:

® shells/bash
¢ devel/gmp
¢ devel/gmake

In order to get graphical call-graphs of profiling information, you will need the additional package
¢ graphics/graphviz

To build the documentation for MLton, you need htmldoc.

Tips for compiling and using MLton on NetBSD

MLton can be a memory-hog on computers with little memory. While 640Mb of RAM ought to be enough to
self-compile MLton one might want to do some tuning to the NetBSD VM subsystem in order to succeed. The
notes presented here is what Jesperl.ouisAndersen uses for compiling MLton on his laptop.

The NetBSD VM subsystem

NetBSD uses a VM subsystem named BJUVM. E#Tuning the VM system can be done via the
sysctl (8) -interface with the "VM" MIB set.

Tuning the NetBSD VM subsystem for MLton

MLton uses a lot of anonymous pages when it is running. Thus, we will need to tune up the default of 80 for
anonymous pages. Setting

sysctl —-w vm.anonmax=95
sysctl -w vm.anonmin=50
sysctl -w vm.filemin=2
sysctl -w vm.execmin=2
sysctl -w vm.filemax=4
sysctl -w vm.execmax=4

makes it less likely for the VM system to swap out anonymous pages. For a full explanation of the above
flags, see the documentation.

The result is that my laptop goes from a MLton compile where it swaps a lot to a MLton compile with no
swapping.

Last edited on 2006-07-20 19:36:43 by StephenWeeks.

433


http://www.netbsd.org/
http://www.netbsd.org/
http://www.ccrc.wustl.edu/pub/chuck/tech/uvm/
http://www.ccrc.wustl.edu/pub/chuck/tech/uvm/
http://www.selonen.org/arto/netbsd/vm_tune.html
http://www.selonen.org/arto/netbsd/vm_tune.html

MLton Guide (20070826) RunningOnOpenBSD

RunningOnOpenBSD

MLton runs fine on EQpenBSD.

Known issues

¢ Our socket regression test fails. We suspect this is not a bug and is simply due to our test relying on a
certain behavior when connecting to a socket that has not yet accepted, which is handled differently
on OpenBSD than other platforms. Any help in understanding and resolving this issue is appreciated.

Last edited on 2007-07-08 20:20:13 by MatthewFluet.

434


http://www.openbsd.org/
http://www.openbsd.org/

MLton Guide (20070826) RunningOnPowerPC

RunningOnPowerPC

MLton runs fine on the PowerPC architecture.

Known issues

® When compiling for PowerPC, MLton targets the 32-bit PowerPC architecture.

® When compiling for PowerPC, MLton doesn't support native code generation
(-codegen native). Hence, performance is not as good as it might be and compile times are
longer. Also, the quality of code generated by gcc is important. By default, MLton calls gcc —0O1.
You can change this by calling MLton with ~cc-opt -02.

Last edited on 2007-07-08 20:20:17 by MatthewFluet.

435



MLton Guide (20070826) RunningOnSolaris

RunningOnSolaris

MLton runs fine on Solaris.

Known issues

® You must install the binutils, gcc, and make packages. You can find out how to get these at
[lsunfreeware.com.

e Making the documentation requires that you install Latex and dvips, which are available in the
tetex package. It also requires htmldoc, for which we haven't yet tracked down a package.

¢ Bootstrapping is so slow as to be impractical (many hours on a S00MHz UltraSparc). For this reason,
we strongly recommend building with a Linux to Solaris cross compiler.

Also see

¢ RunningOnSparc

Last edited on 2007-07-08 20:20:21 by MatthewFluet.

436


http://www.sunfreeware.com
http://www.sunfreeware.com

MLton Guide (20070826) RunningOnSparc

RunningOnSparc

MLton runs fine on the Sparc architecture.

Known issues

® When compiling for Sparc, MLton targets the 32-bit Sparc architecture (i.e., Sparc V8).

® When compiling for Sparc, MLton doesn't support native code generation (-codegen native).
Hence, performance is not as good as it might be and compile times are longer. Also, the quality of
code generated by gcc is important. By default, MLton calls gcc —01. You can change this by
calling MLton with ~cc—opt -02. We have seen this speed up some programs by as much as 30%,
especially those involving floating point; however, it can also more than double compile times.

® When compiling for Sparc, MLton uses —align 8 by default. While this speeds up reals, it also
may increase object sizes. If your program does not make significant use of reals, you might see a
speedup with —align 4.

Last edited on 2007-07-08 20:20:25 by MatthewFluet.

437



MLton Guide (20070826) RunningOnX86

RunningOnX86

MLton runs fine on the x86 architecture.

On x86, MLton supports native code generation (—-codegen native or —codegen x86).

Last edited on 2007-07-08 20:20:29 by MatthewFluet.

438



MLton Guide (20070826) SMLNET

SMLNET

[BISML.NET is a Standard ML Compiler that targets the .NET Common Language Runtime.
SML.NET is based on the MLj compiler.

BentonEtAlO4 describes SML.NET.

Last edited on 2004-12-30 20:11:30 by StephenWeeks.

439


http://www.research.microsoft.com/Projects/SML.NET/
http://www.research.microsoft.com/Projects/SML.NET/

MLton Guide (20070826) SMLNJ

SMLNJ

[BISMIL/NJ is a Standard ML Compiler. It is a native code compiler that runs on a variety of platforms and has
a number of libraries and tools.

We maintain a list of SML/NI's deviations from The Definition of Standard ML..

MLton has support for some features of SML/NJ in order to ease porting between MLton and SML/NJ.

¢ CompilationManager (CM)
e LineDirectives

e SMIofNJStructure
e UnsafeStructure

Last edited on 2007-08-15 22:07:16 by MatthewFluet.

440


http://www.smlnj.org/
http://www.smlnj.org/

MLton Guide (20070826) SMLNJDeviations
SMLNJDeviations

Here are some deviations of SMIL/NJ from The Definition of Standard ML.. Some of these are documented in
the BISML '97 Conversion Guide. Since MLton does not deviate from the Definition, you should look here if
you are having trouble porting a program from MLton to SML/NJ or vice versa. If you discover other
deviations of SML/NJ that aren't listed here, please send mail to EAMLton@mlton.org.

e SML/NJ allows spaces in long identifiers, asin S . x. Section 2.5 of the Definition implies that
S . x should be treated as three separate lexical items.
® SML/NI rejects

(op *)

as an unmatched close comment.
e SML/NJ allows = to be rebound by the declaration:

val op = = 13

This is explicitly forbidden on page 5 of the Definition.
¢ SML/NIJ allows rebinding t rue, false, nil, : :, and ref by the declarations:

fun true () = ()
fun false () = ()
fun nil () = ()
fun op :: () = ()
fun ref () = ()

This is explicitly forbidden on page 9 of the Definition.
e SML/NJ extends the syntax of the language to allow vector expressions and patterns like the
following:

val v = #[1,2,3]
val #[x,y,z] = v
¢ SML/NJ extends the syntax of the language to allow or patterns like the following:

datatype foo = Foo of int | Bar of int
val (Foo x | Bar x) = Foo 13

e SML/NIJ allows higher-order functors, that is, functors can be components of structures and can be
passed as functor arguments and returned as functor results. As a consequence, SML/NJ allows
abbreviated functor definitions, as in the following:

signature S =
sig
type t
val x: t
end
functor F (structure A: S): S =
struct
type t = A.t * A.t
val x = (A.x, A.X)
end
functor G = F

¢ SML/NJ extends the syntax of the language to allow functor and signature definitions to occur within
the scope of 1ocal and structure declarations.

441


http://www.smlnj.org/doc/Conversion/index.html
http://www.smlnj.org/doc/Conversion/index.html
mailto:MLton@mlton.org
mailto:MLton@mlton.org

MLton Guide (20070826) SMLNJDeviations

SML/NIJ allows duplicate type specifications in signatures when the duplicates are introduced by
include, as in the following:

signature SIGl
sig
type t
type u
end
signature SIG2
sig
type t
type v
end
signature SIG =
sig
include SIGl
include SIG2
end

This is disallowed by rule 77 of the Definition.
SML/NIJ allows sharing constraints between type abbreviations in signatures, as in the following:

signature SIG =
sig
type t = int * int
type u = int * int
sharing type t = u
end

These are disallowed by rule 78 of the Definition.
SML/NIJ disallows multiple where type specifications of the same type name, as in the following

signature S =
sig
type t
type u
end
where type u = int

t

This is allowed by rule 84 of the Definition.
SML/NIJ allows and in sharing specs in signatures, as in

signature S =

sig
type t
type u
type v
sharing type t = u
type u = v
end

SML/NJ does not expand the withtype derived form as described by the Definition. According to
page 55 of the Definition, the type bindings of a withtype declaration are substituted
simultaneously in the connected datatype. Consider the following program.

type u = real
datatype a =
A of t

442



MLton

Guide (20070826) SMLNJDeviations

| B of u
withtype u = int
and t = u

According to the Definition, it should be expanded to the following.

type u = real
datatype a =
A ofu
| B of int

However, SML/NJ expands withtype bindings sequentially, meaning that earlier bindings are
expanded within later ones. Hence, the above program is expanded to the following.

type u = real
datatype a =
A of int
| B of int
SML/NIJ allows withtype specifications in signatures.
SML/NIJ allows a where structure specification that is similar to a where type specification. For
example:

structure S = struct type t = int end
signature SIG =
sig
structure T : sig type t end
end where T = S

This is equivalent to:

structure S = struct type t = int end
signature SIG =
sig
structure T : sig type t end
end where type T.t = S.t

SML/NIJ also allows a definitional structure specification that is similar to a definitional type
specification. For example:

structure S = struct type t = int end
signature SIG =
sig
structure T : sig type t end = S
end

This is equivalent to the previous examples and to:

structure S = struct type t = int end
signature SIG =
sig
structure T : sig type t end where type t = S.t
end
SML/NIJ disallows binding non-datatypes with datatype replication. For example, it rejects the
following program that should be allowed according to the Definition.

type ('a, 'b) t = 'a * 'b

443



MLton Guide (20070826) SMLNJDeviations

datatype u = datatype t

This idiom can be useful when one wants to rename a type without rewriting all the type arguments.
For example, the above would have to be written in SML/NJ as follows.

type ('a, 'b) t = 'a * 'b
type ('a, 'b) u= ('a, 'b) t

¢ SML/NIJ disallows sharing a structure with one of its substructures. For example, SML/NJ disallows
the following.

signature SIG =
sig
structure S:
sig
type t
structure T: sig type t end
end
sharing S = S.T
end

This signature is allowed by the Definition.
e SML/NJ disallows polymorphic generalization of refutable patterns. For example, SML/NJ disallows

the following.
val [x] = [[]]
val _ = (1 :: x, "one" :: x)

Deviations from the Basis Library Specification

Here are some deviations of SML/NJ from the Basis Library Specification.
e SML/NIJ exposes the equality of the vector type in structures such as Word8Vector that
abstractly match MONO_VECTOR, which says type vector, notegtype vector. So, for
example, SML/NIJ accepts the following program:

fun £ (v: Word8Vector.vector) = v = v

Last edited on 2007-08-15 22:07:20 by MatthewFluet.

444



MLton Guide (20070826) SMLNJLibrary

SMLNJLibrary

The BISML/NJ Library is a collection of libraries that are distributed with SML/NJ. Due to differences
between SML/NJ and MLton, these libraries will not work out-of-the box with MLton.

As of 20070812, MLton includes a port of the SML/NJ Library, currently synchronized with SML/NJ version
110.65.

Usage
® You can import a sub-library of the SML/NJ Library into an MLB file with:
MLB file Description
Various utility modules,
$(SML_LIB) /smlnj-1ib/Util/smlnj-lib.mlb included collections, simple
formating, ...

A library for managing
$(SML_LIB) /smlnj-lib/Controls/controls—-1ib.mlb control flags in an
application.
$ (SML_LIB) /smlnj—-1lib/HashCons/hash-cons-1lib.mlb Support for implementing

hash-consed data structures.
Networking utilities;
$(SML_LIB) /smlnj-lib/INet/inet-1lib.mlb supported on both Unix and
Windows systems.

Utilities for Unix-based
operating systems.
$(SML_LIB) /smlnj-1ib/PP/pp-lib.mlb Pretty-printing library.
HTML parsing and
pretty-printing library.

$(SML_LIB) /smlnj-1ib/Unix/unix-1lib.mlb

$(SML_LIB) /smlnj-1ib/HTML/html-1ib.mlb

$(SML_LIB) /smlnj-lib/RegExp/regexp—lib.mlb Regular expression library.
$(SML_LIB)/smlnj-lib/Reactive/reactive—-1lib.mlb Reactive scripting library.

e [f you are porting a project from SML/NJ's CompilationManager to MLton's ML Basis system using
cm2mlb, note that the following maps are included by default:

$smlnj-lib.cm
Scontrols-lib.cm

$(SML_LIB)/smlnj-1ib/Util

$ (SML_LIB) /smlnj-1lib/Controls
Shash-cons-1ib.cm $(SML_LIB) /smlnj-1lib/HashCons
Sinet-lib.cm $(SML_LIB) /smlnj-1lib/INet
Sunix-lib.cm $(SML_LIB) /smlnj-1ib/Unix
Spp-lib.cm $(SML_LIB)/smlnj—-1ib/PP
Shtml-lib.cm $(SML_LIB)/smlnj—-1ib/HTML
Sregexp-lib.cm $ (SML_LIB) /smlnj-1ib/RegExp
Sreactive-lib.cm $(SML_LIB) /smlnj-1lib/Reactive

This will automatically converta $/smlnj-1ib.cm import in an input . cm file into a
$(SML_LIB) /smlnj-1ib/Util/smlnj-1ib.mlb import in the output .m1b file.

445


http://www.smlnj.org/doc/smlnj-lib/index.html
http://www.smlnj.org/doc/smlnj-lib/index.html

MLton Guide (20070826) SMLNJLibrary

Details

The following changes were made to the SML/NJ Library, in addition to deriving the .m1b files from the
. cm files:

eUtil/redblack-set-fn.sml (modified): Rewrote use of where structure specification.
eUtil/redblack-map-fn.sml (modified): Rewrote use of where structure specification.
e Util/graph-scc.sml (modified): Rewrote use of where structure specification.
eUtil/bit—array.sml (modified): The computation of the maxLen is given by:

val maxLen = 8*Word8Array.maxLen

This is fine in SML/NJ where Word8Array.maxLen is 16777215, but in MLton,
Word8Array.maxLen is equal to valOf (Int .maxInt), so the computation overflows. To
accommodate both SML/NJ and MLton, the computation is replaced by

val maxlLen = (8*Word8Array.maxLen) handle Overflow => Word8Array.maxLen

eUtil/engine.mlton.sml (added, not exported): Implements st ructure Engine, providing
time-limited, resumable computations using MLtonThread, MLtonSignal, and MLtonltimer.

eUtil/time-1limit.mlton.sml (added): Implements structure TimeLimit using
structure Engine. The SML/NJ implementation of structure TimeLimit uses SML/NJ's
first-class continuations, signals, and interval timer.

eUtil/time—-1imit.mlb (added): Exports structure TimeLimit, which is not exported by
smlnj-lib.mlb. Since MLton is very conservative in the presence of threads and signals, program
performance may be adversely affected by unnecessarily including st ructure TimeLimit.

® HTML/html-elements—-fn.sml (modified): Rewrote use of or-patterns.

® HTML/html-attrs—-fn.sml (modified): Rewrote use of or-patterns.

Patch

o [Bsminj-lib.patch

Last edited on 2007-08-23 17:24:54 by MatthewFluet.

446


http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/lib/smlnj-lib/smlnj-lib.patch?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/lib/smlnj-lib/smlnj-lib.patch?view=markup

MLton Guide (20070826) SMLSharp

SMLSharp

[BISML# is an implementation of an extension of SML.

It includes some ®igenerally useful SML tools including a pretty printer generator, a document generator, and
a regression testing framework, and @scripting library.

Last edited on 2006-10-30 12:51:22 by VesaKarvonen.

447


http://www.pllab.riec.tohoku.ac.jp/smlsharp/
http://www.pllab.riec.tohoku.ac.jp/smlsharp/
http://www.pllab.riec.tohoku.ac.jp/smlsharp/?Tools
http://www.pllab.riec.tohoku.ac.jp/smlsharp/?Tools
http://www.pllab.riec.tohoku.ac.jp/smlsharp/?Library%2FScripting
http://www.pllab.riec.tohoku.ac.jp/smlsharp/?Library%2FScripting

MLton Guide (20070826) SMLofNJStructure

SMLofNJStructure

signature SML_OF_NJ =

sig
structure Cont:
sig
type 'a cont
val callcc: ('a cont -> 'a) -> 'a
val throw: 'a cont -> 'a -> 'b
end
structure SysInfo:
sig

exception UNKNOWN
datatype os_kind = BEOS | MACOS | OS2 | UNIX | WIN32

val getHostArch: unit -> string

val getOSKind: unit -> os_kind

val getOSName: unit -> string
end

val exnHistory: exn —-> string list
val exportFn: string * (string * string list -> OS.Process.status) -> unit
val exportML: string —-> bool
val getAllArgs: unit -> string list
val getArgs: unit -> string list
val getCmdName: unit -> string
end

SMLo fNJ implements a subset of the structure of the same name provided in Standard ML of New Jersey. It
is included to make it easier to port programs between the two systems. The semantics of these functions may
be different than in SML/NJ.

® structure Cont
implements continuations.
® SysInfo.getHostArch ()
returns the string for the architecture.
® SysInfo.getOSKind
returns the OS kind.
® SysInfo.getOSName ()
returns the string for the host.
® exnHistory
the same as MLton.Exn.history.
® getCmdName ()
the same as CommandLine.name ().
® getArgs ()
the same as CommandLine.arguments ().
® getAllArgs ()
the same as getCmdName () : :getArgs ().
® exportFn f
saves the state of the computation to a file that will apply f to the command-line arguments upon
restart.
® exportML f
saves the state of the computation to file £ and continue. Returns t rue in the restarted computation
and false in the continuing computation.

448



MLton Guide (20070826) SMLofNJStructure

Last edited on 2007-08-23 03:46:13 by MatthewFluet.

449



MLton Guide (20070826) SSA

SSA

SSA is an Intermediatel .anguage, translated from SXML by ClosureConvert, optimized by SSASimplify, and
translated by ToSSA?2 to SSA2.

Description

SSA is a FirstOrder, SimplyTyped Intermediatel anguage. It is the main Intermediatel.anguage used for
optimizations.

An SSA program consists of a collection of datatype declarations, a sequence of global statements, and a

collection of functions, along with a distinguished "main" function. Each function consists of a collection of
basic blocks, where each basic block is a sequence of statements ending with some control transfer.

Implementation

@ssa.sig [Bssa fun
@ssa—tree.sig [Blssa-tree.fun

Type Checking
Type checking of a SSA program verifies the following:
¢ no duplicate definitions (tycons, cons, vars, labels, funcs)
¢ no out of scope references (tycons, cons, vars, labels, funcs)
¢ variable definitions dominate variable uses
e case transfers are exhaustive and irredundant

® Enter/Leave profile statements match
¢ "traditional" well-typedness

@typ_e—check.sig @ty_pe—check.fun

Details and Notes

SSA is an abbreviation for Static Single Assignment.

Last edited on 2006-11-02 17:31:56 by MatthewFluet.

450


http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/ssa.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/ssa.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/ssa.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/ssa.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/ssa-tree.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/ssa-tree.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/ssa-tree.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/ssa-tree.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/type-check.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/type-check.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/type-check.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/type-check.fun?view=markup

MLton Guide (20070826) SSA2

SSA2

SSA2 is an Intermediatel anguage, translated from SSA by ToSSA2, optimized by SSA2Simplify, and
translated by ToORSSA to RSSA.

Description

SSA2 is a FirstOrder, SimplyTyped Intermediatel.anguage, a slight variant of the SSA Intermediatel anguage,
Like SSA, a SSA program consists of a collection of datatype declarations, a sequence of global statements,
and a collection of functions, along with a distinguished "main" function. Each function consists of a
collection of basic blocks, where each basic block is a sequence of statements ending with some control

transfer.

Unlike SSA, SSA2 includes mutable fields in objects and makes the vector type constructor n-ary instead of
unary. This allows optimizations like RefFlatten and DeepFlatten to be expressed.

Implementation

@ssalsig [Bssa2 fun
@ssa—treelsig [Blssa-tree2.fun

Type Checking
Type checking of a SSA2 program verifies the following:
¢ no duplicate definitions (tycons, cons, vars, labels, funcs)
¢ no out of scope references (tycons, cons, vars, labels, funcs)
¢ variable definitions dominate variable uses
e case transfers are exhaustive and irredundant

® Enter/Leave profile statements match
¢ "traditional" well-typedness

@typ_e—checklsig @ty_pe—checkZ.fun

Details and Notes

SSA is an abbreviation for Static Single Assignment.

Last edited on 2007-08-15 22:07:25 by MatthewFluet.

451


http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/ssa2.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/ssa2.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/ssa2.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/ssa2.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/ssa-tree2.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/ssa-tree2.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/ssa-tree2.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/ssa-tree2.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/type-check2.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/type-check2.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/type-check2.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/type-check2.fun?view=markup

MLton Guide (20070826) SSA2Simplify
SSA2Simplify

The optimization passes for the SSA2 Intermediatel.anguage are collected and controlled by the Simplify2
functor (Blsimplify2.sig Msimplify2.fun).

The following optimization passes are implemented:

e DeepFlatten

e RefFlatten

e RemoveUnused
® Zone

There are additional analysis and rewrite passes that augment many of the other optimization passes:

® Restore
e Shrink

The optimization passes can be controlled from the command-line by the options

e diag-pass <pass> -- keep diagnostic info for pass
¢ drop-pass <pass> -- omit optimization pass
® keep-pass <pass> -- keep the results of pass
® loop-passes <n> -- loop optimization passes
® ssa2-passes <passes> -- ssa optimization passes

Last edited on 2006-11-02 17:30:30 by MatthewFluet.

452


http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/simplify2.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/simplify2.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/simplify2.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/simplify2.fun?view=markup

MLton Guide (20070826) SSASimplify
SSASimplify

The optimization passes for the SSA Intermediatel.anguage are collected and controlled by the Simplify
functor (lsimplify.sig Msimplify.fun).

