ROL
|
Provides the std::vector implementation of the ROL::Vector interface that handles scalings in the inner product. Also see ROL::PrimalScaledStdVector. More...
#include <ROL_ScaledStdVector.hpp>
Public Member Functions | |
DualScaledStdVector (const Ptr< std::vector< Element > > &std_vec, const Ptr< std::vector< Element > > &scaling_vec) | |
Real | dot (const Vector< Real > &x) const |
Compute \( \langle y,x \rangle \) where \(y = \mathtt{*this}\). | |
Ptr< Vector< Real > > | clone () const |
Clone to make a new (uninitialized) vector. | |
const Vector< Real > & | dual () const |
Return dual representation of \(\mathtt{*this}\), for example, the result of applying a Riesz map, or change of basis, or change of memory layout. | |
Real | apply (const Vector< Real > &x) const |
Apply \(\mathtt{*this}\) to a dual vector. This is equivalent to the call \(\mathtt{this->dot(x.dual())}\). | |
![]() | |
StdVector (const Ptr< std::vector< Element > > &std_vec) | |
StdVector (const int dim, const Element val=0.0) | |
StdVector (std::initializer_list< Element > ilist) | |
Real & | operator[] (int i) |
const Real & | operator[] (int i) const |
void | set (const Vector< Real > &x) |
Set \(y \leftarrow x\) where \(y = \mathtt{*this}\). | |
void | plus (const Vector< Real > &x) |
Compute \(y \leftarrow y + x\), where \(y = \mathtt{*this}\). | |
void | axpy (const Real alpha, const Vector< Real > &x) |
Compute \(y \leftarrow \alpha x + y\) where \(y = \mathtt{*this}\). | |
void | scale (const Real alpha) |
Compute \(y \leftarrow \alpha y\) where \(y = \mathtt{*this}\). | |
virtual Real | dot (const Vector< Real > &x) const |
Compute \( \langle y,x \rangle \) where \(y = \mathtt{*this}\). | |
Real | norm () const |
Returns \( \| y \| \) where \(y = \mathtt{*this}\). | |
virtual Ptr< Vector< Real > > | clone () const |
Clone to make a new (uninitialized) vector. | |
Ptr< const std::vector< Element > > | getVector () const |
Ptr< std::vector< Element > > | getVector () |
Ptr< Vector< Real > > | basis (const int i) const |
Return i-th basis vector. | |
int | dimension () const |
Return dimension of the vector space. | |
void | applyUnary (const Elementwise::UnaryFunction< Real > &f) |
void | applyBinary (const Elementwise::BinaryFunction< Real > &f, const Vector< Real > &x) |
Real | reduce (const Elementwise::ReductionOp< Real > &r) const |
void | setScalar (const Real C) |
Set \(y \leftarrow C\) where \(C\in\mathbb{R}\). | |
void | randomize (const Real l=0.0, const Real u=1.0) |
Set vector to be uniform random between [l,u]. | |
virtual void | print (std::ostream &outStream) const |
![]() | |
virtual | ~Vector () |
virtual void | plus (const Vector &x)=0 |
Compute \(y \leftarrow y + x\), where \(y = \mathtt{*this}\). | |
virtual void | scale (const Real alpha)=0 |
Compute \(y \leftarrow \alpha y\) where \(y = \mathtt{*this}\). | |
virtual Real | dot (const Vector &x) const =0 |
Compute \( \langle y,x \rangle \) where \(y = \mathtt{*this}\). | |
virtual Real | norm () const =0 |
Returns \( \| y \| \) where \(y = \mathtt{*this}\). | |
virtual ROL::Ptr< Vector > | clone () const =0 |
Clone to make a new (uninitialized) vector. | |
virtual void | axpy (const Real alpha, const Vector &x) |
Compute \(y \leftarrow \alpha x + y\) where \(y = \mathtt{*this}\). | |
virtual void | zero () |
Set to zero vector. | |
virtual ROL::Ptr< Vector > | basis (const int i) const |
Return i-th basis vector. | |
virtual int | dimension () const |
Return dimension of the vector space. | |
virtual void | set (const Vector &x) |
Set \(y \leftarrow x\) where \(y = \mathtt{*this}\). | |
virtual const Vector & | dual () const |
Return dual representation of \(\mathtt{*this}\), for example, the result of applying a Riesz map, or change of basis, or change of memory layout. | |
virtual Real | apply (const Vector< Real > &x) const |
Apply \(\mathtt{*this}\) to a dual vector. This is equivalent to the call \(\mathtt{this->dot(x.dual())}\). | |
virtual void | applyUnary (const Elementwise::UnaryFunction< Real > &f) |
virtual void | applyBinary (const Elementwise::BinaryFunction< Real > &f, const Vector &x) |
virtual Real | reduce (const Elementwise::ReductionOp< Real > &r) const |
virtual void | print (std::ostream &outStream) const |
virtual void | setScalar (const Real C) |
Set \(y \leftarrow C\) where \(C\in\mathbb{R}\). | |
virtual void | randomize (const Real l=0.0, const Real u=1.0) |
Set vector to be uniform random between [l,u]. | |
virtual std::vector< Real > | checkVector (const Vector< Real > &x, const Vector< Real > &y, const bool printToStream=true, std::ostream &outStream=