The following optimization passes are implemented:

e CommonAr

e CommonBlock
e CommonSubex
¢ ConstantPropagation
e Contify

e Flatten

® Inline

e Introducel .oops
e KnownCase

e [ ocalFlatten

e [ ocalRef

¢ [ ooplnvariant
e Redundant

e RedundantTests
e RemoveUnused
e SimplifyTypes
e Useless

The following implementation pass is implemented:
¢ PolyEqual

There are additional analysis and rewrite passes that augment many of the other optimization passes:
* Multi

® Restore
e Shrink

The optimization passes can be controlled from the command-line by the options:

e diag-pass <pass> -- keep diagnostic info for pass
¢ drop-pass <pass> -- omit optimization pass

® keep-pass <pass> -- keep the results of pass

® loop-passes <n> -- loop optimization passes

® ssa-passes <passes> -- $sa optimization passes

Last edited on 2006-11-02 17:53:58 by MatthewFluet.

453


http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/simplify.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/simplify.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/simplify.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/simplify.fun?view=markup

MLton Guide (20070826) SXML

SXML

SXML is an Intermediatel.anguage, translated from XML by Monomorphise, optimized by SXMLSimplify,
and translated by ClosureConvert to SSA.

Description

SXML is a simply-typed version of XML.

Implementation

@sxml.sig [Bsxml.fun
@sxml—tree.sig

Type Checking

SXML shares the type checker for XML.

Details and Notes

There are only two differences between XML and SXML. First, SXML val, fun, and datatype
declarations always have an empty list of type variables. Second, SXML variable references always have an
empty list of type arguments. Constructors uses can only have a nonempty list of type arguments if the
constructor is a primitive.

Although we could rely on the type system to enforce these constraints by parameterizing the XML signature,
StephenWeeks did so in a previous version of the compiler, and the software engineering gains were not
worth the effort.

Last edited on 2006-11-02 17:47:41 by MatthewFluet.

454


http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/xml/sxml.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/xml/sxml.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/xml/sxml.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/xml/sxml.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/xml/sxml-tree.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/xml/sxml-tree.sig?view=markup

MLton Guide (20070826) SXMLShrink

SXMLShrink

SXMLShrink is an optimization pass for the SXML Intermediatel.anguage, invoked from SXMLSimplify.

Description

This pass performs optimizations based on a reduction system.

Implementation

@shrink.sig [Slshrink.fun

Details and Notes

SXML shares the XMLShrink simplifier.

Last edited on 2006-11-02 17:50:28 by MatthewFluet.

455


http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/xml/shrink.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/xml/shrink.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/xml/shrink.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/xml/shrink.fun?view=markup

MLton Guide (20070826)

SXMLSimplify

The optimization passes for the SXML Intermediatel.anguage are collected and controlled by the

SxmlSimplify functor (Bsxml-simplify.sig @lsxml-simplify.fun).
The following optimization passes are implemented:

e Polyvariance
e SXMIL.Shrink

The following implementation passes are implemented:

¢ ImplementExceptions
e ImplementSuffix

The following optimization passes are not implemented, but might prove useful:

¢ Uncurry
e [.ambdal ift

The optimization passes can be controlled from the command-line by the options

e diag-pass <pass> -- keep diagnostic info for pass

¢ drop-pass <pass> -- omit optimization pass

® keep-pass <pass> -- keep the results of pass

e sxml-passes <passes> -- sxml optimization passes

SXMLSimplify

Last edited on 2006-11-02 17:39:21 by MatthewFluet.

456


http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/xml/sxml-simplify.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/xml/sxml-simplify.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/xml/sxml-simplify.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/xml/sxml-simplify.fun?view=markup

MLton Guide (20070826) Scopelnference

Scopelnference

Scope inference is an analysis/rewrite pass for the AST Intermediatel.anguage, invoked from Elaborate.

Description

This pass adds free type variables to the val or fun declaration where they are implicitly scoped.

Implementation
@scope.sig @scope.fun

Details and Notes

Scope inference determines for each type variable, the declaration where it is bound. Scope inference is a
direct implementation of the specification given in section 4.6 of the Definition. Recall that a free occurrence
of a type variable 'a in a declaration d is unguarded in d if ' a is not part of a smaller declaration. A type
variable ' a is implicitly scoped at d if ' a is unguarded in d and ' a does not occur unguarded in any
declaration containing d.

The first pass of scope inference walks down the tree and renames all explicitly bound type variables in order
to avoid name collisions. It then walks up the tree and adds to each declaration the set of unguarded type
variables occurring in that declaration. At this point, if declaration d contains an unguarded type variable 'a
and the immediately containing declaration does not contain ' a, then 'a is implicitly scoped at d. The final
pass walks down the tree leaving a ' a at the a declaration where it is scoped and removing it from all
enclosed declarations.

Last edited on 2006-11-02 17:55:41 by MatthewFluet.

457


http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/elaborate/scope.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/elaborate/scope.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/elaborate/scope.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/elaborate/scope.fun?view=markup

MLton Guide (20070826) SelfCompiling
SelfCompiling
If you want to compile MLton, you must first get the Sources. You can compile with either MLton or

SML/NIJ, but we strongly recommend using MLton, since it generates a much faster and more robust
executable.

Compiling with MLton

To compile with MLton, you need the binary versions of m1ton, mllex, and mlyacc that come with the
MLton binary package. To be safe, you should use the same version of MLton that you are building.

However, older versions may work, as long as they don't go back too far. To build MLton, run make from
within the root directory of the sources. This will build MLton first with the already installed binary version of
MLton and will then rebuild MLton with itself.

First, the Makefile callsmllex and mlyacc to build the lexer and parser, and then calls m1ton to
compile itself. When making MLton using another version the Makefile automatically uses
mlton-stubs.cm, which will put in enough stubs to emulate the MLt on structure. Once MLton is built,
the Makefile will rebuild MLton with itself, this time using m1ton.cm and the real MLt on structure from
the Basis Library. This second round of compilation is essential in order to achieve a fast and robust MLton.

Compiling MLton requires at least 512M of actual RAM, and 1G is preferable. If your machine has less than
512M, self-compilation will likely fail, or at least take a very long time due to paging. Even if you have
enough memory, there simply may not be enough available, due to memory consumed by other processes. In
this case, you may see an Out of memory message, or self-compilation may become extremely slow. The
only fix is to make sure that enough memory is available.

Possible Errors

¢ If you have errors running latex, you can skip building the documentation by using
make all-no-docs.

® The C compiler may not be able to find the GnuMP header file, gmp . h leading to an error like the
following.

platform/darwin.h:26:36: /usr/local/include/gmp.h: No such file or directory

The solution is to install (or build) the GnuMP on your machine. If you install it at a different
location, put the new path in runtime/platform/<os>.h.
¢ The following error indicates that a binary version of MLton could not be found in your path.

.../upgrade-basis: mlton: command not found
Error: cannot upgrade basis because the compiler doesn't work
make[3]: *** [upgrade-basis.sml] Error 1

You need to have m1ton in your path to build MLton from source.

During the build process, there are various times that the Makefiles look for amlton in your path
and in src/build/bin. It is OK if the latter doesn't exist when the build starts; it is the target
being built. While not finding build/bin/mlton also results in

mlton: command not found error messages, such errors are benign and will not abort the
build. Failure to find a m1ton in your path will abort the build.

458



MLton Guide (20070826) SelfCompiling

® Mac OS X executables do not seem to like static libraries to have a different path location at runtime
compared to when the executable was built. For example, the binary package for Mac OS X unpacks
to /usr. If you try to install it in /usr/local you may get the following errors:

/usr/bin/ld: table of contents for archive:
/usr/local/lib/mlton/self/libmlton.a is out of date;
rerun ranlib(l) (can't load from it)

Although running ranlib seems like the right thing to do, it doesn't actually resolve the problem.
Best bet is to install in /usr and then either live with this location, or build MLton yourself and
install in /usr/local.

Compiling with SML/NJ

To compile with SML/NJ, run make nj-mlton from within the root directory of the sources. You must use
a recent version of SML/NI. First, the Makefile callsmllex and mlyacc to build the lexer and parser.
Then, it calls SML/NJ with the appropriate sources. cm file. Building with SML/NJ takes some time
(roughly 10 minutes on a 1.6GHz machine). Unless you are doing compiler development and need rapid
recompilation, we recommend compiling with MLton.

Last edited on 2005-12-02 01:44:46 by StephenWeeks.

459



MLton Guide (20070826) Serialization

Serialization

Standard ML does not have built-in support for serialization. Here are papers that describe user-level
approaches:

e FElsman04
e Kennedy04

The MLton repository also contains an experimental generic programming library (see IREADME) that
includes a pickling (serialization) generic (see @pickle.sig).

Last edited on 2007-08-26 01:29:29 by VesaKarvonen.

460


http://mlton.org/cgi-bin/viewsvn.cgi/mltonlib/trunk/com/ssh/generic/unstable/README?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mltonlib/trunk/com/ssh/generic/unstable/README?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mltonlib/trunk/com/ssh/generic/unstable/public/value/pickle.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mltonlib/trunk/com/ssh/generic/unstable/public/value/pickle.sig?view=markup

MLton Guide (20070826) ShowBasis

ShowBasis

MLton has a flag, —-show-basis file, that causes MLton to pretty print to file the basis defined by the
input program. For example, if foo.sml contains

fun f x = x + 1

thenmlton -show-basis foo.basis foo.sml will create foo.basis with the following
contents.

val f: int -> int

If you only want to see the basis and do not wish to compile the program, you can call MLton with
—-stop tc.

Displaying signatures

When displaying signatures, MLton prefixes types defined in the signature them with 2. to distinguish them
from types defined in the environment. For example,

signature SIG =
sig
type t
val x: t * int -> unit
end

is displayed as

signature SIG =
sig
type t = 2.t
val x: (2.t * int) -> unit
end

Notice that int occurs without the ? . prefix.

MLton also uses a canonical name for each type in the signature, and that name is used everywhere for that
type, no matter what the input signature looked like. For example:

signature SIG =
sig
type t
type u
val x:
val y:
end

oot

is displayed as

signature SIG =
sig

type t

type u

val x:

[ EECIVIRTN)
t

ol

461



MLton Guide (20070826) ShowBasis

val y: ?.t
end

Canonical names are always relative to the "top" of the signature, even when used in nested substructures. For
example:

signature S =
sig
type t
val w: t
structure U:
sig
type u
val x: t
val y: u
end
val z: U.u
end

is displayed as

signature S =
sig
type t
val w:
val z: ?.
structure U:

o ol
[« e KN
o+

.u

sig
type u = ?.U0.u
val x: ?.t
val y: ?2.U.u
end

end

Displaying structures

When displaying structures, MLton uses signature constraints wherever possible, combined with
where type clauses to specify the meanings of the types defined within the signature.

signature SIG =

sig
type t
val x: t
end
structure S: SIG =
struct
type t = int
val x = 13
end

structure S2:> SIG = S
is displayed as

structure S: SIG

where type t = int
structure S2: SIG

where type t = S2.t

462



MLton Guide (20070826) ShowBasis

signature SIG =
sig

Last edited on 2005-12-02 01:48:03 by StephenWeeks.

463



MLton Guide (20070826) ShowProf

ShowProf

If an executable is compiled for profiling, then it accepts a special command-line runtime system argument,
show-prof, that outputs information about the source functions that are profiled. Normally, this information
isused by mlprof. This page documents the show—prof output format, and is intended for those working
on the profiler internals.

The show—prof output is ASCII, and consists of a sequence of lines.

¢ The magic number of the executable.

¢ The number of source names in the executable.

¢ A line for each source name giving the name of the function, a tab, the filename of the file containing
the function, a colon, a space, and the line number that the function starts on in that file.

® The number of (split) source functions.

e A line for each (split) source function, where each line consists of a source-name index (into the array
of source names) and a successors index (into the array of split-source sequences, defined below).

® The number of split-source sequences.

¢ A line for each split-source sequence, where each line is a space separated list of (split) source
functions.

The latter two arrays, split sources and split-source sequences, define a directed graph, which is the call-graph
of the program.

Last edited on 2006-10-23 23:29:54 by StephenWeeks.

464



MLton Guide (20070826) Shrink

Shrink

Shrink is a rewrite pass for the SSA and SSA2 Intermediatel.anguages, invoked from every optimization pass
(see SSASimplify and SSA2Simplify).

Description

This pass implements a whole family of compile-time reductions, like:

e#l(a, b) ——> a

®¢case C x of Cy =>e -—-—-> let y = x in e
e constant folding, copy propagation

e cta blocks

e tuple reconstruction elimination

Implementation

@shrink.sig Fshrink fun
[Blshrink?2.sig [@shrink2. fun

Details and Notes

The Shrink pass is run after every SSA and SSA2 optimization pass.

The Shrink implementation also includes functions to eliminate unreachable blocks from a SSA or SSA2
program or function. The Shrink pass does not guarantee to eliminate all unreachable blocks. Doing so would
unduly complicate the implementation, and it is almost always the case that all unreachable blocks are
eliminated. However, a small number of optimization passes require that the input have no unreachable blocks
(essentially, when the analysis works on the control flow graph and the rewrite iterates on the vector of
blocks). These passes explicitly call eliminateDeadBlocks.

The Shrink pass has a special case to turn a non-tail call where the continuation and handler only do
Profile statements into a tail call where the Profile statements precede the tail call.

Last edited on 2006-11-02 17:52:51 by MatthewFluet.

465


http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/shrink.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/shrink.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/shrink.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/shrink.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/shrink2.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/shrink2.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/shrink2.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/shrink2.fun?view=markup

MLton Guide (20070826) SimplifyTypes
SimplifyTypes
SimplifyTypes is an optimization pass for the SSA Intermediatel.anguage, invoked from SSASimplify.

Description

This pass computes a "cardinality”" of each datatype, which is an abstraction of the number of values of the
datatype.

e Zero means the datatype has no values (except for bottom).
® One means the datatype has one value (except for bottom).
¢ Many means the datatype has many values.
This pass removes all datatypes whose cardinality is Zero or One and removes:
¢ components of tuples
e function args
e constructor args
which are such datatypes.
This pass marks constructors as one of:
¢ Useless: it never appears in a ConApp.
¢ Transparent: it is the only variant in its datatype and its argument type does not contain any uses of
array or vector.

e Useful: otherwise

This pass also removes Useless and Transparent constructors.

Implementation
@simplify—types.sig @simplify—types.fun
Details and Notes

This pass must happen before polymorphic equality is implemented because

1. it will make polymorphic equality faster because some types are simpler
2. it removes uses of polymorphic equality that must return true

We must keep track of Transparent constructors whose argument type uses array because of datatypes like
the following:

datatype t = T of t vector

Such a datatype has Cardinality.Many, but we cannot eliminate the datatype and replace the lhs by the rhs, i.e.
we must keep the circularity around.

466


http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/simplify-types.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/simplify-types.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/simplify-types.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/simplify-types.fun?view=markup

MLton Guide (20070826) SimplifyTypes

Must do similar things for vectors.
Also, to eliminate as many Transparent constructors as possible, for something like the following,

of u array

datatype t = T
= U of t vector

and u
we (arbitrarily) expand one of the datatypes first. The result will be something like
datatype u = U of u array array

where all uses of t are replaced by u array.

Last edited on 2006-11-02 17:39:32 by MatthewFluet.

467



MLton Guide (20070826) Sources

Sources

We maintain our sources with Subversion. You can #lview them on the web or access them with a subversion
client. Anonymous read access is available via

svn://mlton.org/mlton

We use the @lstandard repository layout, so you can check out the latest revision with
svn co svn://mlton.org/mlton/trunk mlton

Committers (you know who you are) can access via
svn+ssh://mlton.org/svnroot/

Committers can check out the trunk with

svn co svn+ssh://mlton.org/svnroot/mlton/trunk mlton

Commit email

All commits are sent to MLt on—-commit@mlton.orqg (Bsubscribe, ®archive), which is only for commit
email. Discussion should go to EAMLton @mlton.org.

"

If the first line of a commit log message begins with "MATIL ", then the commit message will be sent with the
subject as the rest of that first line, and will also be sent to [mailto:MILton @mlton.org MLton @mlton.org].

Changelog

See the @ichangelog for a list of changes and bug fixes.

CVS

Prior to 20050730, we used CVS. We left the CVS server up until 20060809, at which point it was taken
down.

Last edited on 2007-08-10 19:45:16 by MatthewFluet.

468


http://mlton.org/svn
http://mlton.org/svn
http://svnbook.red-bean.com/en/1.1/ch05s04.html#svn-ch-5-sect-6.1
http://svnbook.red-bean.com/en/1.1/ch05s04.html#svn-ch-5-sect-6.1
http://mlton.org/mailman/listinfo/mlton-commit
http://mlton.org/mailman/listinfo/mlton-commit
http://mlton.org/pipermail/mlton-commit
http://mlton.org/pipermail/mlton-commit
mailto:MLton@mlton.org
mailto:MLton@mlton.org
mailto:MLton@mlton.org
mailto:MLton@mlton.org
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/doc/changelog?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/doc/changelog?view=markup

MLton Guide (20070826) SpaceSafety

SpaceSafety

Informally, space safety is a property of a language implementation that asymptotically bounds the space used
by a running program.

References

e Chapter 12 of Appel92
¢ Clinger98

Last edited on 2007-07-14 14:05:22 by VesaKarvonen.

469



MLton Guide (20070826) Stabilizers

Stabilizers

Installation

e Stabilizers currently require the MLton sources, this should be fixed by the next release

License

e Stabilizers are released under the MLton License

Instructions

¢ Download and build a source copy of MLton

¢ Extract the tar.gz file attached to this wiki page

¢ Some examples are provided in the "examples/" sub directory, more examples will be added to this
page in the following week

Bug reports / Suggestions

® Please send any errors you encounter to schatzp and Iziarek at cs.purdue.edu
® We are looking to expand the usability of stabilizers
® Please send any suggestions and desired functionality to the above email addresses

Note

¢ This is an alpha release. We expect to have another release shortly with added functionality soon
® More documentation, such as signatures and descriptions of functionality, will be forthcoming

Documentation

signature STABLE =
sig
type checkpoint

val stable: ('a —> 'b) -> ('a —> 'b)
val stabilize: unit -> 'a

val stableCP: (('a -> 'b) * (unit -> unit)) ->
(('a => 'b) * checkpoint)

val stabilizeCP: checkpoint -> unit

val unmonitoredAssign: ('a ref * 'a) -> unit

val monitoredAssign: ('a ref * 'a) -> unit
end

Stable provides functions to manage stable sections.

® type checkpoint
handle used to stabilize contexts other than the current one.

470



MLton Guide (20070826) Stabilizers

e stable f
returns a function identical to £ that will execute within a stable section.

® stabilize ()
unrolls the effects made up to the current context to at least the nearest enclosing { {stable}}} section.
These effects may have propagated to other threads, so all affected threads are returned to a globally
consistent previous state. The return is undefined because control cannot resume after stabilize is
called.

® stableCP (f, comp)
returns a function f£' and checkpoint tag cp. Function £ ' is identical to £ but when applied will
execute within a stable section. comp will be executed if £' is later stabilized. cp is used by
stabilizeCP to stabilize a given checkpoint.

® stabilizeCP cp
same as stabilize except that the (possibly current) checkpoint to stabilize is provided.

® unmonitoredAssign (r, V)
standard assignment (: =). The version of CML distributed rebinds : = to a monitored version so
interesting effects can be recorded.

*monitoredAssign (r, V)
the assignment operator that should be used in programs that use stabilizers. : = is rebound to this by
including CML.

Download
e Wistabilizers alpha 2006-10-09.tar.gz

Also see

e ZiarekEtAIQ06

Last edited on 2007-08-23 04:40:21 by MatthewFluet.

471


http://mlton.org/pages/Stabilizers/attachments/stabilizers_alpha_2006-10-09.tar.gz
http://mlton.org/pages/Stabilizers/attachments/stabilizers_alpha_2006-10-09.tar.gz

MLton Guide (20070826)

StandardML

Standard ML (SML) is a programming language that combines excellent support for rapid prototyping,
modularity, and development of large programs, with performance approaching that of C.

SML Resources

e Tutorials
® Books
¢ Implementations

o BISML web search from Google Co-op

Aspects of SML

¢ DefineTypeBeforeUse
¢ EqualityType

¢ EqualityTypeVariable
¢ GenerativeDatatype

¢ GenerativeException
e Identifier

¢ OperatorPrecedence

¢ Overloading

¢ PolymorphicEquality
e ValueRestriction

Using SML

¢ Fixpoints
e Forl.oops

¢ FunctionalRecordUpdate

¢ InfixingOperators
eLazy

® ObjectOrientedProgrammin

e Optional Arguments
® Printf

¢ PropertyList

¢ ReturnStatement

e Serialization

¢ StandardMI Gotchas
¢ StyleGuide

e TipsForWritingConciseSML

¢ TypeVariableScope
e UniversalType

Programming in SML

e Emacs
e Enscript

StandardML

472


http://google.com/coop/cse?cx=014714656471597805969%3Afzuz7eybmcy
http://google.com/coop/cse?cx=014714656471597805969%3Afzuz7eybmcy

MLton Guide (20070826)

Notes

e History of SMLL
® Regions

Related Languages

D>

lice
e OCaml

StandardML

Last edited on 2007-07-08 22:31:15 by MatthewFluet.

473



MLton Guide (20070826) StandardMLBooks

StandardMLBooks

Introductory Books
e Flements of ML Programmin
e MI For the Working Programmer

e Introduction to Programming using SML
e The Little Ml er

Applications
¢ Unix System Programming with Standard ML,

Reference Books

e The Standard ML Basis Librar
® The Definition of Standard ML (Revised)

Related Topics

e Concurrent Programming in ML
e Purelv Functional Data Structures

Last edited on 2005-05-19 19:50:12 by StephenWeeks.

474



MLton Guide (20070826) StandardMLGotchas

StandardMLGotchas

This page contains brief explanations of some recurring sources of confusion and problems that SML newbies
encounter.

Many confusions about the syntax of SML seem to arise from the use of an interactive REPL (Read-Eval Print
Loop) while trying to learn the basics of the language. While writing your first SML programs, you should
keep the source code of your programs in a form that is accepted by an SML compiler as a whole.

The {{{and}}} keyword

It is a common mistake to misuse the and keyword or to not know how to introduce mutually recursive
definitions. The purpose of the and keyword is to introduce mutually recursive definitions of functions and
datatypes. For example,

fun isEven Ow0 = true

| isEven Owl = false

| isEven n = 1s0dd (n-0wl)
and isOdd Ow0 = false

| isOdd Owl = true

| 1isO0dd n = isEven (n-0wl)

and

datatype decl VAL of id * pat * expr

(* | ... %)
and expr = LET of decl * expr
(* | *)

You can also use and as a shorthand in a couple of other places, but it is not necessary.
Constructed patterns

It is a common mistake to forget to parenthesize constructed patterns in fun bindings. Consider the following
invalid definition:

fun length nil = 0
| length h :: £t =1 + length t

The pattern h : : t needs to be parenthesized:

fun length nil = 0
t

| length (h :: ) = 1 + length t

The parentheses are needed, because a fun definition may have multiple consecutive constructed patterns
through currying.

The same applies to nonfix constructors. For example, the parentheses in

fun valOf NONE = raise Option
| valOof (SOME x) = x

475



MLton Guide (20070826) StandardMLGotchas

are required. However, the outermost constructed pattern in a £n or case expression need not be
parenthesized, because in those cases there is always just one constructed pattern. So, both

val valOf = £n NONE => raise Option
| SOME x => X

and

fun valOf x = case x of
NONE => raise Option
| SOME x => x

are fine.
Declarations and expressions

It is a common mistake to confuse expressions and declarations. Normally an SML source file should only
contain declarations. The following are declarations:

datatype dt = ...
fun £ ... = ...
functor Fn (...) =
infix ...

infixr ...

local ... in ... end
nonfix ...

open ...

signature SIG =
structure Struct =
type t = ...

val v =

Note that

let ... in ... end

isn't a declaration.

To specify a side-effecting computation in a source file, you can write:
val () =

Equality types

SML has a fairly intricate built-in notion of equality. See EqualityType and EqualityTypeVariable for a
thorough discussion.

Nested cases

It is a common mistake to write nested case expressions without the necessary parentheses. See
UnresolvedBugs for a discussion.

476



MLton Guide (20070826) StandardMLGotchas
(op )

It used to be a common mistake to parenthesize op * as (op *).Before SML'97, *) was considered a
comment terminator in SML and caused a syntax error. At the time of writing, SML/NJ still rejects the code.
An extra space may be used for portability: (op * ).However, parenthesizing op is redundant, even
though it is a widely used convention.

Overloading

A number of standard operators (+, -, ~, *, <, >, ...) and numeric constants are overloaded for some of the
numeric types (int, real, word). It is a common surprise that definitions using overloaded operators such
as

fun min (x, y) = if y < x then y else x

are not overloaded themselves. SML doesn't really support (user-defined) overloading or other forms of ad
hoc polymorphism. In cases such as the above where the context doesn't resolve the overloading, expressions
using overloaded operators or constants get assigned a default type. The above definition gets the type

val min : int * int -> int

See Overloading and TypelndexedValues for further discussion.

Semicolons

It is a common mistake to use redundant semicolons in SML code. This is probably caused by the fact that in
an SML REPL, a semicolon (and enter) is used to signal the REPL that it should evaluate the preceding chunk

of code as a unit. In SML source files, semicolons are really needed in only two places. Namely, in
expressions of the form

(exp ; ... ; exp)
and
let ... in exp ; ... ; exp end

Note that semicolons act as expression (or declaration) separators rather than as terminators.
Stale bindings

Unresolved records

Value restriction

See ValueRestriction.

Type Variable Scope

See TypeVariableScope.

Last edited on 2007-08-23 04:25:03 by MatthewFluet.

477



MLton Guide (20070826)

StandardMLHistory

Standard ML grew out of ML in the early 1980s.

For an excellent overview of SML's history, see Appendix F of the Definition.

For an overview if its history before 1982, see How ML Evolved.

StandardMLHistory

Last edited on 2005-06-20 21:44:44 by StephenWeeks.

478



MLton Guide (20070826) StandardMLImplementations

StandardMLImplementations

There are a number of implementations of Standard ML, from interpreters, to byte-code compilers, to
incremental compilers, to whole-program compilers.

e HaMI et

e ML Kit

e Ml ton

® Moscow ML
¢ Poly/ML

¢ Poplo

e SMIL#

e SMI/NJ

e SML.NET

o TILT

Not Actively Maintained

o BiEdinburgh ML
e MLj

* ML Works

° @m

Last edited on 2006-10-26 20:01:45 by StephenWeeks.

479


http://www.dcs.ed.ac.uk/home/edml/
http://www.dcs.ed.ac.uk/home/edml/
http://www.cs.cornell.edu/Info/People/jgm/til.tar.Z
http://www.cs.cornell.edu/Info/People/jgm/til.tar.Z

MLton Guide (20070826) StandardMLPortability

StandardMLPortability

Technically, SML'97 as defined in the Definition requires only a a minimal initial basis, which, while
including the types int, real, char, and st ring, need have no operations on those base types. Hence, the
only observable output of an SML'97 program is termination or raising an exception. Most SML compilers
should agree there, to the degree each agrees with the Definition. See UnresolvedBugs for MLton's very few
corner cases.

Realistically, a program needs to make use of the Basis Library. Within the Basis Library, there are numerous
places where the behavior is implementation dependent. For a trivial example:

val _ = valOf (Int.maxInt)

may either raise the Opt ion exception (if Int .maxInt == NONE) or may terminate normally. The
default Int/Real/Word sizes are the biggest implementation dependent aspect; so, one implementation may
raise Over flow while another can accommodate the result. Also, maximum array and vector lengths are
implementation dependent. Interfacing with the operating system is a bit murky, and implementations surely
differ in handling of errors there.

Last edited on 2005-12-02 04:25:49 by StephenWeeks.

480



MLton Guide (20070826) StandardMLTutorials

StandardMLTutorials

o @A Gentle Introduction to ML.. Andrew Cummings.

Programming in Standard ML '97: An Online Tutorial. Stephen Gilmore.

o @Programmlng in Standard ML.. Robert Harper.
o [BiEssentials of Standard ML Modules. Mads Tofte.

Last edited on 2005-05-10 15:17:53 by StephenWeeks.

481


http://www.dcs.napier.ac.uk/course-notes/sml/manual.html
http://www.dcs.napier.ac.uk/course-notes/sml/manual.html
http://www.dcs.ed.ac.uk/home/stg/NOTES/
http://www.dcs.ed.ac.uk/home/stg/NOTES/
http://www-2.cs.cmu.edu/~rwh/smlbook/
http://www-2.cs.cmu.edu/~rwh/smlbook/
http://www.diku.dk/users/tofte/publ/oregon/
http://www.diku.dk/users/tofte/publ/oregon/

MLton Guide (20070826) StephenWeeks
StephenWeeks
I live in the New York City area and work at {Jane Street Capital.

My home page.

You can email me at sweeks @sweeks.com.

Last edited on 2007-05-17 01:40:45 by StephenWeeks.

482


http://janestcapital.com
http://janestcapital.com
http://sweeks.com/
http://sweeks.com/
mailto:sweeks@sweeks.com.

MLton Guide (20070826) StyleGuide

StyleGuide

These conventions are chosen so that inertia is towards modularity, code reuse and finding bugs early, not to
save typing.

¢ SyntacticConventions

Last edited on 2004-11-14 23:23:24 by StephenWeeks.

483



MLton Guide (20070826) Subversion

Subversion

[BiSubversion is a version control system designed to replace CVS. The MLton project uses Subversion to
maintain its source code.

e [BVersion Control with Subversion, a free online book

Last edited on 2007-08-10 19:45:51 by MatthewFluet.

484


http://subversion.tigris.org/
http://subversion.tigris.org/
http://svnbook.red-bean.com
http://svnbook.red-bean.com

MLton Guide (20070826) SuccessorML

SuccessorML

The purpose of [Esuccessor ML, or sML for short, is to provide a vehicle for the continued evolution of ML,
using Standard ML as a starting point. The intention is for successor ML to be a living, evolving dialect of
ML that is responsive to community needs and advances in language design, implementation, and semantics.

Last edited on 2007-07-08 22:53:36 by MatthewFluet.

485


http://successor-ml.org
http://successor-ml.org

MLton Guide (20070826) Sureshdagannathan

SureshJagannathan

I am an Associate Professor at the B|Department of Computer Science at Purdue University. My research
focus is in programming language design and implementation, concurrency, and distributed systems. I am
interested in various aspects of MLton, mostly related to (in no particular order): (1) control-flow analysis (2)
representation strategies (e.g., flattening), (3) IR formats, and (4) extensions for distributed programming.

Please see my iHome page for more details.

Last edited on 2004-11-20 21:09:49 by SureshJagannathan.

486


http://www.cs.purdue.edu/
http://www.cs.purdue.edu/
http://www.cs.purdue.edu/homes/suresh/index.html
http://www.cs.purdue.edu/homes/suresh/index.html

MLton Guide (20070826) Survey

Survey

The 2005 MLton Survey is closed. Please check this space in January 2006 for our next survey. Thanks to all
who responded.

Last edited on 2005-02-07 01:08:25 by StephenWeeks.

487



MLton Guide (20070826) SurveyDone

SurveyDone

Success. Thank you for submitting a survey.

Last edited on 2005-01-05 19:41:21 by StephenWeeks.

488



MLton Guide (20070826) Swerve

Swerve

[BiSwerve is an HTTP server written in SML, originally developed with SML/NJ. RayRacine ported Swerve to
MLton in January 2005.

[Bldownload the port

Excerpt from the included README:
Total testing of this port consisted of a successful compile, startup, and serving one html page with one gif
image. Given that the original code was throughly designed and implemented in a thoughtful manner and I

expect it is quite usable modulo a few minor bugs introduced by my porting effort.

Swerve is described in Shipman02.

Last edited on 2006-11-15 01:50:36 by StephenWeeks.

489


http://ftp.sun.ac.za/ftp/mirrorsites/ocaml/Systems_programming/book/c3253.html
http://ftp.sun.ac.za/ftp/mirrorsites/ocaml/Systems_programming/book/c3253.html
http://mlton.org/pages/Swerve/attachments/swerve.tar.bz2
http://mlton.org/pages/Swerve/attachments/swerve.tar.bz2

MLton Guide (20070826) SyntacticConventions

SyntacticConventions

Here are a number of syntactic conventions useful for programming in SML.

1. General
Identifiers

I“F

Si gnature

2.
3.
4.
5.
6. Structures
7. Functors

General

® A line of code never exceeds 80 columns.

¢ Only split a syntactic entity across multiple lines if it doesn't fit on one line within 80 columns.
e Use alphabetical order wherever possible.

¢ Avoid redundant parentheses.

® When using :, there is no space before the colon, and a single space after it.

Identifiers

¢ Variables, record labels and type constructors begin with and use small letters, using capital letters to
separate words.

cost
maxValue

¢ Variables that represent collections of objects (lists, arrays, vectors, ...) are often suffixed with an s.

XS
employees
¢ Constructors, structure identifiers, and functor identifiers begin with a capital letter.

Queue
LinkedList

¢ Signature identifiers are in all capitals, using __ to separate words.

LIST
BINARY_HEAP

Types

¢ Alphabetize record labels. In a record type, there are spaces after colons and commas, but not before
colons or commas, or at the delimiters { and }

{bar: int, foo: int}
¢ Only split a record type across multiple lines if it doesn't fit on one line. If a record type must be split
over multiple lines, put one field per line.

{bar: int,
foo: real * real,

490



MLton Guide (20070826) SyntacticConventions

z00: bool}
¢ In a tuple type, there are spaces before and after each *.

int * bool * real
¢ Only split a tuple type across multiple lines if it doesn't fit on one line. In a tuple type split over
multiple lines, there is one type per line, and the *s go at the beginning of the lines.
int
* bool
* real
It may also be useful to parenthesize to make the grouping more apparent.
(int
* bool
* real)

¢ In an arrow type split over multiple lines, put the arrow at the beginning of its line.

int * real
-> bool

It may also be useful to parenthesize to make the grouping more apparent.
(int * real
—> bool)
¢ Avoid redundant parentheses.
¢ Arrow types associate to the right, so write
a -—>b —>c

not

a —> (b —> ¢)
¢ Type constructor application associates to the left, so write

int ref list
not

(int ref) list
¢ Type constructor application binds more tightly than a tuple type, so write

int list * bool list
not

(int list) * (bool list)
¢ Tuple types bind more tightly than arrow types, so write

int * bool -> real
not

(int * bool) —-> real

491



MLton Guide (20070826) SyntacticConventions

Core

¢ A core expression or declaration split over multiple lines does not contain any blank lines.
¢ A record field selector has no space between the # and the record label. So, write

#foo
not

# foo
¢ A tuple has a space after each comma, but not before, and not at the delimiters ( ).

(el, e2, e3)
¢ A tuple split over multiple lines has one element per line, and the commas go at the end of the lines.

(el,
e2,
e3l)
e A list has a space after each comma, but not before, and not at the delimiters [ ].

[el, e2, e3]
e A list split over multiple lines has one element per line, and the commas at the end of the lines.

[el,
e2,
e3]

¢ A record has spaces before and after =, a space after each comma, and no space at the delimiters.
Field names appear in alphabetical order.

{bar = 13, foo = true}
¢ A sequence expression has a space after each semicolon, but not before.

(el; e2; e3)
® A sequence expression split over multiple lines has one expression per line, and the semicolons at the
beginning of lines. Lisp and Scheme programmers may find this hard to read at first.

(el
; e2
; e3)

Rationale: this makes it easy to visually spot the beginning of each expression, which becomes more
valuable as the expressions themselves are split across multiple lines.

¢ An application expression has a space between the function and the argument. There are no parens
unless the argument is a tuple (in which case the parens are really part of the tuple, not the
application).
f a
f (al, a2, a3)

¢ Avoid redundant parentheses. Application associates to left, so write

f al a2 a3

not

492



MLton Guide (20070826) SyntacticConventions

((f al) a2) a3
¢ Infix operators have a space before and after the operator.

X + vy
X *y -z

¢ Avoid redundant parentheses. Use OperatorPrecedence. So, write
x+y*z
not
X+ (y * z)
® An andalso expression split over multiple lines has the andalso at the beginning of subsequent

lines.

el
andalso e2
andalso e3

® A case expression is indented as follows

case el of

pl => el
| p2 => e2
| p3 => e3

® A datatype's constructors are alphabetized.

datatype t = A | B | C
® A datatype declaration has a space before and after each |.

datatype t = A | B of int | C
A datatype split over multiple lines has one constructor per line, with the | at the beginning of
lines and the constructors beginning 3 columns to the right of the datatype.

datatype t =
A
| B
| C
A fun declaration may start its body on the subsequent line, indented 3 spaces.

fun £ x y =
let
val z = x + y + z
in
z
end

® An 1if expression is indented as follows.

if el
then e2
else e3

¢ A sequence of if-then-elses is indented as follows.

if el
then e2

else if e3
then e4

493



MLton Guide (20070826) SyntacticConventions

else if e5
then e6
else e7

¢ A let expression has the 1et, in, and end on their own lines, starting in the same column.
Declarations and the body are indented 3 spaces.

let

val x = 13

val y = 14
in

X + vy
end

¢ A local declaration has the 1ocal, in, and end on their own lines, starting in the same column.
Declarations are indented 3 spaces.

local
val x = 13
in
val y
end
® An orelse expression split over multiple lines has the orelse at the beginning of subsequent

lines.

1
b

el
orelse e2
orelse e3

® A val declaration has a space before and after the =.

val p = e
® A val declaration can start the expression on the subsequent line, indented 3 spaces.

val p =
if el then e2 else e3

Signatures

® A signature declaration is indented as follows.

signature FOO =
sig
val x: int
end

® A val specification has a space after the colon, but not before.

val x: int

Exception: in the case of operators (like +), there is a space before the colon to avoid lexing the colon
as part of the operator.

val + @ t * t —> ¢t
¢ Alphabetize specifications in signatures.

sig

val x: int
val y: bool

494



MLton Guide (20070826) SyntacticConventions

end

Structures

® A structure declaration has a space on both sides of the =.

structure Foo = Bar
® A structure declaration split over multiple lines is indented as follows.

structure S
struct
val x = 13
end

® Declarations in a st ruct are separated by blank lines.

struct
val x =
let
y = 13
in
y + 1
end

val z = 14
end

Functors

® A functor declaration has spaces after each : (or :>) but not before, and a space before and after
the =. It is indented as follows

functor Foo (S: FOO_ARG): FOO =
struct
val x = S.x
end

Exception: a functor declaration in a file to itself can omit the indentation to save horizontal space.

functor Foo (S: FOO_ARG): FOO =
struct

val x = S.x

end

In this case, there should be a blank line after the st ruct and before the end.

Last edited on 2006-08-24 23:26:33 by MichaelNorrish.

495



MLton Guide (20070826) Systeminfo

Systeminfo

Python Version
2.3.5 (#2, Sep 4 2005, 22:01:42) [GCC 3.3.5 (Debian 1:3.3.5-13)]
MoinMoin Version
Release 1.2.3 [Revision 1.186]
Number of pages
349
Number of system pages
2
Number of backup versions
2186
Accumulated page sizes
794856
Entries in edit log
2817 (279573 bytes)
Event log
104110984 bytes
Global extension macros
AbandonedPages, BR, FootNote, Form, FullSearch, GetText, Include, Navigation, OrphanedPages,
PageHits, PageSize, RandomPage, RandomQuote, RecentChanges, ShowSmileys, StatsChart,
SystemAdmin, TableOfContents, TeudView, WantedPages
Local extension macros
Cite, Div, DownloadSVN, Form, Improvement, IncludeSVN, Input, Span, TextArea, ViewCVS,
ViewCVSDir, ViewSVN, ViewSVNDir, ViewSVNRev
Global extension actions
AttachFile, DeletePage, LikePages, LocalSiteMap, RenamePage, SpellCheck, links, rss_rc, titleindex
Local extension actions
AllLinks
Installed processors
CSV, Colorize

Last edited on 2004-10-26 01:42:46 by StephenWeeks.

496



MLton Guide (20070826) TILT
TILT

[BITILT is a Standard ML Compiler.

Last edited on 2006-08-18 18:34:10 by StephenWeeks.

497


http://www.tilt.cs.cmu.edu/
http://www.tilt.cs.cmu.edu/

MLton Guide (20070826) Talk

Talk
The MLton Standard ML Compiler

Henry Cejtin, Matthew Fluet, Suresh Jagannathan, Stephen Weeks

Z
D
<
—

Last edited on 2004-12-01 16:48:10 by MatthewFluet.

498



MLton Guide (20070826) TalkDiveln
TalkDiveln
Dive In

¢ to Development
¢ to Documentation

e to @Download

Prev

Last edited on 2005-11-14 23:13:23 by MatthewFluet.

499


http://mlton.org/Download
http://mlton.org/Download

MLton Guide (20070826)
TalkFolkLore

Folk Lore

¢ Defunctorization and monomorphisation are feasible
¢ Global control-flow analysis is feasible
e Early closure conversion is feasible

Prev

TalkFolkLore

Z
¢
[><
=

Last edited on 2004-12-01 18:35:55 by MatthewFluet.

500



MLton Guide (20070826) TalkFromSMLTo
TalkFromSMLTo

From Standard ML to S-T F-O IL

® What issues arise when translating from Standard ML into an intermediate language?

Prev

Z
9
[><
=

Last edited on 2004-12-01 18:39:02 by MatthewFluet.

501



MLton Guide (20070826)
TalkHowHigherOrder

Higher-order Functions

® How does one represent SML's higher-order functions?
® MLton's answer: defunctionalize

Prev

See ClosureConvert.

TalkHowHigherOrder

Z

Last edited on 2004-12-01 18:36:01 by MatthewFluet.

502



MLton Guide (20070826) TalkHowModules

TalkHowModules

Modules

® How does one represent SML's modules?
® MLton's answer: defunctorize

Z
¢
[><
=

Prev

See Elaborate.

Last edited on 2004-12-01 18:36:07 by MatthewFluet.

503



MLton Guide (20070826)
TalkHowPolymorphism

Polymorphism

® How does one represent SML's polymorphism?
® MLton's answer: monomorphise

Prev

See Monomorphise.

TalkHowPolymorphism

Z

Last edited on 2004-12-01 18:36:12 by MatthewFluet.

504



MLton Guide (20070826) TalkMLtonApproach
TalkMLtonApproach

MLton's Approach

¢ whole-program optimization using a simply-typed, first-order intermediate language
e ensures programs are not penalized for exploiting abstraction and modularity

Prev

Z
¢
[><
=

Last edited on 2004-12-01 18:36:17 by MatthewFluet.

505



MLton Guide (20070826)
TalkMLtonFeatures

MLton Features

e Supports full Standard ML language and Basis Library
¢ Generates standalone executables

¢ Extensions
¢ Foreign function interface (SML to C, C to SML)

¢ ML Basis system for programming in the very large
¢ Extension libraries

Prev

See Features.

TalkMLtonFeatures

Z

Last edited on 2005-01-28 21:49:50 by MatthewFluet.

506



MLton Guide (20070826) TalkMLtonHistory
TalkMLtonHistory

MLton History

April 1997  Stephen Weeks wrote a defunctorizer for SML/NJ

Aug. 1997  Begin independent compiler (sml1c)

Oct. 1997  Monomorphiser

Nov. 1997  Polyvariant higher-order control-flow analysis (10,000 lines)
March 1999 First release of MLton (48,006 lines)

Jan. 2002 MLton at 102,541 lines

Jan. 2003 MLton at 112,204 lines

Jan. 2004 MLton at 122,299 lines

Nov. 2004 MLton at 141,311 lines

Z,
©
e
=t

Prev

See History.

Last edited on 2004-12-01 18:42:32 by MatthewFluet.

507



MLton Guide (20070826)
TalkStandardML

Standard ML

® a high-level language makes
¢ a programmer's life easier
¢ a compiler writer's life harder
e perceived overheads of features discourage their use
¢ higher-order functions
¢ polymorphic datatypes
¢ separate modules

Prev

Also see Standard ML..

TalkStandardML

Z

Last edited on 2005-01-18 15:02:29 by MatthewFluet.

508



MLton Guide (20070826) TalkTemplate
TalkTemplate

Title

e Bullet
e Bullet

Prev

Z
¢
[><
=

Last edited on 2004-12-01 18:59:26 by MatthewFluet.

509



MLton Guide (20070826)
TalkWholeProgram

Whole Program Compiler

® Each of these techniques requires whole-program analysis
¢ But, additional benefits:
¢ climinate (some) variability in programming styles
¢ specialize representations
¢ simplifies and improves runtime system

Prev

TalkWholeProgram

Z
¢
[><
=

Last edited on 2007-08-15 22:07:28 by MatthewFluet.

510



MLton Guide (20070826) TipsForWritingConciseSML

TipsForWritingConciseSML

SML is a rich enough language that there are often several ways to express things. This page contains
miscellaneous tips (ideas not rules) for writing concise SML. The metric that we are interested in here is the
number of tokens or words (rather than the number of lines, for example).

Datatypes in Signatures

A seemingly frequent source of repetition in SML is that of datatype definitions in signatures and structures.
Actually, it isn't repetition at all. A datatype specification in a signature, such as,

signature EXP = sig
datatype exp = Fn of id * exp | App of exp * exp | Var of id
end

is just a specification of a datatype that may be matched by multiple (albeit identical) datatype declarations.
For example, in

structure AnExp : EXP = struct
datatype exp = Fn of id * exp | App of exp * exp | Var of id
end

structure AnotherExp : EXP = struct
datatype exp = Fn of id * exp | App of exp * exp | Var of id
end

the types AnExp . exp and AnotherExp . exp are two distinct types. If such generativity isn't desired or
needed, you can avoid the repetition:

structure Exp = struct
datatype exp = Fn of id * exp | App of exp * exp | Var of id

end
signature EXP = sig

datatype exp = datatype Exp.exp
end

structure Exp : EXP = struct
open Exp
end

Keep in mind that this isn't semantically equivalent to the original.

Clausal Function Definitions

The syntax of clausal function definitions is rather repetitive. For example,

fun isSome NONE = false
| isSome (SOME _) = true

is more verbose than

val isSome =
fn NONE => false

511



MLton Guide (20070826) TipsForWritingConciseSML
| SOME _ => true
For recursive functions the break-even point is one clause higher. For example,
fun fib 0 = 0

| fib 1 =1
| fib n fib (n-1) + fib (n-2)

isn't less verbose than

val rec fib =
fn 0 => 0
| 1 =>1
| n => fib (n-1) + fib (n-2)

It is quite often the case that a curried function primarily examines just one of its arguments. Such functions
can be written particularly concisely by making the examined argument last. For example, instead of

fun eval (Fn (v, b)) env =>
| eval (App (f, a) env =>
| eval (Var v) env =>

consider writing

fun eval env =

fn Fn (v, b) =>
| App (£, a) =>
| Var v => .

Parentheses

It is a good idea to avoid using lots of irritating superfluous parentheses. An important rule to know is that
prefix function application in SML has higher precedence than any infix operator. For example, the outer
parentheses in

(square (5 + 1)) + (square (5 * 2))
are superfluous.

People trained in other languages often use superfluous parentheses in a number of places. In particular, the
parentheses in the following examples are practically always superfluous and are best avoided:

if (condition) then ... else
while (condition) do

The same basically applies to case expressions:
case (expression) of ...
It is not uncommon to match a tuple of two or more values:

case (a, b) of
(Al, Bl) =>
| (A2, B2) =>

512



MLton Guide (20070826) TipsForWritingConciseSML

Such case expressions can be written more concisely with an infix product constructor:

case a & b of

Al & Bl =>
| A2 & B2 =>
Conditionals

Repeated sequences of conditionals such as

if x < y then ...
else if x = y then ...
else

can often be written more concisely as case expressions such as

case Int.compare (x, y) of
LESS =>
| EQUAL =>
| GREATER =>

For a custom comparison, you would then define an appropriate datatype and a reification function. An
alternative to using datatypes is to use dispatch functions

comparing (x, V)

{1t = £n () => ...,
eq = £fn () => ...,
gt = £n () =>

where

fun comparing (x, y) {1lt, eq, gt} =
(case Int.compare (x, y) of
LESS => 1t
| EQUAL => eqg
| GREATER => gt) ()

An advantage is that no datatype definition is needed. A disadvantage is that you can't combine multiple
dispatch results easily.

Command-Query Fusion

Many are familiar with the BiCommand-Query Separation Principle. Adhering to the principle, a signature for
an imperative stack might contain specifications

val isEmpty : 'a t -> bool
val pop : 'a t —> 'a

and use of a stack would look like

if isEmpty stack
then ... pop stack
else

513


http://en.wikipedia.org/wiki/Command-Query_Separation
http://en.wikipedia.org/wiki/Command-Query_Separation

MLton Guide (20070826)

or, when the element needs to be named,

if isEmpty stack

then let val elem = pop stack in ... end

else

TipsForWritingConciseSML

For efficiency, correctness, and conciseness, it is often better to combine the query and command and return

the result as an option:
val pop : 'a t -> 'a option
A use of a stack would then look like this:

case pop stack of
NONE =>
| SOME elem =>

Last edited on 2007-02-12 07:34:53 by VesaKarvonen.

514



MLton Guide (20070826) ToMachine

ToMachine

ToMachine is a translation pass from the RSSA Intermediatel anguage to the Machine Intermediatel.anguage.

Description

This pass converts from a RSSA program into a Machine program.

It uses AllocateRegisters, Chunkify, and ParalleIMove.

Implementation

@backend.sig Blbackend.fun

Details and Notes

Because the MLton runtime system is shared by all codegens, it is most convenient to decide on stack layout
before any codegen takes over. In particular, we compute all the stack frame info for each RSSA function,
including stack size, garbage collector masks for each frame, etc. To do so, the Machine
Intermediatel . anguage imagines an abstract machine with an infinite number of (pseudo-)registers of every
size. A liveness analysis determines, for each variable, whether or not it is live across a point where the
runtime system might take over (for example, any garbage collection point) or a non-tail call to another RSSA
function. Those that are live go on the stack, while those that aren't live go into psuedo-registers. From this
information, we know all we need to about each stack frame. On the downside, nothing further on is allowed
to change this stack info; it is set in stone.

Last edited on 2006-11-28 21:24:34 by JakeDonham.

515


http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/backend/backend.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/backend/backend.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/backend/backend.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/backend/backend.fun?view=markup

MLton Guide (20070826) ToRSSA

ToRSSA

ToRSSA is a translation pass from the SSA2 Intermediatel.anguage to the RSSA Intermediatel .anguage.
Description

This pass converts a SSA2 program into a RSSA program.

It uses PackedRepresentation.

Implementation

@ssa—to—rssa.sig [Bssa-to-rssa.fun

Details and Notes

Last edited on 2006-11-02 17:34:03 by MatthewFluet.

516


http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/backend/ssa-to-rssa.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/backend/ssa-to-rssa.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/backend/ssa-to-rssa.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/backend/ssa-to-rssa.fun?view=markup

MLton Guide (20070826) ToSSA2

ToSSA2

ToSSAZ2 is a translation pass from the SSA Intermediatel anguage to the SSA2 Intermediatel.anguage.

Description
This pass is a simple conversion from a SSA program into a SSA2 program.
The only interesting portions of the translation are:

¢ an SSA ref type becomes an object with a single mutable field

® array, vector, and ref are eliminated in favor of select and updates
® Case transfers separate discrimination and constructor argument selects

Implementation

@ssa—to—ssaZsig [Bssa-to-ssa2 fun

Details and Notes

Last edited on 2006-11-02 17:56:30 by MatthewFluet.

517


http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/ssa-to-ssa2.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/ssa-to-ssa2.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/ssa-to-ssa2.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/ssa-to-ssa2.fun?view=markup

MLton Guide (20070826) TomMurphy

TomMurphy

Tom Murphy VII is a long time MLton user and occasional contributor. He works on programming languages
for his PhD work at Carnegie Mellon in Pittsburgh, USA. AdamGoode lives on the same floor of Wean Hall.

[BHome page

Last edited on 2007-01-23 21:57:44 by TomMurphy.

518


http://tom7.org
http://tom7.org

MLton Guide (20070826) TrustedGroup

TrustedGroup

This list of users is for AccessControl.

e HenryCejtin

e Jesperl ouisAndersen
e MatthewFluet

e StephenWeeks

e VilleLaurikari

Last edited on 2006-06-10 16:06:57 by StephenWeeks.

519



MLton Guide (20070826) TypeChecking

TypeChecking

MLton's type checker follows the Definition closely, so you may find differences between MLton and other
SML compilers that do not follow the Definition so closely. In particular, SML/NJ has many deviations from
the Definition -- please see SMLINJDeviations for those that we are aware of.

In some respects MLton's type checker is more powerful than other SML compilers, so there are programs
that MLton accepts that are rejected by some other SML compilers. These kinds of programs fall into a few
simple categories.

® MLton resolves flexible record patterns using a larger context than many other SML compilers. For
example, MLton accepts the following.

fun £ {x, ...} = x
val _ = f {x = 13, y = "foo"}

e MLton uses as large a context as possible to resolve the type of variables constrained by the value
restriction to be monotypes. For example, MLton accepts the following.

structure S:

sig
val f: int -> int
end =
struct
val £ = (fn x => x) (fn y => vy)
end

Type error messages

To aid in the understanding of type errors, MLton's type checker displays type errors differently than other
SML compilers. In particular, when two types are different, it is important for the programmer to easily
understand why they are different. So, MLton displays only the differences between two types that don't
match, using underscores for the parts that match. For example, if a function expects real * int but gets
real * real, the type error message would look like

expects: _ * [int]
but got: _ * [real]

As another aid to spotting differences, MLton places brackets [] around the parts of the types that don't
match. A common situation is when a function receives a different number of arguments than it expects, in

which case you might see an error like

expects: [int * real]
but got: [int * real * string]

The brackets make it easy to see that the problem is that the tuples have different numbers of components --
not that the components don't match. Contrast that with a case where a function receives the right number of

arguments, but in the wrong order.

expects: [int] * [real]
but got: [real] * [int]

Here the brackets make it easy to see that the components do not match.

520



MLton Guide (20070826) TypeChecking

We appreciate feedback on any type error messages that you find confusing, or suggestions you may have for
improvements to error messages.

The shortest/most-recent rule for type names

In a type error message, MLton often has a number of choices in deciding what name to use for a type. For
example, in the following type-incorrect program

type t = int

fun £ (x: t) = x
val _ = f "foo"
MLton reports

Error: z.sml 3.9.
Function applied to incorrect argument.
expects: [t]
but got: [string]
in: £ "foo"

MLton could have reported expects: [int] instead of expects: [t].However, MLton uses the
shortest/most-recent rule in order to decide what type name to display. This rule means that, at the point of the
error, MLton first looks for the shortest name for a type in terms of number of structure identifiers (e.g.
foobar is shorter than A . t). Next, if there are multiple names of the same length, then MLton uses the most
recently defined name. It is this tiebreaker that causes MLton to prefer t to int in the above example.

In signature matching, most recently defined is taken to include all of the definitions introduced by the
structure. For example

structure S:

sig
val x: int
end =
struct
type t = int
val x = "foo"
end

MLton reports the error message

Error: z.sml 2.4.
Variable type in structure disagrees with signature.
variable: x
structure: [string]
signature: [t]

in which the [t ] refers to the type defined in the structure, since that is more recent than the definition of
int.

In signatures with type equations, this can be somewhat confusing. For example.

structure S:
sig
type t
type u = t

521



MLton Guide (20070826) TypeChecking

end =
struct
type t = int
type u = char
end

MLton reports the error

Error: z.sml 2.4.
Type definition in structure disagrees with signature.

type: u
structure: [u]
signature: [t]

This error reflects the fact that the signature requires type u to equal t, but that in the structure, u is defined to
be char, whose most-recent name is u, while the signature requires u to be int, whose most-recent name is
t.

Last edited on 2007-08-15 22:07:31 by MatthewFluet.

522



MLton Guide (20070826) TypeConstructor

TypeConstructor

In Standard ML, a type constructor is a function from types to types. Type constructors can be nullary,
meaning that they take no arguments, as in char, int, and real. Type constructors can be unary, meaning
that they take one argument, as in array, 1ist, and vector. A program can define a new type constructor
in two ways: a t ype definition or a datatype declaration. User-defined type constructors can can take any
number of arguments.

datatype t = T of int * real (* 0 arguments *)
type 'a t = 'a * int (* 1 argument *)
datatype ('a, 'b) t = A | Bof 'a * 'b (* 2 arguments *)
type ('a, 'b, 'e) t = 'a * ('b -> 'c) (* 3 arguments *)

Here are the syntax rules for type constructor application.

¢ Type constructor application is written in postfix. So, one writes int list,notlist int.
¢ Unary type constructors drop the parens, so one writes int 1list,not (int) list.
¢ Nullary type constructors drop the argument entirely, so one writes int, not () int.
¢ N-ary type constructors use tuple notation; for example, (int, real) t.
¢ Type constructor application associates to the left. So, int ref 1list isthe same as
(int ref) 1list.

Last edited on 2005-12-02 04:26:23 by StephenWeeks.

523



MLton Guide (20070826) TypelndexedValues

TypelndexedValues

Standard ML does not support ad hoc polymorphism. This presents a challenge to programmers. The problem
is that at first glance there seems to be no practical way to implement something like a function for converting
a value of any type to a string or a function for computing a hash value for a value of any type. Fortunately
there are ways to implement type-indexed values in SML as discussed in Yang98. Various articles such as
Danvy98, Ramsey03, Elsman04, Kennedy(04, and Benton05 also contain examples of type-indexed values.

NOTE: The technique used in the following example uses an early (and somewhat broken) variation of the
basic technique used in an experimental generic programming library (see BIREADME) that can be found
from the MLton repository. The generic programming library also includes a more advanced generic pretty
printing function (see Mpretty.sig).

Example: Converting any SML value to (roughly) SML syntax

Consider the problem of converting any SML value to a textual presentation that matches the syntax of SML
as closely as possible. One solution is a type-indexed function that maps a given type to a function that maps
any value (of the type) to its textual presentation. A type-indexed function like this can be useful for a variety
of purposes. For example, one could use it to show debugging information. We'll call this function "show".

We'll do a fairly complete implementation of show. We do not distinguish infix and nonfix constructors, but
that is not an intrinsic property of SML datatypes. We also don't reconstruct a type name for the value,
although it would be particularly useful for functional values. To reconstruct type names, some changes would
be needed and the reader is encouraged to consider how to do that. A more realistic implementation would use
some pretty printing combinators to compute a layout for the result. This should be a relatively easy change
(given a suitable pretty printing library). Cyclic values (through references and arrays) do not have a standard
textual presentation and it is impossible to convert arbitrary functional values (within SML) to a meaningful
textual presentation. Finally, it would also make sense to show sharing of references and arrays. We'll leave
these improvements to an actual library implementation.

The following code uses the fixpoint framework and other utilities from an Extended Basis library (see
[GIREADME).

Signature

Let's consider the design of the SHOW signature:
infixr ——>

signature SHOW = sig

type 'a t (* complete type-index *)

type 'a s (* incomplete sum *)

type ('a, 'k) p (* incomplete product *)

type u (* tuple or unlabelled product *)
type 1 (* record or labelled product *)
val show : 'a t -> 'a -> string

(* user-defined types *)
val inj : ('a -=> 'b) -> 'b t -> 'a t

(* tuples and records *)

524


http://mlton.org/cgi-bin/viewsvn.cgi/mltonlib/trunk/com/ssh/generic/unstable/README?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mltonlib/trunk/com/ssh/generic/unstable/README?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mltonlib/trunk/com/ssh/generic/unstable/public/value/pretty.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mltonlib/trunk/com/ssh/generic/unstable/public/value/pretty.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mltonlib/trunk/com/ssh/extended-basis/unstable/README?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mltonlib/trunk/com/ssh/extended-basis/unstable/README?view=markup

MLton Guide (20070826) TypelndexedValues
val * : ('a, 'k) p * ('b, 'k) p -> (('a, 'b) product, 'k) p

val U : 'at > ('a, u) p
val L : string -> 'a t -> ('a, 1) p

val tuple : ('a, u) p -> 'a t
val record : ('a, 1) p -—> 'a t

(* datatypes *)

val + : 'a s * '"b s —> (('a, 'b) sum) s
val CO : string —-> unit s

val Cl1 : string -> 'a t -> 'a s

val data : 'a s —> 'a t

val Y : 'a t Tie.t

(* exceptions *)
val exn : exn t
val regExn : (exn -> ('a * 'a s) option) -> unit

(* some built-in type constructors *)

val refc : 'a t -> 'a ref t

val array : 'a t -> 'a array t

val list : 'a t -> 'a list t

val vector : 'a t -> 'a vector t

val ——> : 'at * 'bt -—> ('a -> 'b) t

(* some built-in base types *)
val string : string t

val unit : unit t
val bool : bool t
val char : char t

val int : int t

val word : word t

val real : real t
end

While some details are shaped by the specific requirements of show, there are a number of (design) patterns
that translate to other type-indexed values. The former kind of details are mostly shaped by the syntax of SML
values that show is designed to produce. To this end, abstract types and phantom types are used to distinguish
incomplete record, tuple, and datatype type-indices from each other and from complete type-indices. Also,
names of record labels and datatype constructors need to be provided by the user.

Arbitrary user-defined datatypes
Perhaps the most important pattern is how the design supports arbitrary user-defined datatypes. A number of

combinators together conspire to provide the functionality. First of all, to support new user-defined types, a
combinator taking a conversion function to a previously supported type is provided:

val inj : ('a -> 'b) -> 'b t -> 'a t

An injection function is sufficient in this case, but in the general case, an embedding with injection and
projection functions may be needed.

To support products (tuples and records) a product combinator is provided:

525



MLton Guide (20070826) TypelndexedValues

val * : ('a, 'k) p * ('b, 'k) p > (('a, 'b) product, 'k) p

The second (phantom) type variable 'k is there to distinguish between labelled and unlabelled products and
the type p distinguishes incomplete products from complete type-indices of type t. Most type-indexed values
do not need to make such distinctions.

To support sums (datatypes) a sum combinator is provided:
val + : 'a s * 'b s -> (('a, 'b) sum) s

Again, the purpose of the type s is to distinguish incomplete sums from complete type-indices of type t,
which usually isn't necessary.

Finally, to support recursive datatypes, including sets of mutually recursive datatypes, a fixpoint tier is
provided:

val Y : 'a t Tie.t

Together these combinators (with the more domain specific combinators U, L, tuple, record, CO, C1, and
data) enable one to encode a type-index for any user-defined datatype.

Exceptions

The exn type in SML is a universal type into which all types can be embedded. SML also allows a program
to generate new exception variants at run-time. Thus a mechanism is required to register handlers for
particular variants:

val exn : exn t
val regExn : (exn -> ('a * 'a s) option) -> unit

The universal exn type-index then makes use of the registered handlers. The above particular form of
handler, which converts an exception value to a value of some type and a type-index for that type (essentially
an existential type) is designed to make it convenient to write handlers. To write a handler, one can
conveniently reuse existing type-indices:

exception Int of int

local
open Show
in
val () = regkExn (fn Int v => SOME (v, C1l"Int" int)
| => NONE)
end

Note that a single handler may actually handle an arbitrary number of different exceptions.
Other types
Some built-in and standard types typically require special treatment due to their special nature. The most

important of these are arrays and references, because cyclic data (ignoring closures) and observable sharing
can only be constructed through them.

526



MLton Guide (20070826) TypelndexedValues

When arrow types are really supported, unlike in this case, they usually need special treatment due to the
contravariance of arguments.

Lists and vectors require special treatment in the case of show, because of their special syntax. This isn't
usually the case.

The set of base types to support also needs to be considered unless one exports an interface for constructing
type-indices for entirely new base types.

Usage

Before going to the implementation, let's look at some examples. For the following examples, we'll assume a
structure binding Show :> SHOW. If you want to try the examples immediately, just skip forward to the
implementation.

To use show, one first needs a type-index, which is then given to show. To show a list of integers, one would
use the type-index 1ist int, which has the type int list Show.t:

val "[3, 1, 4]" =
let open Show in show (list int) end
(3, 1, 4]

Likewise, to show a list of lists of characters, one would use the type-index 1ist (list char), which
has the type char 1list 1list Show.t:

val "[[#\"a\"], [#\"b\", #\"c\"1, [11" =
let open Show in show (list (list char)) end
[[#"alll, [#"b"' #HCHJ, [JJ

Handling standard types is not particularly interesting. It is more interesting to see how user-defined types can
be handled. Although the opt ion datatype is a standard type, it requires no special support, so we can treat it
as a user-defined type. Options can be encoded easily using a sum:

fun option t = let
open Show

in
inj (fn NONE => INL ()
| SOME v => INR v)
(data (CO"NONE" + C1"SOME" t))
end

val "SOME 5" =
let open Show in show (option int) end
(SOME 5)

Readers new to type-indexed values might want to type annotate each subexpression of the above example as
an exercise. (Use a compiler to check your annotations.)

Using a product, user specified records can be also be encoded easily:

val abc = let
open Show
in
inj (fn {a, b, c} => a & b & ¢)

527



MLton Guide (20070826) TypelndexedValues

(record (L"a" (option int) *
L"b" real *
L"e" bool))

end

val "{a = SOME 1, b = 3.0, c = false}" =
let open Show in show abc end
{a = SOME 1, b = 3.0, ¢ = false}

As you can see, both of the above use inj to inject user-defined types to the general purpose sum and product
types.

Of particular interest is whether recursive datatypes and cyclic data can be handled. For example, how does
one write a type-index for a recursive datatype such as a cyclic graph?

datatype 'a graph = VIX of 'a * 'a graph list ref
fun arcs (VIX (_, r)) =1

Using the Show combinators, we could first write a new type-index combinator for graph:

fun graph a = let

open Tie Show
in

fix Y (fn graph_a =>

inj (fn VIX (x, Vy) => x & Vy)
(data (C1"VTX"
(tuple (U a *
U (refc (list graph_a)))))))

end

To show a graph with integer labels

val a_graph = let
val a = VIX (1, ref
val = VIX (2, ref
val = VIX (3, ref
val VTX (4, ref
val = VIX (5, ref
val = VIX (6, ref
in
arcs

Hh O Q Q O
I

; arcs
; arcs
; arcs
; arcs
; arcs
;a

end

Hh O Q QO 9
1

we could then simply write

val "VTX (1, ref [VTX (2, ref [VTX (3, ref [VTX (1, %0), \
\VTX (6, ref [VTX (5, ref [VTX (4, ref [VTX (6, %3)1)1)] as %3)1), \
\VTX (5, ref [VTX (4, ref [VTX (6, ref [VTX (5, %2)1)1)] as %2)1), \
\VTX (4, ref [VTX (6, ref [VTX (5, ref [VTX (4, %1)]1)]1)] as %1)] as %0)" =
let open Show in show (graph int) end
a_graph

528



MLton Guide (20070826) TypelndexedValues

There is a subtle gotcha with cyclic data. Consider the following code:

exception ExnArray of exn array

val () = let
open Show
in
regExn (fn ExnArray a =>
SOME (a, Cl"ExnArray" (array exn))
| _ => NONE)
end

val a_cycle = let

val a = Array.fromList [Empty]
in

Array.update (a, 0, ExnArray a) ; a
end

Although the above looks innocent enough, the evaluation of

val "[|ExnArray %0|] as %0" =
let open Show in show (array exn) end
a_cycle

goes into an infinite loop. To avoid this problem, the type-index array exn must be evaluated only once, as
in the following:

val array_exn = let open Show in array exn end
exception ExnArray of exn array

val () = let
open Show
in
regExn (fn ExnArray a =>
SOME (a, Cl"ExnArray" array_exn)
| _ => NONE)
end

val a_cycle = let

val a = Array.fromList [Empty]
in

Array.update (a, 0, ExnArray a) ; a
end

val "[|ExnArray %0|] as %0" =
let open Show in show array_exn end
a_cycle

Cyclic data (excluding closures) in Standard ML can only be constructed imperatively through arrays and
references (combined with exceptions or recursive datatypes). Before recursing to a reference or an array, one
needs to check whether that reference or array has already been seen before. When ref or array is called
with a type-index, a new cyclicity checker is instantiated.

529



MLton Guide (20070826)

Implementation

structure SmlSyntax = struct

local

structure CV = CharVector and C = Char

in
val

fun

fun

fun

fun

fun

fun

end
end

isSym = Char.contains "!1%&$#+-/:<=>2@\\~"~|*"

isSymId s = 0 < size s andalso CV.all isSym s

isAlphaNumId s =

0

< size s

andalso C.isAlpha (CV.sub (s, 0))
andalso CV.all (fn c => C.isAlphaNum c

orelse #"'" = c
orelse #"_" = c) s

isNumLabel s =

0

< size s

andalso #"0" <> CV.sub (s, 0)
andalso CV.all C.isDigit s

is

is

is

TypelndexedValues

Id s = isAlphaNumId s orelse isSymId s
LongId s = List.all isId (String.fields (#"." <\ op =) s)
Label s = isId s orelse isNumLabel s

structure Show :> SHOW = struct
datatype
type 'a s

type ('

type u
type 1

a,

fun show

'a t = IN of exn list * 'a —-> bool * string
= 'at
'k) p='at

unit

unit

(IN t) x = #2 (t ([1, x))

(* user-defined types *)
fun inj inj (IN b) = IN (b o Pair.map (id, inj))

local
fun surround pre suf (_, s) = (false, concat [pre, s, suf])
fun parenthesize x = if #1 x then surround " (" ")" x else x
fun construct tag =
(fn (_, s) => (true, concat [tag, " ", s])) o parenthesize
fun check pm s = if p s then () else raise Fail (m"s)
in
(* tuples and records *)
fun (IN 1) * (IN r) =
IN (fn (rs, a & b) =>
(false, concat [#2 (1 (rs, a)),
#2 (r (rs, b))1))
val U = id
fun L 1 = (check SmlSyntax.isLabel "Invalid label: " 1
; £fn IN t => IN (surround (1" = ") "" o t))

530



MLton Guide (20070826)

(IN t) = IN
(IN t) = IN

o t)
o t)

(surround " ("
(surround "{"

") "
lv}lv

fun tuple
fun record

(* datatypes *)

fun (IN 1) + (IN r) = IN (fn (rs, INL a) => 1 (rs, a)
| (rs, INR b) => r (rs, b))
fun CO ¢ = (check SmlSyntax.isId "Invalid constructor: " c
; IN (const (false, c)))
fun Cl ¢ (IN t) = (check SmlSyntax.isId "Invalid constructor:
; IN (construct c o t))
val data = id
fun Y ? = Tie.iso Tie.function (fn IN x => x, IN) ?

(* exceptions *)
local

val handlers =
in

val exn = IN

(] list)

ref (exn —-> unit t option)

(fn (rs, e) => let
fun 1p [] =
CO (concat ["<exn:",
General.exnName e,
">"1)
| 1lp (f::fs) =
case f e
of NONE => 1lp fs
| SOME t => t
val IN f = 1lp ('handlers)
in
f (rs, ()
end)
fun regkExn f =
handlers := (Option.map
(fn (x, IN f) =>
IN (fn (rs, ()) =>
f (rs, x))) o f)
'handlers

end

(* some built-in type constructors *)
local

fun cyclic

exception E of

(IN t) = let
''a * bool ref
in
IN (£fn => let
Int.toString o length
(v', c)::rs) =
if v' <> v then 1lp rs
else (c := false ; (false,
| 1p (_::rs) = lp rs
| 1p [1 = let
val ¢ = ref true
val r = t (E (v,
in
if !c then r
else surround "" ("
end

(rs, v 'Ta)
val idx =
fun 1lp (E

""" idx rs))

c)::rs, V)

as %$""idx rs) r

in
lp rs

TypelndexedValues

531



MLton Guide (20070826) TypelndexedValues

end)
end

fun aggregate pre suf tolList (IN t) =
IN (surround pre suf o
(fn (rs, a) =>
(false,
String.concatWith

" "
’

(map (#2 o curry t rs)

(toList a)))))
in
fun refc ? = (cyclic o inj ! o Cl"ref") 2
fun array ? = (cyclic o aggregate "[|" "|]" (Array.foldr op:: [])) ?
fun list ? = aggregate "[" "]" id ?
fun vector ? = aggregate "#[" "]" (Vector.foldr op:: []) ?
end
fun (IN _) ——> (IN _) = IN (const (false, "<fn>"))

(* some built-in base types *)

local
fun mk toS = (fn x => (false, x)) o toS o (fn (_, x) => x)

in
val string =

IN (surround "\"" "\"" o mk (String.translate Char.toString))

val unit = IN (mk (£n () => "()"))
val bool = IN (mk Bool.toString)
val char = IN (surround "#\"" "\"" o mk Char.toString)
val int = IN (mk Int.toString)
val word = IN (surround "Owx" "" o mk Word.toString)
val real = IN (mk Real.toString)

end

end
end

(* Handlers for standard top-level exceptions *)

val () = let

open Show

fun EO0 name = SOME ((), CO name)
in

regkExn (fn Bind => EO0"Bind"
| Chr => E0"Chr"
| Div => EO"Diwv"
| Domain => EO"Domain"
| Empty => EO"Empty"
| Match => E(0"Match"
| Option => EO"Option"
| Overflow => EO0"Overflow"
| Size => EO"Size"
| Span => E(0"Span"
| Subscript => EQO"Subscript"
| _ => NONE)
; regkExn (fn Fail s => SOME (s, C1l"Fail" string)
| _ => NONE)
end

Last edited on 2007-08-26 02:10:40 by VesaKarvonen.

532



MLton Guide (20070826) TypeVariableScope

TypeVariableScope

In Standard ML, every type variable is scoped (or bound) at a particular point in the program. A type variable
can be either implicitly scoped or explicitly scoped. For example, 'a is implicitly scoped in

val id: 'a -> 'a = fn x => x

and is implicitly scoped in

val id = £fn x: 'a => x

On the other hand, ' a is explicitly scoped in

val 'a id: 'a —> 'a = fn x => x

and is explicitly scoped in

val 'a id = fn x: 'a => x

A type variable can be scoped at a val or fun declaration. An SML type checker performs scope inference
on each top-level declaration to determine the scope of each implicitly scoped type variable. After scope
inference, every type variable is scoped at exactly one enclosing val or fun declaration. Scope inference
shows that the first and second example above are equivalent to the third and fourth example, respectively.
Section 4.6 of the Definition specifies precisely the scope of an implicitly scoped type variable. A free
occurrence of a type variable 'a in a declaration d is said to be unguarded in d if ' a is not part of a smaller

declaration. A type variable 'a is implicitly scoped at d if 'a is unguarded in d and ' a does not occur
unguarded in any declaration containing d.

Scope inference examples

¢ In this example,
val id: 'a -> 'a = fn x => x

'a is unguarded in val id and does not occur unguarded in any containing declaration. Hence, 'a
is scoped at val id and the declaration is equivalent to the following.

val 'a id: 'a -> 'a = fn x => x
¢ In this example,

val £ = fn x => let exception E of 'a in E x end

'a is unguarded in val f and does not occur unguarded in any containing declaration. Hence, 'a is
scoped at val f and the declaration is equivalent to the following.

val 'a f = fn x => let exception E of 'a in E x end
¢ In this example (taken from the Definition),

val x: int -> int = let wval id: 'a -> 'a = fn z => z in id id end

533



MLton Guide (20070826) TypeVariableScope

'a occurs unguarded in val id, butnotin val x.Hence, 'a is implicitly scoped at val id, and
the declaration is equivalent to the following.

z => z in id id end

val x: int -> int = let val 'a id: 'a -> 'a = £fn
¢ In this example,

val f = (fn x: 'a => x) (fn y => vy)

'a occurs unguarded in val f and does not occur unguarded in any containing declaration. Hence,
'a is implicitly scoped at val £, and the declaration is equivalent to the following.

val 'a £ = (fn x: 'a => x) (fn y => y)

This does not type check due to the ValueRestriction.
¢ In this example,

fun £ x =

let
fun g (y: 'a) = if true then x else y

in
g x
end

'a occurs unguarded in fun g, notin fun £f. Hence, 'a is implicitly scoped at fun g, and the

declaration is equivalent to

fun £ x =

let
fun 'a g (y: 'a) = if true then x else y

in
g x
end

This fails to type check because x and y must have the same type, and hence 'a can not be
generalized at fun g. MLton reports

Error: scope.sml 3.7.
Unable to generalize 'a.
in: fun 'a g ((y): 'a) = (if true then x else vy)

This problem could be fixed either by adding an explicit type constraint, as in fun £ (x: 'a),or
by explicitly scoping 'a, asin fun 'a f x.

Restrictions on type variable scope

It is not allowed to scope a type variable within a declaration in which it is already in scope (see the last
restriction listed on page 9 of the Definition). For example, the following program is invalid.

fun 'a f (x: 'a) =
let
fun 'a g (y: 'a) =y
in
()

end

534



MLton Guide (20070826) TypeVariableScope

MLton reports

Error: z.sml 3.11.
Type variable 'a scoped at an outer declaration.

This is an error even if the scoping is implicit. That is, the following program is invalid as well.

fun £ (x: 'a) =
let
fun 'a g (y: 'a) =y
in
0)
end

Last edited on 2005-12-02 03:01:09 by StephenWeeks.

535



MLton Guide (20070826) Unicode

Unicode

The current release of MLton does not support Unicode. We are working on adding support.

® WideChar structure.
e UTF-8 encoded source files.

There is no real support for Unicode in the Definition; there are only a few throw-away sentences along the
lines of "ASCII must be a subset of the character set in programs".

Neither is there real support for Unicode in the Basis Library. The general consensus (which includes the
opinions of the editors of the Basis Library) is that the WideChar structure is insufficient for the purposes of
Unicode. There is no LargeChar structure, which in itself is a deficiency, since a programmer can not
program against the largest supported character size.

MLton has some preliminary support for 16 and 32 bit characters and strings. It is even possible to include
arbitrary Unicode characters in 32-bit strings using a \Uxxxxxxxx escape sequence. (This longer escape
sequence is a minor extension over the Definition which only allows \uxxxx.) This is by no means

completely satisfactory in terms of support for Unicode, but it is what is currently available.

There are periodic flurries of questions and discussion about Unicode in MLton/SML. In December 2004,
there was a discussion that led to some seemingly sound design decisions. The discussion started at:

[Bhhttp://mlton.org/pipermail/mlton/2004-December/026396.html

There is a good summary of points at:

[Bhhttp://mlton.org/pipermail/mlton/2004-December/026440.html

In November 2005, there was a followup discussion and the beginning of some coding.
[@http://mlton.org/pipermail/mlton/2005-November/028300.html
We are optimistic that support will appear in the next MLton release.

Also see

The fxp XML parser has some support for dealing with Unicode documents.

Last edited on 2007-08-15 22:07:35 by MatthewFluet.

536


http://mlton.org/pipermail/mlton/2004-December/026396.html
http://mlton.org/pipermail/mlton/2004-December/026396.html
http://mlton.org/pipermail/mlton/2004-December/026440.html
http://mlton.org/pipermail/mlton/2004-December/026440.html
http://mlton.org/pipermail/mlton/2005-November/028300.html
http://mlton.org/pipermail/mlton/2005-November/028300.html

MLton Guide (20070826) UniversalType

UniversalType

A universal type is a type into which all other types can be embedded. Here's a Standard ML signature for a
universal type.

signature UNIVERSAL_TYPE =
sig
type t

val embed: unit -> ('a -> t) * (t -> 'a option)
end

The idea is that t ype t is the universal type and that each call to embed returns a new pair of functions
(inject, project), where inject embeds a value into the universal type and pro ject extracts the
value from the universal type. A pair (inject, project) returned by embed works together in that
project u will return SOME v if and only if u was created by inject wv. If u was created by a different
function inject ', then project returns NONE.

Here's an example embedding integers and reals into a universal type.

functor Test (U: UNIVERSAL_TYPE): sig end =

struct
val (intIn: int -> U.t, intOut) = U.embed ()
val r: U.t ref = ref (intIn 13)
val sl =
case intOut (!r) of
NONE => "NONE"
| SOME i => Int.toString i
val (reallIn: real -> U.t, realOut) = U.embed ()
val () = r := reallIn 13.0
val s2 =
case intOut (!r) of
NONE => "NONE"
| SOME i => Int.toString i
val s3 =
case realOut (!r) of
NONE => "NONE"
| SOME x => Real.toString x
val () = print (concat [sl, " ", s2, " ", s3, "\n"])
end

Applying Test to an appropriate implementation will print

13 NONE 13.0
Note that two different calls to embed on the same type return different embeddings.

Standard ML does not have explicit support for universal types; however, there are at least two ways to
implement them.

Implementation Using Exceptions

While the intended use of SML exceptions is for exception handling, an accidental feature of their design is
that the exn type is a universal type. The implementation relies on being able to declare exceptions locally to

537



MLton Guide (20070826) UniversalType

a function and on the fact that exceptions are generative.

structure U:> UNIVERSAL_TYPE =
struct
type t = exn

fun 'a embed () =
let
exception E of 'a
fun project (e: t): 'a option =
case e of
E a => SOME a
| _ => NONE
in
(E, project)
end
end

Implementation Using Functions and References

structure U:> UNIVERSAIL_TYPE =
struct
datatype t = T of {clear: unit -> unit,
store: unit -> unit}

fun 'a embed () =

let
val r: 'a option ref = ref NONE
fun inject (a: 'a): t =
T {clear = £n () => r := NONE,
store = £fn () => r := SOME a}
fun project (T {clear, store}): 'a option =
let
val () = store ()
val res = Ir
val () = clear ()
in
res
end
in

(inject, project)
end
end

Note that due to the use of a shared ref cell, the above implementation is not thread safe.

One could try to simplify the above implementation by eliminating the c1ear function, making
type t = unit -> unit.

structure U:> UNIVERSAL_TYPE =
struct

type t = unit -> unit

fun 'a embed () =

let
val r: 'a option ref = ref NONE
fun inject (a: 'a): t = £n () => r := SOME a
fun project (f: t): 'a option = (r := NONE; f (); !'r)

538



MLton Guide (20070826) UniversalType

in
(inject, project)
end
end

While correct, this approach keeps the contents of the ref cell alive longer than necessary, which could cause a
space leak. The problem is in project, where the call to £ stores some value in some ref cell r'. Perhaps

r' is the same ref cell as r, but perhaps not. If we do not clear r ' before returning from project, then r'
will keep the value alive, even though it is useless.

Also see

¢ PropertyList: Lisp-style property lists implemented with a universal type.

Last edited on 2005-05-29 03:04:34 by VesaKarvonen.

539



MLton Guide (20070826) UnresolvedBugs

UnresolvedBugs

Here are the places where MLton deviates from The Definition of Standard ML. In general, MLton complies

with the Definition quite closely, typically much more closely than other SML compilers (see, e.g., our list of
SMI/NI's deviations). In fact, the three deviations listed here are the only known deviations, and we have no

plans to fix them. If you find a deviation not listed here, please report a Bug.

We don't plan to fix these bugs because one of them (parsing nested cases) has historically never been
accepted by any SML compiler, while the other three clearly indicate problems in the Definition.

® MLton does not correctly parse case expressions nested within other matches. For example, the
following fails.

fun £ 0 vy =
case x of
1 => 2
| _ => 3
| £ _y =4

To do this in a program, simply parenthesize the case expression.

Allowing such expressions, although compliant with the Definition, would be a mistake, since using
parentheses is clearer and no SML compiler has ever allowed them. Furthermore, implementing this
would require serious yacc grammar rewriting followed by postprocessing.

® MLton rejects rebinding of constructors with val rec declarations, as in

val rec NONE = fn () => ()
The Definition (bizarrely) requires this program to type check, but to raise Bind.

We have no plans to change this behavior, as the Definition's behavior is clearly an error, a mismatch
between the static semantics and the dynamic semantics.

® MLton does not hide the equality aspect of types declared in abstype declarations. So, MLton accepts
programs like the following, while the Definition rejects them.

abstype t = T with end
val _ = fn (tl, t2 : t) => tl = t2

abstype T with val a = T end
val _ = a = a

One consequence of this choice is that MLton accepts the following program, in accordance with the
Definition.

abstype t = T with val eq = op = end
val _ = fn (tl, t2 : t) => eqg (tl, t2)

Other implementations will typically reject this program, because they make an early choice for the
typeof eqtobe ''a * ''a —-> boolinsteadoft * t —-> bool. The choice is
understandable, since the Definition accepts the following program.

abstype t = T with val eq = op = end
val _ = eq (1, 2)

540



MLton Guide (20070826) UnresolvedBugs

® MLton (re-)type checks each functor definition at every corresponding functor application (the
compilation technique of defunctorization). One consequence of this implementation is that MLton
accepts the following program, while the Definition rejects it.

functor F (X: sig type t end) = struct
val £ = id id

end

structure A = F (struct type t = int end)

structure B = F (struct type t = bool end)

val _ = A.f 10

val = B.f "dude"

On the other hand, other implementations will typically reject the following program, while MLton
and the Definition accept it.

functor F (X: sig type t end)
= struct
val f

id id
end
structure A = F (struct type t = int end)
structure B = F (struct type t bool end)
£
£

val = A.f 10

val = B. false

See DreyerBlume(7 for more details.

Last edited on 2007-08-15 22:07:38 by MatthewFluet.

541



MLton Guide (20070826) UnsafeStructure

UnsafeStructure

This module is a subset of the Unsafe module provided by SML/NIJ.

signature UNSAFE_MONO_ARRAY =
sig
type array
type elem

val create: int -> array

val sub: array * int -> elem

val update: array * int * elem -> unit
end

signature UNSAFE_MONO_VECTOR =
sig
type elem
type vector

val sub: vector * int -> elem
end

signature UNSAFE =

sig
structure Array:
sig
val create: int * 'a -> 'a array
val sub: 'a array * int -> 'a
val update: 'a array * int * 'a -> unit
end

structure CharArray: UNSAFE_MONO_ARRAY
structure CharVector: UNSAFE_MONO_VECTOR
structure Real64Array: UNSAFE_MONO_ARRAY
structure Vector:

sig

val sub: 'a vector * int -> 'a

end
structure Word8Array: UNSAFE_MONO_ARRAY
structure Word8Vector: UNSAFE_MONO_VECTOR

end

Last edited on 2005-01-26 20:29:31 by MatthewFluet.

542



MLton Guide (20070826) Useless

Useless

Useless is an optimization pass for the SSA Intermediatel anguage, invoked from SSASimplify.

Description

This pass:
® removes components of tuples that are constants (use unification)
¢ removes function arguments that are constants

¢ builds some kind of dependence graph where

- a value of ground type is useful if it is an arg to a primitive - a tuple is useful if it contains a useful
component - a constructor is useful if it contains a useful component or is used in a Case transfer

If a useful tuple is coerced to another useful tuple, then all of their components must agree (exactly). It is
trivial to convert a useful value to a useless one.

Implementation

@useless.sig Bluseless.fun

Details and Notes

It is also trivial to convert a useful tuple to one of its useful components -- but this seems hard.

Suppose that you have a ref/array/vector that is useful, but the components aren't -- then the
components are converted to type unit, and any primitive args must be as well.

Unify all handler arguments so that raise/handle has a consistent calling convention.

Last edited on 2006-11-02 17:56:21 by MatthewFluet.

543


http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/useless.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/useless.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/useless.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/useless.fun?view=markup

MLton Guide (20070826) Users

Users

Here is a list of companies, projects, and courses that use or have used MLton. If you use MLton and are not
here, please add your project with a brief description and a link. Thanks.

Companies

o BiHardcore Processing uses MLton as a icrosscompiler from Linux to Windows for graphics and
game software.

¢ [BICEX3D Converter, a conversion program for 3D objects.
¢ [Blnteractive Showreel, which contains a crossplatform GUI-toolkit and a realtime renderer
for a subset of RenderMan written in Standard ML.
¢ various [@lgames
o [BiPolySpace Technologies builds their product that detects runtime errors in embedded systems based
on abstract interpretation.
e WSourcelight Technologies uses MLton internally for prototyping and for processing databases as
part of their system that makes personalized movie recommendations.

Projects

¢ BIADATE, Automatic Design of Algorithms Through Evolution, a system for automatic
programming i.e., inductive inference of algorithms. ADATE can automatically generate non-trivial
and novel algorithms written in Standard ML.

¢ [BICIIL, a compiler for SML based on intersection and union types.

o BiConCert, a project investigating certified code for grid computing.

¢ WCooperative Internet hosting tools
o [@iDesynchFS, a programming model and distributed file system for large clusters

¢ WGuugelhupf, a simple search engine.

e [BHaMI et a model implementation of Standard ML.

o [BiMetis, a first-order prover used in the IHOL4 theorem proving system.

* [@mIftpd, an ftp daemon written in SML. TomMurphy is also working on [@replacements for standard
network services in SML. He also uses MLton to build his entries (@m, [©2002, [B2004, @ME)
in the annual ICFP programming contest.

o [BIMLOPE, an offline partial evaluator for Standard ML.

¢ [BIRML, a system for developing, compiling and debugging and teaching structural operational
semantics (SOS) and natural semantics specifications.

o [WWISMI Nltrans, a program for generating SML/NJ transcripts in LaTeX.

¢ WASSA PRE, an implementation of Partial Redundancy Elimination for MLton.

e Stabilizers, a modular checkpointing abstraction for concurrent functional programs.

¢ WASTING, self-adjusting computation, a paradigm of computing where programs can automatically
adjust to changes to their data.

e [BITina (Time Petri net Analyzer)

o [BiTwelf an implementation of the LF logical framework.

o [BiWaveScript, part of the BIWaveScope sensor network project. Produces MLton code in backend.
[BUsed on embedded devices.

544


http://www.hardcoreprocessing.com/
http://www.hardcoreprocessing.com/
http://www.hardcoreprocessing.com/Freeware/MLTonWin32.html
http://www.hardcoreprocessing.com/Freeware/MLTonWin32.html
http://www.cex3d.net/
http://www.cex3d.net/
http://www.hardcoreprocessing.com/company/showreel/index.html
http://www.hardcoreprocessing.com/company/showreel/index.html
http://www.hardcoreprocessing.com/entertainment/index.html
http://www.hardcoreprocessing.com/entertainment/index.html
http://www.polyspace.com/
http://www.polyspace.com/
http://www.sourcelight.com/
http://www.sourcelight.com/
http://www-ia.hiof.no/%7Erolando/adate_intro.html
http://www-ia.hiof.no/%7Erolando/adate_intro.html
http://types.bu.edu/reports/Dim+Wes+Mul+Tur+Wel+Con:TIC-2000-LNCS.html
http://types.bu.edu/reports/Dim+Wes+Mul+Tur+Wel+Con:TIC-2000-LNCS.html
http://www.cs.cmu.edu/%7Econcert/
http://www.cs.cmu.edu/%7Econcert/
http://hcoop.sourceforge.net/
http://hcoop.sourceforge.net/
http://www.eecs.harvard.edu/~stein/
http://www.eecs.harvard.edu/~stein/
http://www.fantasy-coders.de/projects/gh/
http://www.fantasy-coders.de/projects/gh/
http://www.ps.uni-sb.de/hamlet/
http://www.ps.uni-sb.de/hamlet/
http://www.cl.cam.ac.uk/users/jeh1004/research/metis/
http://www.cl.cam.ac.uk/users/jeh1004/research/metis/
http://hol.sourceforge.net/
http://hol.sourceforge.net/
http://cvs.sourceforge.net/cgi-bin/viewcvs.cgi/tom7misc/net/mlftpd
http://cvs.sourceforge.net/cgi-bin/viewcvs.cgi/tom7misc/net/mlftpd
http://cvs.sourceforge.net/cgi-bin/viewcvs.cgi/tom7misc/net/
http://cvs.sourceforge.net/cgi-bin/viewcvs.cgi/tom7misc/net/
http://cvs.sourceforge.net/cgi-bin/viewcvs.cgi/tom7misc/net/
http://www.cs.cmu.edu/~tom7/icfp2001/
http://www.cs.cmu.edu/~tom7/icfp2001/
http://www.cs.cmu.edu/~tom7/icfp2002/
http://www.cs.cmu.edu/~tom7/icfp2002/
http://www.cs.cmu.edu/~tom7/icfp2004/
http://www.cs.cmu.edu/~tom7/icfp2004/
http://www.cs.cmu.edu/~tom7/icfp2005/
http://www.cs.cmu.edu/~tom7/icfp2005/
http://www.informatik.uni-freiburg.de/proglang/research/software/mlope/
http://www.informatik.uni-freiburg.de/proglang/research/software/mlope/
http://www.ida.liu.se/~pelab/rml/
http://www.ida.liu.se/~pelab/rml/
http://www.cis.ksu.edu/~allen/smlnjtrans.html
http://www.cis.ksu.edu/~allen/smlnjtrans.html
http://www-2.cs.cmu.edu/%7Etom7/ssapre/
http://www-2.cs.cmu.edu/%7Etom7/ssapre/
http://ttic.uchicago.edu/~umut/sting/
http://ttic.uchicago.edu/~umut/sting/
http://www.laas.fr/tina
http://www.laas.fr/tina
http://www.twelf.org/
http://www.twelf.org/
http://regiment.us
http://regiment.us
http://wavescope.csail.mit.edu/
http://wavescope.csail.mit.edu/
http://www.lecs.cs.ucla.edu/~girod/aensbox/
http://www.lecs.cs.ucla.edu/~girod/aensbox/

MLton Guide (20070826) Users

Courses

o BiHarvard CS-152, undergraduate programming languages.
o BIHA gskoleni A stfold IAI30202, programming languages.

Last edited on 2007-07-11 19:57:59 by RyanNewton.

545


http://www.eecs.harvard.edu/%7Enr/cs152/
http://www.eecs.harvard.edu/%7Enr/cs152/
http://www.ia-stud.hiof.no/%7Erolando/PL/
http://www.ia-stud.hiof.no/%7Erolando/PL/

MLton Guide (20070826)

Utilities

This page is a collection of basic utilities used in the examples on various pages. See

e InfixingOperators, and
e ProductType

for longer discussions on some of these utilities.

(* Operator precedence table *)

infix 8 * / div mod (* +1 from Basis Library *)
infix 7 4+ - " (* +1 from Basis Library *)
infixr © Q (* +1 from Basis Library *)
infix 5 = <> > >= < <= (* +1 from Basis Library *)
infix 4 <\ \>

infixr 4 </ />

infix 3 o

infix 2 >

infixr 2 | <

infix 1 = (* =2 from Basis Library *)
infix 0 Dbefore &

(* Some basic combinators *)

fun const x _ = x

fun cross (f, 9) (x, v) = (f x, g V)
fun curry f x y = £ (x, Vy)

fun fail e _ = raise e

fun id x = x

(* Product type *)
datatype ('a, 'b) product = & of 'a * 'b

(* Sum type *)
datatype ('a, 'b) sum = INL of 'a | INR of 'b

(* Some type shorthands *)

type 'a uop = 'a -> 'a

type 'a fix = 'a uop -> 'a
type 'a thunk = unit -> 'a
type 'a effect = 'a —> unit

type ('a, 'b) emb = ('a -> 'b) * ('b —> 'a)

(* Infixing, sectioning, and application operators *)
fun x <\ £ = fn y => f (x, V)

fun £ \> y fy

fun £ /> y fn x => £ (x, y)

fun x </ £ = f x

(* Piping operators *)
val op>| = op</
val opl< = op\>

Utilities

Last edited on 2006-08-13 14:40:14 by VesaKarvonen.

546



MLton Guide (20070826) ValueRestriction

ValueRestriction

The value restriction is a rule that governs when type inference is allowed to polymorphically generalize a
value declaration. In short, the value restriction says that generalization can only occur if the right-hand side
of an expression is syntactically a value. For example, in

val £f = fn x => x
val _ = (f "foo"; f 13)

the expression fn x => x is syntactically a value, so f has polymorphic type 'a —> 'a and both calls to
f type check. On the other hand, in

val f
val

let in fn x => x end
(f "foo"; f 13)

the expression let in fn x => end end is not syntactically a value and so f can either have type
int -> intorstring -> string,butnot'a -> 'a.Hence, the program does not type check.

The Definition of Standard ML spells out precisely which expressions are syntactic values (it refers to such
expressions as non-expansive). An expression is a value if it is of one of the following forms.

® aconstant (13, "foo",13.0,...)

® a variable (x, v, ...)

¢ a function (fn x => e)

¢ the application of a constructor other than ref to a value (Foo v)

® a type constrained value (v: t)

¢ a tuple in which each field is a value (v1, v2, ...)

® arecord in which each fieldis a value {11 = v1, 12 = v2, ...}
¢ a list in which each element is a value [v1, v2, ...]

Why the value restriction exists

The value restriction prevents a ref cell (or an array) from holding values of different types, which would
allow a value of one type to be cast to another and hence would break type safety. If the restriction were not in
place, the following program would type check.

val r: 'a option ref = ref NONE

val rl: string option ref = r
val r2: int option ref = r
val () = rl := SOME "foo"

val v: int = valOf (!r2)

The first line violates the value restriction because ref NONE is not a value. All other lines are type correct.
By its last line, the program has cast the string " foo" to an integer. This breaks type safety, because now we
can add a string to an integer with an expression like v + 13. We could even be more devious, by adding the
following two lines, which allow us to threat the string "foo" as a function.

val r3: (int -> int) option ref = r
val v: int -> int = valOf (!r3)

Eliminating the explicit re £ does nothing to fix the problem. For example, we could replace the declaration

547



MLton Guide (20070826) ValueRestriction

of r with the following.

val f: unit -> 'a option ref = £n () => ref NONE
val r: 'a option ref = £ ()

The declaration of f is well typed, while the declaration of r violates the value restriction because £ () is
not a value.

Unnecessarily rejected programs

Unfortunately, the value restriction rejects some programs that could be accepted.

val id: 'a —> 'a = fn x => X
val f: 'a —> 'a = id id

The type constraint on f requires £ to be polymorphic, which is disallowed because 1d id is not a value.
MLton reports the following type error.

Error: z.sml 2.19.
Can't bind type variable: 'a.
in: val 'a (f): ('a -> 'a) = id id

MLton indicates the inability to make £ polymorphic by saying that it can't bind the type variable ' a at the
declaration. MLton doesn't explicitly mention the value restriction, but that is the reason. If we leave the type
constraint off of £

val id: 'a —> 'a = fn x => x
val f = id id

then the program succeeds; however, MLton gives us the following warning.

Warning: z.sml 2.1.
Unable to locally determine type of variable: f.
type: 2?2?27 —-> 2?7272
in: val £ = id id

This warning indicates that MLton couldn't polymorphically generalize £, nor was there enough context using
f to determine its type. This in itself is not a type error, but it it is a hint that something is wrong with our
program. Using f provides enough context to eliminate the warning.

val id: 'a —> 'a = fn x => x
val f = id id
val = f 13

But attempting to use £ as a polymorphic function will fail.

val id: 'a —> 'a = fn x => x
val £ = id id

val _ = £ 13

val = f "foo"

548



MLton Guide (20070826) ValueRestriction

Alternatives to the value restriction

There would be nothing wrong with treating £ as polymorphic in

val id: 'a -—> 'a = fn x => x
val £ = id id

One might think that the value restriction could be relaxed, and that only types involving re £ should be
disallowed. Unfortunately, the following example shows that even the type 'a —> 'a can cause problems.
If this program were allowed, then we could cast an integer to a string (or any other type).

val f: 'a -> 'a =
let
val r: 'a option ref = ref NONE
in
fn x =>
let
val v = !r
val () = r := SOME x
in

case y of
NONE => x
| SOME y => vy

end
end
val _ = f 13
val _ = f "foo"

The previous version of Standard ML took a different approach (MilnerEtAl90, Tofte90,
ImperativeTypeVariable) than the value restriction. It encoded information in the type system about when ref
cells would be created, and used this to prevent a ref cell from holding multiple types. Although it allowed
more programs to be type checked, this approach had significant drawbacks. First, it was significantly more
complex, both for implementers and for programmers. Second, it had an unfortunate interaction with the
modularity, because information about ref usage was exposed in module signatures. This either prevented the
use of references for implementing a signature, or required information that one would like to keep hidden to
propagate across modules.

In the early nineties, Andrew Wright studied about 250,000 lines of existing SML code and discovered that it

did not make significant use of the extended typing ability, and proposed the value restriction as a simpler
alternative (Wright95). This was adopted in the revised Definition.

Working with the value restriction

One technique that works with the value restriction is EtaExpansion. We can use eta expansion to make our
id id example type check follows.

val id: 'a -—> 'a = fn x => x
val f: 'a -> 'a = fn z => (id id) z

This solution means that the computation (in this case 1d 1id) will be performed each time f is applied,

instead of just once when £ is declared. In this case, that is not a problem, but it could be if the declaration of
f performs substantial computation or creates a shared data structure.

549



MLton Guide (20070826) ValueRestriction

Another technique that sometimes works is to move a monomorphic computation prior to a (would-be)
polymorphic declaration so that the expression is a value. Consider the following program, which fails due to
the value restriction.

A of string | B of 'a

datatype 'a t =
t = A (if true then "yes" else "no")

val x: 'a
It is easy to rewrite this program as

datatype 'a t = A of string | B of 'a

local

val s = if true then "yes" else "no"
in

val x: 'a t = A s
end

The following example (taken from Wright95) creates a ref cell to count the number of times a function is
called.

val count: ('a -> 'a) -> ('a —> 'a) * (unit -> int) =
fn £ =>
let
val r = ref 0O
in
(fn x => (r : =1 + !r; £ x), £n () => !r)
end
val id: 'a —> 'a = fn x => x
val (countId: 'a -> 'a, numCalls) = count id

The example does not type check, due to the value restriction. However, it is easy to rewrite the program,
staging the ref cell creation before the polymorphic code.

datatype t = T of int ref

val countl: unit -> t = £n () => T (ref 0)

val count2: t * ('a -> 'a) —-> (unit -> int) * ('a -> 'a) =
fn (T r, £) => (fn () => !r, fn x => (r := 1 + !r; £ x))

val id: 'a —> 'a = fn x => x

val t = countl ()

val countId: 'a -> 'a = fn z => #2 (count2 (t, id)) =z
val numCalls = #1 (count2 (t, id))

Of course, one can hide the constructor T inside a 1ocal or behind a signature.

Also see

¢ ImperativeTypeVariable

Last edited on 2007-08-15 22:07:43 by MatthewFluet.

550



MLton Guide (20070826) VariableArityPolymorphism

VariableArityPolymorphism

Standard ML programmers often face the problem of how to provide a variable-arity polymorphic function.
For example, suppose one is defining a combinator library, e.g. for parsing or pickling. The signature for such
a library might look something like the following.

signature COMBINATOR =
sig
type 'a t

val int: int t
val real: real t
val string: string t
val unit: unit t
val tuple2: 'al t * 'a2 t -> ('al * 'a2) t
val tuple3: 'al t * 'a2 t * 'al3 t -> ('al * 'az * 'a3) t
val tupled: 'al t * 'a2 t * 'a3 t * 'a4d t
-> ('al * 'a2 * 'a3 * 'a4d) t

end

The question is how to define a variable-arity tuple combinator. Traditionally, the only way to take a variable
number of arguments in SML is to put the arguments in a list (or vector) and pass that. So, one might define a
tuple combinator with the following signature.

val tupleN: 'a list -> 'a list t

The problem with this approach is that as soon as one places values in a list, they must all have the same type.
So, programmers often take an alternative approach, and define a family of tuple<N> functions, as we see
in the COMBINATOR signature above.

The family-of-functions approach is ugly for many reasons. First, it clutters the signature with a number of
functions when there should really only be one. Second, it is closed, in that there are a fixed number of tuple
combinators in the interface, and should a client need a combinator for a large tuple, he is out of luck. Third,
this approach often requires a lot of duplicate code in the implementation of the combinators.

Fortunately, using FoldO1N and products, one can provide an interface and implementation that solves all
these problems. Here is a simple pickling module that converts values to strings.

structure Pickler =
struct
type 'a t = 'a -> string
val unit = £n () => ""
val int = Int.toString
val real = Real.toString
val string = id

type 'a accum = 'a * string list -> string list

val tuple =
fn z =>

551



MLton Guide (20070826) VariableArityPolymorphism

FoldO1N.fold

{finish = fn ps => fn x => concat (rev (ps (x, [1))),
start = fn p => £fn (x, 1) => p x :: 1,
zero = unit}
z
val °= =
fn z =>
FoldO1N.stepl
{combine = (fn (p, p') => fn (x & x', 1) =>p' x' :+ ", " :: p (x, 1))}
z
end

If one has n picklers of types

val pl: al Pickler.t
val p2: a2 Pickler.t

val pn: an Pickler.t
then one can construct a pickler for n-ary products as follows.

tuple "pl "p2 ... 'pn $ : (al & a2 & ... & an) Pickler.t

For example, with Pickler in scope, one can prove the following equations.

"" = tuple $ ()

"l" = tuple ‘int $ 1

"1,2.0" = tuple “int ‘real $ (1 & 2.0)

"1,2.0,three" = tuple ‘int ‘real “string $ (1 & 2.0 & "three")

Here is the signature for Pickler. It shows why the accum type is useful.

signature PICKLER =
sig
type 'a t

val int: int t

val real: real t

val string: string t
val unit: unit t

type 'a accum

val ° : ('a accum, 'b t, ('a, 'b) prod accum,
'zl, 'z2, 'z3, 'z4, 'z5, 'z6, 'z7) FoldOlN.stepl
val tuple: ('a t, 'a accum, 'b accum, 'b t, unit t,

'zl, 'z2, 'z3, 'z4, 'z5) FoldOlN.t
end

structure Pickler: PICKLER = Pickler

Last edited on 2006-03-21 22:06:02 by StephenWeeks.

552



MLton Guide (20070826) Variant

Variant

A variant is an arm of a datatype declaration. For example, the datatype
datatype t = A | B of int | C of real

has three variants: A, B, and C.

Last edited on 2005-12-02 03:13:02 by StephenWeeks.

553



MLton Guide (20070826) VesaKarvonen

VesaKarvonen

Vesa Karvonen is a student at the @{University of Helsinki. His interests lie in the design and implementation
of programming languages.

Yimage
Things he'd like to see for SML and hopes to be able to contribute towards:

¢ A practical tool for documenting libraries. Preferably one that is based on extracting the
documentation from source code comments.
* A good IDE. Possibly an enhanced SML mode (e sml-mode) for Emacs. Google for BISLIME video
to get an idea of what he'd like to see. Some specific notes:
¢ show type at point
4 robust, consistent indentation
¢ show documentation
¢ jump to definition (see EmacsDefUseMode)
EmacsBgBuildMode has also been written for working with MLton.
e Documented and cataloged libraries. Perhaps something like @Boost, but for SML libraries. Here is a
partial list of libraries Vesa is or has been working on:
¢ Asynchronous Programming Library (|README)
¢ Extended Basis Library (8README)
¢ Generic Programming Library (8README)
¢ Pretty Printing Library (8README)
¢ Random Generator Library (MIREADME)
¢ Unit Testing Library (8README)
¢ Windows Library (|README)

Last edited on 2007-08-25 11:55:59 by VesaKarvonen.

554


http://www.cs.helsinki.fi/index.en.html
http://www.cs.helsinki.fi/index.en.html
http://mlton.org/pages/VesaKarvonen/attachments/vesa-in-mlton-t-shirt.jpg?ts=1187963111
http://www.google.com/search?&q=SLIME+video
http://www.google.com/search?&q=SLIME+video
http://www.boost.org
http://www.boost.org
http://mlton.org/cgi-bin/viewsvn.cgi/mltonlib/trunk/com/ssh/async/unstable/README?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mltonlib/trunk/com/ssh/async/unstable/README?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mltonlib/trunk/com/ssh/extended-basis/unstable/README?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mltonlib/trunk/com/ssh/extended-basis/unstable/README?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mltonlib/trunk/com/ssh/generic/unstable/README?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mltonlib/trunk/com/ssh/generic/unstable/README?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mltonlib/trunk/com/ssh/prettier/unstable/README?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mltonlib/trunk/com/ssh/prettier/unstable/README?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mltonlib/trunk/com/ssh/random/unstable/README?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mltonlib/trunk/com/ssh/random/unstable/README?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mltonlib/trunk/com/ssh/unit-test/unstable/README?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mltonlib/trunk/com/ssh/unit-test/unstable/README?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mltonlib/trunk/com/ssh/windows/unstable/README?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mltonlib/trunk/com/ssh/windows/unstable/README?view=markup

MLton Guide (20070826) WantedPages

WantedPages

Pages that don't exist and the pages that link to them. Please help fill these in. Also see OrphanedPages.

. CCodegen: Chunkify

. Codegen: Machine

. Defunctionalization: ClosureConvert

. FirstOrder: Intermediatel.anguage, SSA, SSA2

. FlatLattice: CommonArg

. HigherOrder: Intermediatel.anguage

. LambdalLift: SXMLSimplify

. MLDoc: Libraries

. MLLex: Documentation, Features, FrontEnd, Installation, Libraries
10. MLNI_FFIGEN: Features

11. ML Yacc: Documentation, Features, FrontEnd, Installation, Libraries, MLLBasisAvailablelibraries

12. SimplyTyped: Intermediatel.anguage, SSA, SSA2
13. Typelnference: FirstClassPolymorphism

14. Uncurry: SXMLSimplify
15. Untyped: Machine

16. VilleLaurikari: TrustedGroup

17. ZZA: CompilerPassTemplate
18. ZZB: CompilerPassTemplate

19. ZZZ: CompilerPassTemplate
20. ZZZNext: TalkTemplate

21. ZZZ0therPass: CompilerPassTemplate
22. ZZ77ZPrev: TalkTemplate

23. ZZZSimplify: CompilerPassTemplate

0NN L AW~

Ne)

Last edited on 2004-11-09 02:12:23 by StephenWeeks.

555



MLton Guide (20070826) WebSite

WebSite

This web site is a Wiki and is implemented using MoinMoin. If you're new to Wikis or to MoinMoin, they
have a lot of [@help pages. We have customized the look and feel, so some of their descriptions may not

apply.
Next Steps

e AccessControl. Who can edit what.

¢ CreatingPages.

¢ EditingPages.
e SystemInfo. What version of MoinMoin we use, plus more.

e WikiMacros. Special macros for this site.
® WikiTool. Edit pages with your favorite text editor.

Site Maintenance

¢ OrphanedPages. Pages that no other page links to. Please help by linking to these.

e WantedPages. Pages that don't exist and the pages that link to them. Please help fill these in.
¢ WOIdPages. Pages with the oldest modification times.

¢ PageSize. Pages sorted in decreasing order of size.

¢ WRecentChanges. Pages that have been changed recently.

Navigation

The box in the upper-right corner is to Google search the entire web site. Also in the upper right is a link to an
Index of all pages, sorted by page title.

You can also do a search of just the wiki.
Wiki full-text search
Display context of search results

Case-sensitive searching

Wiki title search

Last edited on 2004-12-03 00:40:23 by StephenWeeks.

556


http://moinmoin.wikiwikiweb.de/HelpContents
http://moinmoin.wikiwikiweb.de/HelpContents
http://mlton.org/OldPages
http://mlton.org/OldPages
http://mlton.org/RecentChanges
http://mlton.org/RecentChanges

MLton Guide (20070826) WesleyTerpstra

WesleyTerpstra

Wesley W. Terpstra is a PhD student at the Technische Universitidt Darmstadt (Germany).
Research interests

¢ Distributed systems (P2P)
e Number theory (Error-correcting codes)

My interest in SML is centered on the fact the the language is able to directly express ideas from number
theory which are important for my work. Modules and Functors seem to be a very natural basis for
implementing many algebraic structures. MLton provides an ideal platform for actual implementation as it is
fast and has unboxed words.

Things I would like from MLton in the future:

¢ Some better optimization of mathematical expressions

¢ [Pv6 and multicast support

e A complete GUI toolkit like mGTK

® More supported platforms so that applications written under MLton have a wider audience

Last edited on 2004-12-19 03:55:34 by WesleyTerpstra.

557



MLton Guide (20070826) WholeProgramOptimization

WholeProgramOptimization

Whole-program optimization is a compilation technique in which optimizations operate over the entire
program. This allows the compiler many optimization opportunities that are not available when analyzing
modules separately (as with separate compilation).

Most of MLton's optimizations are whole-program optimizations. Because MLton compiles the whole
program at once, it can perform optimization across module boundaries. As a consequence, MLton often
reduces or eliminates the run-time penalty that arises with separate compilation of SML features such as
functors, modules, polymorphism, and higher-order functions. MLton takes advantage of having the entire
program to perform transformations such as: defunctorization, monomorphisation, higher-order control-flow
analysis, inlining, unboxing, argument flattening, redundant-argument removal, constant folding, and
representation selection. Whole-program compilation is an integral part of the design of MLton and is not
likely to change.

Last edited on 2004-12-06 06:01:10 by StephenWeeks.

558



MLton Guide (20070826) WikiMacros

WikiMacros

Here are the wiki macros available in addition to the usual MoinMoin ones.

® [[Cite (anchor[,text]) ]] displays text as a link to the corresponding reference on the
References page.
Examples: _a paper

® [ [DownloadSVN (pathToFile) ]] displays a download link to the ViewSVN page for
pathToFile.
Examples: @Makefile, Bmain.sml

® [[IncludeSVN (pathToFile[,typel [, [start]: [end]...])]] textually includes the
latest contents of pathToFile. The contents are formatted with Enscript using highlighting mode
type, as in the ! # syntax processor; if t ype is omitted, the macro uses the extension of
pathToFile. A sequence of ranges may be used to specify the lines to be formatted; in each range,
the absence of start implicitly denotes the start of the file and the absence of end implicitly
denotes the end of the file; furthermore, negative start and end may be used to index relative to
the end of the file.
Example:

(* Copyright (C) 1999-2007 Henry Cejtin, Matthew Fluet, Suresh
* Jagannathan, and Stephen Weeks.

* Copyright (C) 1997-2000 NEC Research Institute.

*

* MLton is released under a BSD-style license.

* See the file MLton-LICENSE for details.

%)

structure Main = Main ()

val _ =
let
open Trace.Immediate
in
debug := Out Out.error
i flagged ()
i on []
end
® [ [ViewSVN (pathToFile) ]] displays a link to the ViewSVN page for pathToFile.
Examples: @Makefile, Blmain.sml
® [ [ViewSVNDir (pathToDir) ]] displays a link to the ViewSVN page for pathToDir.
Example: [@main
® [ [ViewSVNRev (rev) ] ] displays a link to the ViewSVN page for revision rev.
Example: [614242

Last edited on 2007-07-30 18:04:50 by MatthewFluet.

559


http://mlton.org/cgi-bin/viewsvn.cgi/*checkout*/mlton/tags/on-20070826-release/Makefile
http://mlton.org/cgi-bin/viewsvn.cgi/*checkout*/mlton/tags/on-20070826-release/Makefile
http://mlton.org/cgi-bin/viewsvn.cgi/*checkout*/mlton/tags/on-20070826-release/mlton/main/main.sml
http://mlton.org/cgi-bin/viewsvn.cgi/*checkout*/mlton/tags/on-20070826-release/mlton/main/main.sml
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/Makefile?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/Makefile?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/main/main.sml?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/main/main.sml?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/main
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/main
http://mlton.org/cgi-bin/viewsvn.cgi?rev=4242&view=rev
http://mlton.org/cgi-bin/viewsvn.cgi?rev=4242&view=rev

MLton Guide (20070826) WikiName

WikiName

A WikiName is a word that uses capitalized words. WikiNames automatically become hyperlinks to the
WikiName's page.

Last edited on 2005-12-02 03:20:19 by StephenWeeks.

560



MLton Guide (20070826) WikiTool

WikiTool

We have written a simple command-line tool that makes it possible to edit wiki pages using your favorite text
editor instead of within a browser text box. The tool provides a CVS/SVN-like command-line interface that
can be used to update local copies of files from the web and to commit local modifications to the web.

The tool is written in SML (of course) and is available in the MLton Sources (#lwiki). To compile it, you
need to have the latest SVN of the MLton library sources, and point the MLB path variable
MLTON_SRC_LIB at the 1ib/mlton dir in the sources.

Here's a quick tutorial on how to use the tool

1. Create a new directory for your local copy of the wiki files.
2. In that directory, login.

wiki login http://mlton.org StephenWeeks <my password>
3. Checkout (the raw wiki markup) files with commands like:

wiki checkout Home
wiki checkout Index Documentation

4. Edit the files using your favorite text editor.
5. Commit your changes with a command like

wiki commit UserGuide

6. Logout.
wiki logout
That's it for the simple use. There are also other commands like CVS/SVN.

e Download the new version of a file from the web if there is one.

wiki update UserGuide

® Schedule a new file to be added (must be later committed, just like CVS/SVN) .

wiki add NewFile
® Rename a page

wiki rename OldFile NewFile
® Remove a page

wiki remove DeletedFile

¢ Attach files to a page

wiki attach <file> <attachment>
¢ Detach files to a page

wiki detach <file> <attachment>

rename and remove shouldn't work for most people on m1ton.org because of the way our
AccessControl is set up.

561


http://mlton.org/cgi-bin/viewsvn.cgi/tools/wiki
http://mlton.org/cgi-bin/viewsvn.cgi/tools/wiki

MLton Guide (20070826) WikiTool

This code is a two-day hack and is not widely used. But we've found it useful. Please send bug reports to

EIMLton @mlton.org.

Last edited on 2007-08-13 18:33:50 by MatthewFluet.

562


mailto:MLton@mlton.org
mailto:MLton@mlton.org

MLton Guide (20070826) WishList

WishList

This page is mainly for recording recurring feature requests. If you have a new feature request, you probably
want to query interest on one of the mailing lists first.

Please be aware of MLton's policy on language changes. Nonetheless, we hope to provide support for some of
the "immediate" SuccessorML proposals in a future release.

Support for link options in ML Basis files

Introduce a mechanism to specify link options in ML Basis files. For example, generalizing a bit, a ML Basis
declaration of the form

option "option"

could be introduced whose semantics would be the same (as closely as possible) as if the option string were
specified on the compiler command line.

The main motivation for this is that a MLton library that would introduce bindings (through EFI) to an
external library could be packaged conveniently as a single MLB file. For example, to link with library foo
the MLB file would simply contain:

option "-link-opt —-lfoo"

Similar feature requests have been discussed previously on the mailing lists:

o ttp://mlton.org/pipermail/mlton/2004-July/025553 html
o ttp://mlton.org/pipermail/mlton/2005-January/026648.html

Last edited on 2007-07-08 22:53:40 by MatthewFluet.

563


http://mlton.org/pipermail/mlton/2004-July/025553.html
http://mlton.org/pipermail/mlton/2004-July/025553.html
http://mlton.org/pipermail/mlton/2005-January/026648.html
http://mlton.org/pipermail/mlton/2005-January/026648.html

MLton Guide (20070826) XML

XML

XML is an Intermediatel anguage, translated from CoreML by Defunctorize, optimized by XMLSimplify, and
translated by Monomorphise to SXML.

Description

XML is polymorphic, higher-order, with flat patterns. Every XML expression is annotated with its type.
Polymorphic generalization is made explicit through type variables annotating val and fun declarations.
Polymorphic instantiation is made explicit by specifying type arguments at variable references. XML patterns
can not be nested and can not contain wildcards, constraints, flexible records, or layering.

Implementation

@xml.sig [Blxml.fun
[Blxml-tree. sig [Blxml-tree.fun

Type Checking

XML also has a type checker, used for debugging. At present, the type checker is also the best specification of
the type system of XML. If you need more details, the type checker (ltype-check.sig [@ltype-check.fun), is
pretty short.

Since the type checker does not affect the output of the compiler (unless it reports an error), it can be turned
off. The type checker recursively descends the program, checking that the type annotating each node is the
same as the type synthesized from the types of the expressions subnodes.

Details and Notes

XML uses the same atoms as Core ML, hence all identifiers (constructors, variables, etc.) are unique and can
have properties attached to them. Finally, XML has a simplifier (XMLShrink), which implements a reduction
system.

Types

XML types are either type variables or applications of n-ary type constructors. There are many utility
functions for constructing and destructing types involving built-in type constructors.

A type scheme binds list of type variables in a type. The only interesting operation on type schemes is the
application of a type scheme to a list of types, which performs a simultaneous substitution of the type
arguments for the bound type variables of the scheme. For the purposes of type checking, it is necessary to
know the type scheme of variables, constructors, and primitives. This is done by associating the scheme with
the identifier using its property list. This approach is used instead of the more traditional environment
approach for reasons of speed.

564


http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/xml/xml.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/xml/xml.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/xml/xml.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/xml/xml.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/xml/xml-tree.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/xml/xml-tree.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/xml/xml-tree.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/xml/xml-tree.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/xml/type-check.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/xml/type-check.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/xml/type-check.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/xml/type-check.fun?view=markup

MLton Guide (20070826) XML

XmliTree

Before defining XML, the signature for language XML, we need to define an auxiliary signature XMIL_ TREE,
that contains the datatype declarations for the expression trees of XML. This is done solely for the purpose of
modularity -- it allows the simplifier and type checker to be defined by separate functors (which take a
structure matching XML_TREE). Then, Xm1 is defined as the signature for a module containing the expression
trees, the simplifier, and the type checker.

Both constructors and variables can have type schemes, hence both constructor and variable references
specify the instance of the scheme at the point of references. An instance is specified with a vector of types,
which corresponds to the type variables in the scheme.

XML patterns are flat (i.e. not nested). A pattern is a constructor with an optional argument variable. Patterns
only occur in case expressions. To evaluate a case expression, compare the test value sequentially against
each pattern. For the first pattern that matches, destruct the value if necessary to bind the pattern variables and
evaluate the corresponding expression. If no pattern matches, evaluate the default. All patterns of a case
statement are of the same variant of Pat . t, although this is not enforced by ML's type system. The type
checker, however, does enforce this. Because tuple patterns are irrefutable, there will only ever be one tuple
pattern in a case expression and there will be no default.

XML contains value, exception, and mutually recursive function declarations. There are no free type variables
in XML. All type variables are explicitly bound at either a value or function declaration. At some point in the
future, exception declarations may go away, and exceptions may be represented with a single datatype
containing a unit ref component to implement genericity.

XML expressions are like those of CoreML., with the following exceptions. There are no records expressions.
After type inference, all records (some of which may have originally been tuples in the source) are converted
to tuples, because once flexible record patterns have been resolved, tuple labels are superfluous. Tuple
components are ordered based on the field ordering relation. XML eta expands primitives and constructors so
that there are always fully applied. Hence, the only kind of value of arrow type is a lambda. This property is
useful for flow analysis and later in code generation.

An XML program is a list of toplevel datatype declarations and a body expression. Because datatype
declarations are not generative, the defunctorizer can safely move them to toplevel.

Last edited on 2006-11-02 17:35:47 by MatthewFluet.

565



MLton Guide (20070826) XMLShrink

XMLShrink

XMLShrink is an optimization pass for the XML Intermediatel.anguage, invoked from XMLSimplify.

Description

This pass performs optimizations based on a reduction system.

Implementation

@shrink.sig [Slshrink.fun

Details and Notes

The simplifier is based on Shrinking [.ambda Expressions in Linear Time.

The source program may contain functions that are only called once, or not even called at all. Match
compilation introduces many such functions. In order to reduce the program size, speed up later phases, and
improve the flow analysis, a source to source simplifier is run on XML after type inference and match
compilation.

The simplifier implements the reductions shown below. The reductions eliminate unnecessary declarations
(see the side constraint in the figure), applications where the function is immediate, and case statements where
the test is immediate. Declarations can be eliminated only when the expression is nonexpansive (see Section
4.7 of the Definition), which is a syntactic condition that ensures that the expression has no effects
(assignments, raises, or nontermination). The reductions on case statements do not show the other irrelevant
cases that may exist. The reductions were chosen so that they were strongly normalizing and so that they
never increased tree size.

let x = el in e2

reduces to

e2 [x —> el]

if el is a constant or variable or if el is nonexpansive and x occurs zero or one time in e2
[ ]

(fn x => el) e2

reduces to

let x = e2 in el
[ ]

el handle e2

reduces to

el

566


http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/xml/shrink.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/xml/shrink.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/xml/shrink.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/xml/shrink.fun?view=markup

MLton Guide (20070826) XMLShrink

if el is nonexpansive
°
case let d in e end of pl => el ...
reduces to
let d in case e of pl => el ... end
°
case C el of C x => e2

reduces to

let x = el in e2

Last edited on 2006-11-02 17:33:47 by MatthewFluet.

567



MLton Guide (20070826) XMLSimplify
XMLSimplify

The optimization passes for the XML Intermediatel.anguage are collected and controlled by the
XmlSimplify functor (@xml-simplify.sig Blxml-simplify.fun).

The following optimization passes are implemented:

e XML SimplifyTypes
e XMI Shrink

The optimization passes can be controlled from the command-line by the options

e diag-pass <pass> -- keep diagnostic info for pass
¢ drop-pass <pass> -- omit optimization pass
® keep-pass <pass> -- keep the results of pass
e xml-passes <passes> -- xml optimization passes

Last edited on 2006-11-02 17:40:39 by MatthewFluet.

568


http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/xml/xml-simplify.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/xml/xml-simplify.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/xml/xml-simplify.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/xml/xml-simplify.fun?view=markup

MLton Guide (20070826) XMLSimplifyTypes
XMLSimplifyTypes

XMLSimplifyTypes is an optimization pass for the XML Intermediatel.anguage, invoked from
XMLSimplify.

Description

This pass simplifies types in an XML program, eliminating all unused type arguments.

Implementation
@simplify—ty_pes.sig @simplify—ty_pes.fun
Details and Notes

It first computes a simple fixpoint on all the datatype declarations to determine which datatype tycon
args are actually used. Then it does a single pass over the program to determine which polymorphic
declaration type variables are used, and rewrites types to eliminate unused type arguments.

This pass should eliminate any spurious duplication that the Monomorphise pass might perform due to
phantom types.

Last edited on 2006-11-02 17:56:47 by MatthewFluet.

569


http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/xml/simplify-types.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/xml/simplify-types.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/xml/simplify-types.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/xml/simplify-types.fun?view=markup

MLton Guide (20070826) Z77Z0rphanedPages

Z2ZZ0rphanedPages

The contents of these pages have been moved to other pages.
The survey pages are currently unused.

e Surve
e SurveyDone

These templates are used by other pages.

e CompilerPassTemplate
e TalkTemplate

Last edited on 2007-07-08 21:49:15 by MatthewFluet.

570



MLton Guide (20070826) Zone

Zone

Zone is an optimization pass for the SSA2 Intermediatel.anguage, invoked from SSA2Simplify.

Description

This pass breaks large SSA2 functions into zones, which are connected subgraphs of the dominator tree. For
each zone, at the node that dominates the zone (the "zone root"), it places a tuple collecting all of the live
variables at that node. It replaces any variables used in that zone with offsets from the tuple. The goal is to
decrease the liveness information in large SSA functions.

Implementation

@zone.sig [Slzone.fun

Details and Notes

Compute strongly-connected components to avoid put tuple constructions in loops.

There are two (expert) flags that govern the use of this pass

-max-function-size <n>
—zone—-cut-depth <n>

Zone splitting only works when the number of basic blocks in a function is > n. The n used to cut the
dominator tree is set by —zone-cut-depth.

There is currently no attempt to be safe-for-space. That is, the tuples are not restricted to containing only
"small" values.

In the HOL program, the particular problem is the main function, which has 161,783 blocks and 257,519
variables -- the product of those two numbers being about 41 billion. Now, we're not likely going to need that
much space since we use a sparse representation. But even 1/100th would really hurt. And of course this rules
out bit vectors.

Last edited on 2006-11-02 17:31:40 by MatthewFluet.

571


http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/zone.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/zone.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/zone.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20070826-release/mlton/ssa/zone.fun?view=markup

MLton Guide (20070826) eXene

eXene

[Ble Xene is a multi-threaded X Window System toolkit written in ConcurrentML..

There is a group at K-State working toward @leXene 2.0.

Last edited on 2005-12-01 04:04:43 by StephenWeeks.

572


http://people.cs.uchicago.edu/~jhr/eXene/index.html
http://people.cs.uchicago.edu/~jhr/eXene/index.html
http://www.cis.ksu.edu/~stough/eXene/
http://www.cis.ksu.edu/~stough/eXene/

MLton Guide (20070826) fxp
fxp
[Bifxp is an XML parser written in Standard ML.

It has a [@lpatch to compile with MLton.

Last edited on 2005-09-09 19:15:51 by StephenWeeks.

573


http://atseidl2.informatik.tu-muenchen.de/~berlea/Fxp/
http://atseidl2.informatik.tu-muenchen.de/~berlea/Fxp/
http://atseidl2.informatik.tu-muenchen.de/~berlea/Fxp/mlton.html
http://atseidl2.informatik.tu-muenchen.de/~berlea/Fxp/mlton.html

MLton Guide (20070826) mGTK

mMGTK

BImGTK is a wrapper for BIGTK+, a GUI toolkit.

We recommend using mGTK 0.93, which is not listed on their home page, but is available at the [file release
page. To test it, after unpacking, do cd examples; make mlton, after which you should be able to run
the many examples (signup-mlton, listview-mlton,...).

Also see

e Glade

Last edited on 2005-12-02 03:33:24 by StephenWeeks.

574


http://mgtk.sourceforge.net/
http://mgtk.sourceforge.net/
http://www.gtk.org/
http://www.gtk.org/
http://sourceforge.net/project/showfiles.php?group_id=23226&package_id=16523
http://sourceforge.net/project/showfiles.php?group_id=23226&package_id=16523
http://sourceforge.net/project/showfiles.php?group_id=23226&package_id=16523

	MLton Guide (20070826)
	Home - MLton Standard ML Compiler (SML Compiler)
	Index - MLton Standard ML Compiler (SML Compiler)
	AST - MLton Standard ML Compiler (SML Compiler)
	AccessControl - MLton Standard ML Compiler (SML Compiler)
	AdamGoode - MLton Standard ML Compiler (SML Compiler)
	AdmitsEquality - MLton Standard ML Compiler (SML Compiler)
	Alice - MLton Standard ML Compiler (SML Compiler)
	AllocateRegisters - MLton Standard ML Compiler (SML Compiler)
	AndreiFormiga - MLton Standard ML Compiler (SML Compiler)
	ArrayLiteral - MLton Standard ML Compiler (SML Compiler)
	BasisLibrary - MLton Standard ML Compiler (SML Compiler)
	Bug - MLton Standard ML Compiler (SML Compiler)
	Bugs20041109 - MLton Standard ML Compiler (SML Compiler)
	Bugs20051202 - MLton Standard ML Compiler (SML Compiler)
	Bugs20070826 - MLton Standard ML Compiler (SML Compiler)
	CKitLibrary - MLton Standard ML Compiler (SML Compiler)
	CMinusMinus - MLton Standard ML Compiler (SML Compiler)
	CallGraph - MLton Standard ML Compiler (SML Compiler)
	CallingFromCToSML - MLton Standard ML Compiler (SML Compiler)
	CallingFromSMLToC - MLton Standard ML Compiler (SML Compiler)
	CallingFromSMLToCFunctionPointer - MLton Standard ML Compiler (SML Compiler)
	Changelog - MLton Standard ML Compiler (SML Compiler)
	ChrisClearwater - MLton Standard ML Compiler (SML Compiler)
	Chunkify - MLton Standard ML Compiler (SML Compiler)
	Closure - MLton Standard ML Compiler (SML Compiler)
	ClosureConvert - MLton Standard ML Compiler (SML Compiler)
	CommonArg - MLton Standard ML Compiler (SML Compiler)
	CommonBlock - MLton Standard ML Compiler (SML Compiler)
	CommonSubexp - MLton Standard ML Compiler (SML Compiler)
	CompilationManager - MLton Standard ML Compiler (SML Compiler)
	CompileTimeOptions - MLton Standard ML Compiler (SML Compiler)
	CompilerOverview - MLton Standard ML Compiler (SML Compiler)
	CompilerPassTemplate - MLton Standard ML Compiler (SML Compiler)
	CompilingWithSMLNJ - MLton Standard ML Compiler (SML Compiler)
	ConcurrentML - MLton Standard ML Compiler (SML Compiler)
	ConcurrentMLImplementation - MLton Standard ML Compiler (SML Compiler)
	ConstantPropagation - MLton Standard ML Compiler (SML Compiler)
	Contact - MLton Standard ML Compiler (SML Compiler)
	Contify - MLton Standard ML Compiler (SML Compiler)
	CoreML - MLton Standard ML Compiler (SML Compiler)
	CoreMLSimplify - MLton Standard ML Compiler (SML Compiler)
	CreatingPages - MLton Standard ML Compiler (SML Compiler)
	Credits - MLton Standard ML Compiler (SML Compiler)
	CrossCompiling - MLton Standard ML Compiler (SML Compiler)
	DeadCode - MLton Standard ML Compiler (SML Compiler)
	DeepFlatten - MLton Standard ML Compiler (SML Compiler)
	DefineTypeBeforeUse - MLton Standard ML Compiler (SML Compiler)
	DefinitionOfStandardML - MLton Standard ML Compiler (SML Compiler)
	Defunctorize - MLton Standard ML Compiler (SML Compiler)
	Developers - MLton Standard ML Compiler (SML Compiler)
	Development - MLton Standard ML Compiler (SML Compiler)
	Documentation - MLton Standard ML Compiler (SML Compiler)
	Drawbacks - MLton Standard ML Compiler (SML Compiler)
	Eclipse - MLton Standard ML Compiler (SML Compiler)
	EditingPages - MLton Standard ML Compiler (SML Compiler)
	Elaborate - MLton Standard ML Compiler (SML Compiler)
	Emacs - MLton Standard ML Compiler (SML Compiler)
	EmacsBgBuildMode - MLton Standard ML Compiler (SML Compiler)
	EmacsDefUseMode - MLton Standard ML Compiler (SML Compiler)
	Enscript - MLton Standard ML Compiler (SML Compiler)
	EqualityType - MLton Standard ML Compiler (SML Compiler)
	EqualityTypeVariable - MLton Standard ML Compiler (SML Compiler)
	EtaExpansion - MLton Standard ML Compiler (SML Compiler)
	FAQ - MLton Standard ML Compiler (SML Compiler)
	Features - MLton Standard ML Compiler (SML Compiler)
	FirstClassPolymorphism - MLton Standard ML Compiler (SML Compiler)
	Fixpoints - MLton Standard ML Compiler (SML Compiler)
	Flatten - MLton Standard ML Compiler (SML Compiler)
	Fold - MLton Standard ML Compiler (SML Compiler)
	Fold01N - MLton Standard ML Compiler (SML Compiler)
	ForLoops - MLton Standard ML Compiler (SML Compiler)
	ForeignFunctionInterface - MLton Standard ML Compiler (SML Compiler)
	ForeignFunctionInterfaceSyntax - MLton Standard ML Compiler (SML Compiler)
	ForeignFunctionInterfaceTypes - MLton Standard ML Compiler (SML Compiler)
	FrontEnd - MLton Standard ML Compiler (SML Compiler)
	FunctionalRecordUpdate - MLton Standard ML Compiler (SML Compiler)
	GarbageCollection - MLton Standard ML Compiler (SML Compiler)
	GenerativeDatatype - MLton Standard ML Compiler (SML Compiler)
	GenerativeException - MLton Standard ML Compiler (SML Compiler)
	Glade - MLton Standard ML Compiler (SML Compiler)
	Globalize - MLton Standard ML Compiler (SML Compiler)
	GnuMP - MLton Standard ML Compiler (SML Compiler)
	HaMLet - MLton Standard ML Compiler (SML Compiler)
	HenryCejtin - MLton Standard ML Compiler (SML Compiler)
	History - MLton Standard ML Compiler (SML Compiler)
	HowProfilingWorks - MLton Standard ML Compiler (SML Compiler)
	HowToAttachFile - MLton Standard ML Compiler (SML Compiler)
	Identifier - MLton Standard ML Compiler (SML Compiler)
	Immutable - MLton Standard ML Compiler (SML Compiler)
	ImperativeTypeVariable - MLton Standard ML Compiler (SML Compiler)
	ImplementExceptions - MLton Standard ML Compiler (SML Compiler)
	ImplementHandlers - MLton Standard ML Compiler (SML Compiler)
	ImplementProfiling - MLton Standard ML Compiler (SML Compiler)
	ImplementSuffix - MLton Standard ML Compiler (SML Compiler)
	InfixingOperators - MLton Standard ML Compiler (SML Compiler)
	Inline - MLton Standard ML Compiler (SML Compiler)
	InsertLimitChecks - MLton Standard ML Compiler (SML Compiler)
	InsertSignalChecks - MLton Standard ML Compiler (SML Compiler)
	Installation - MLton Standard ML Compiler (SML Compiler)
	IntermediateLanguage - MLton Standard ML Compiler (SML Compiler)
	IntroduceLoops - MLton Standard ML Compiler (SML Compiler)
	JesperLouisAndersen - MLton Standard ML Compiler (SML Compiler)
	JohnnyAndersen - MLton Standard ML Compiler (SML Compiler)
	KnownCase - MLton Standard ML Compiler (SML Compiler)
	LLVM - MLton Standard ML Compiler (SML Compiler)
	LambdaCalculus - MLton Standard ML Compiler (SML Compiler)
	LambdaFree - MLton Standard ML Compiler (SML Compiler)
	LanguageChanges - MLton Standard ML Compiler (SML Compiler)
	Lazy - MLton Standard ML Compiler (SML Compiler)
	Libraries - MLton Standard ML Compiler (SML Compiler)
	License - MLton Standard ML Compiler (SML Compiler)
	LineDirective - MLton Standard ML Compiler (SML Compiler)
	LocalFlatten - MLton Standard ML Compiler (SML Compiler)
	LocalRef - MLton Standard ML Compiler (SML Compiler)
	LoopInvariant - MLton Standard ML Compiler (SML Compiler)
	ML - MLton Standard ML Compiler (SML Compiler)
	MLBasis - MLton Standard ML Compiler (SML Compiler)
	MLBasisAnnotationExamples - MLton Standard ML Compiler (SML Compiler)
	MLBasisAnnotations - MLton Standard ML Compiler (SML Compiler)
	MLBasisAvailableLibraries - MLton Standard ML Compiler (SML Compiler)
	MLBasisExamples - MLton Standard ML Compiler (SML Compiler)
	MLBasisPathMap - MLton Standard ML Compiler (SML Compiler)
	MLBasisSyntaxAndSemantics - MLton Standard ML Compiler (SML Compiler)
	MLKit - MLton Standard ML Compiler (SML Compiler)
	MLNLFFI - MLton Standard ML Compiler (SML Compiler)
	MLNLFFIImplementation - MLton Standard ML Compiler (SML Compiler)
	MLRISCLibrary - MLton Standard ML Compiler (SML Compiler)
	MLj - MLton Standard ML Compiler (SML Compiler)
	MLmon - MLton Standard ML Compiler (SML Compiler)
	MLtonArray - MLton Standard ML Compiler (SML Compiler)
	MLtonBinIO - MLton Standard ML Compiler (SML Compiler)
	MLtonCont - MLton Standard ML Compiler (SML Compiler)
	MLtonExn - MLton Standard ML Compiler (SML Compiler)
	MLtonFinalizable - MLton Standard ML Compiler (SML Compiler)
	MLtonGC - MLton Standard ML Compiler (SML Compiler)
	MLtonIO - MLton Standard ML Compiler (SML Compiler)
	MLtonIntInf - MLton Standard ML Compiler (SML Compiler)
	MLtonItimer - MLton Standard ML Compiler (SML Compiler)
	MLtonMonoArray - MLton Standard ML Compiler (SML Compiler)
	MLtonMonoVector - MLton Standard ML Compiler (SML Compiler)
	MLtonPlatform - MLton Standard ML Compiler (SML Compiler)
	MLtonPointer - MLton Standard ML Compiler (SML Compiler)
	MLtonProcEnv - MLton Standard ML Compiler (SML Compiler)
	MLtonProcess - MLton Standard ML Compiler (SML Compiler)
	MLtonProfile - MLton Standard ML Compiler (SML Compiler)
	MLtonRandom - MLton Standard ML Compiler (SML Compiler)
	MLtonReal - MLton Standard ML Compiler (SML Compiler)
	MLtonRlimit - MLton Standard ML Compiler (SML Compiler)
	MLtonRusage - MLton Standard ML Compiler (SML Compiler)
	MLtonSignal - MLton Standard ML Compiler (SML Compiler)
	MLtonSocket - MLton Standard ML Compiler (SML Compiler)
	MLtonStructure - MLton Standard ML Compiler (SML Compiler)
	MLtonSyslog - MLton Standard ML Compiler (SML Compiler)
	MLtonTextIO - MLton Standard ML Compiler (SML Compiler)
	MLtonThread - MLton Standard ML Compiler (SML Compiler)
	MLtonVector - MLton Standard ML Compiler (SML Compiler)
	MLtonWeak - MLton Standard ML Compiler (SML Compiler)
	MLtonWord - MLton Standard ML Compiler (SML Compiler)
	MLtonWorld - MLton Standard ML Compiler (SML Compiler)
	Machine - MLton Standard ML Compiler (SML Compiler)
	ManualPage - MLton Standard ML Compiler (SML Compiler)
	MatchCompilation - MLton Standard ML Compiler (SML Compiler)
	MatchCompile - MLton Standard ML Compiler (SML Compiler)
	MatthewFluet - MLton Standard ML Compiler (SML Compiler)
	MichaelNorrish - MLton Standard ML Compiler (SML Compiler)
	MikeThomas - MLton Standard ML Compiler (SML Compiler)
	MoinMoin - MLton Standard ML Compiler (SML Compiler)
	Monomorphise - MLton Standard ML Compiler (SML Compiler)
	MoscowML - MLton Standard ML Compiler (SML Compiler)
	Multi - MLton Standard ML Compiler (SML Compiler)
	Mutable - MLton Standard ML Compiler (SML Compiler)
	NumericLiteral - MLton Standard ML Compiler (SML Compiler)
	OCaml - MLton Standard ML Compiler (SML Compiler)
	ObjectOrientedProgramming - MLton Standard ML Compiler (SML Compiler)
	OpenGL - MLton Standard ML Compiler (SML Compiler)
	OperatorPrecedence - MLton Standard ML Compiler (SML Compiler)
	OptionalArguments - MLton Standard ML Compiler (SML Compiler)
	OrphanedPages - MLton Standard ML Compiler (SML Compiler)
	OtherSites - MLton Standard ML Compiler (SML Compiler)
	Overloading - MLton Standard ML Compiler (SML Compiler)
	PackedRepresentation - MLton Standard ML Compiler (SML Compiler)
	PageSize - MLton Standard ML Compiler (SML Compiler)
	ParallelMove - MLton Standard ML Compiler (SML Compiler)
	Performance - MLton Standard ML Compiler (SML Compiler)
	PhantomType - MLton Standard ML Compiler (SML Compiler)
	PlatformSpecificNotes - MLton Standard ML Compiler (SML Compiler)
	PolyEqual - MLton Standard ML Compiler (SML Compiler)
	PolyML - MLton Standard ML Compiler (SML Compiler)
	PolymorphicEquality - MLton Standard ML Compiler (SML Compiler)
	Polyvariance - MLton Standard ML Compiler (SML Compiler)
	Poplog - MLton Standard ML Compiler (SML Compiler)
	PortingMLton - MLton Standard ML Compiler (SML Compiler)
	PrecedenceParse - MLton Standard ML Compiler (SML Compiler)
	Printf - MLton Standard ML Compiler (SML Compiler)
	PrintfGentle - MLton Standard ML Compiler (SML Compiler)
	ProductType - MLton Standard ML Compiler (SML Compiler)
	Profiling - MLton Standard ML Compiler (SML Compiler)
	ProfilingAllocation - MLton Standard ML Compiler (SML Compiler)
	ProfilingCounts - MLton Standard ML Compiler (SML Compiler)
	ProfilingTheStack - MLton Standard ML Compiler (SML Compiler)
	ProfilingTime - MLton Standard ML Compiler (SML Compiler)
	Projects - MLton Standard ML Compiler (SML Compiler)
	Pronounce - MLton Standard ML Compiler (SML Compiler)
	PropertyList - MLton Standard ML Compiler (SML Compiler)
	RSSA - MLton Standard ML Compiler (SML Compiler)
	RSSAShrink - MLton Standard ML Compiler (SML Compiler)
	RSSASimplify - MLton Standard ML Compiler (SML Compiler)
	RayRacine - MLton Standard ML Compiler (SML Compiler)
	Reachability - MLton Standard ML Compiler (SML Compiler)
	Redundant - MLton Standard ML Compiler (SML Compiler)
	RedundantTests - MLton Standard ML Compiler (SML Compiler)
	RefFlatten - MLton Standard ML Compiler (SML Compiler)
	References - MLton Standard ML Compiler (SML Compiler)
	Regions - MLton Standard ML Compiler (SML Compiler)
	Release20041109 - MLton Standard ML Compiler (SML Compiler)
	Release20051202 - MLton Standard ML Compiler (SML Compiler)
	Release20070826 - MLton Standard ML Compiler (SML Compiler)
	ReleaseChecklist - MLton Standard ML Compiler (SML Compiler)
	RemoveUnused - MLton Standard ML Compiler (SML Compiler)
	Restore - MLton Standard ML Compiler (SML Compiler)
	ReturnStatement - MLton Standard ML Compiler (SML Compiler)
	RunTimeOptions - MLton Standard ML Compiler (SML Compiler)
	RunningOnAIX - MLton Standard ML Compiler (SML Compiler)
	RunningOnAMD64 - MLton Standard ML Compiler (SML Compiler)
	RunningOnCygwin - MLton Standard ML Compiler (SML Compiler)
	RunningOnDarwin - MLton Standard ML Compiler (SML Compiler)
	RunningOnFreeBSD - MLton Standard ML Compiler (SML Compiler)
	RunningOnHPPA - MLton Standard ML Compiler (SML Compiler)
	RunningOnHPUX - MLton Standard ML Compiler (SML Compiler)
	RunningOnLinux - MLton Standard ML Compiler (SML Compiler)
	RunningOnMinGW - MLton Standard ML Compiler (SML Compiler)
	RunningOnNetBSD - MLton Standard ML Compiler (SML Compiler)
	RunningOnOpenBSD - MLton Standard ML Compiler (SML Compiler)
	RunningOnPowerPC - MLton Standard ML Compiler (SML Compiler)
	RunningOnSolaris - MLton Standard ML Compiler (SML Compiler)
	RunningOnSparc - MLton Standard ML Compiler (SML Compiler)
	RunningOnX86 - MLton Standard ML Compiler (SML Compiler)
	SMLNET - MLton Standard ML Compiler (SML Compiler)
	SMLNJ - MLton Standard ML Compiler (SML Compiler)
	SMLNJDeviations - MLton Standard ML Compiler (SML Compiler)
	SMLNJLibrary - MLton Standard ML Compiler (SML Compiler)
	SMLSharp - MLton Standard ML Compiler (SML Compiler)
	SMLofNJStructure - MLton Standard ML Compiler (SML Compiler)
	SSA - MLton Standard ML Compiler (SML Compiler)
	SSA2 - MLton Standard ML Compiler (SML Compiler)
	SSA2Simplify - MLton Standard ML Compiler (SML Compiler)
	SSASimplify - MLton Standard ML Compiler (SML Compiler)
	SXML - MLton Standard ML Compiler (SML Compiler)
	SXMLShrink - MLton Standard ML Compiler (SML Compiler)
	SXMLSimplify - MLton Standard ML Compiler (SML Compiler)
	ScopeInference - MLton Standard ML Compiler (SML Compiler)
	SelfCompiling - MLton Standard ML Compiler (SML Compiler)
	Serialization - MLton Standard ML Compiler (SML Compiler)
	ShowBasis - MLton Standard ML Compiler (SML Compiler)
	ShowProf - MLton Standard ML Compiler (SML Compiler)
	Shrink - MLton Standard ML Compiler (SML Compiler)
	SimplifyTypes - MLton Standard ML Compiler (SML Compiler)
	Sources - MLton Standard ML Compiler (SML Compiler)
	SpaceSafety - MLton Standard ML Compiler (SML Compiler)
	Stabilizers - MLton Standard ML Compiler (SML Compiler)
	StandardML - MLton Standard ML Compiler (SML Compiler)
	StandardMLBooks - MLton Standard ML Compiler (SML Compiler)
	StandardMLGotchas - MLton Standard ML Compiler (SML Compiler)
	StandardMLHistory - MLton Standard ML Compiler (SML Compiler)
	StandardMLImplementations - MLton Standard ML Compiler (SML Compiler)
	StandardMLPortability - MLton Standard ML Compiler (SML Compiler)
	StandardMLTutorials - MLton Standard ML Compiler (SML Compiler)
	StephenWeeks - MLton Standard ML Compiler (SML Compiler)
	StyleGuide - MLton Standard ML Compiler (SML Compiler)
	Subversion - MLton Standard ML Compiler (SML Compiler)
	SuccessorML - MLton Standard ML Compiler (SML Compiler)
	SureshJagannathan - MLton Standard ML Compiler (SML Compiler)
	Survey - MLton Standard ML Compiler (SML Compiler)
	SurveyDone - MLton Standard ML Compiler (SML Compiler)
	Swerve - MLton Standard ML Compiler (SML Compiler)
	SyntacticConventions - MLton Standard ML Compiler (SML Compiler)
	SystemInfo - MLton Standard ML Compiler (SML Compiler)
	TILT - MLton Standard ML Compiler (SML Compiler)
	Talk - MLton Standard ML Compiler (SML Compiler)
	TalkDiveIn - MLton Standard ML Compiler (SML Compiler)
	TalkFolkLore - MLton Standard ML Compiler (SML Compiler)
	TalkFromSMLTo - MLton Standard ML Compiler (SML Compiler)
	TalkHowHigherOrder - MLton Standard ML Compiler (SML Compiler)
	TalkHowModules - MLton Standard ML Compiler (SML Compiler)
	TalkHowPolymorphism - MLton Standard ML Compiler (SML Compiler)
	TalkMLtonApproach - MLton Standard ML Compiler (SML Compiler)
	TalkMLtonFeatures - MLton Standard ML Compiler (SML Compiler)
	TalkMLtonHistory - MLton Standard ML Compiler (SML Compiler)
	TalkStandardML - MLton Standard ML Compiler (SML Compiler)
	TalkTemplate - MLton Standard ML Compiler (SML Compiler)
	TalkWholeProgram - MLton Standard ML Compiler (SML Compiler)
	TipsForWritingConciseSML - MLton Standard ML Compiler (SML Compiler)
	ToMachine - MLton Standard ML Compiler (SML Compiler)
	ToRSSA - MLton Standard ML Compiler (SML Compiler)
	ToSSA2 - MLton Standard ML Compiler (SML Compiler)
	TomMurphy - MLton Standard ML Compiler (SML Compiler)
	TrustedGroup - MLton Standard ML Compiler (SML Compiler)
	TypeChecking - MLton Standard ML Compiler (SML Compiler)
	TypeConstructor - MLton Standard ML Compiler (SML Compiler)
	TypeIndexedValues - MLton Standard ML Compiler (SML Compiler)
	TypeVariableScope - MLton Standard ML Compiler (SML Compiler)
	Unicode - MLton Standard ML Compiler (SML Compiler)
	UniversalType - MLton Standard ML Compiler (SML Compiler)
	UnresolvedBugs - MLton Standard ML Compiler (SML Compiler)
	UnsafeStructure - MLton Standard ML Compiler (SML Compiler)
	Useless - MLton Standard ML Compiler (SML Compiler)
	Users - MLton Standard ML Compiler (SML Compiler)
	Utilities - MLton Standard ML Compiler (SML Compiler)
	ValueRestriction - MLton Standard ML Compiler (SML Compiler)
	VariableArityPolymorphism - MLton Standard ML Compiler (SML Compiler)
	Variant - MLton Standard ML Compiler (SML Compiler)
	VesaKarvonen - MLton Standard ML Compiler (SML Compiler)
	WantedPages - MLton Standard ML Compiler (SML Compiler)
	WebSite - MLton Standard ML Compiler (SML Compiler)
	WesleyTerpstra - MLton Standard ML Compiler (SML Compiler)
	WholeProgramOptimization - MLton Standard ML Compiler (SML Compiler)
	WikiMacros - MLton Standard ML Compiler (SML Compiler)
	WikiName - MLton Standard ML Compiler (SML Compiler)
	WikiTool - MLton Standard ML Compiler (SML Compiler)
	WishList - MLton Standard ML Compiler (SML Compiler)
	XML - MLton Standard ML Compiler (SML Compiler)
	XMLShrink - MLton Standard ML Compiler (SML Compiler)
	XMLSimplify - MLton Standard ML Compiler (SML Compiler)
	XMLSimplifyTypes - MLton Standard ML Compiler (SML Compiler)
	ZZZOrphanedPages - MLton Standard ML Compiler (SML Compiler)
	Zone - MLton Standard ML Compiler (SML Compiler)
	eXene - MLton Standard ML Compiler (SML Compiler)
	fxp - MLton Standard ML Compiler (SML Compiler)
	mGTK - MLton Standard ML Compiler (SML Compiler)

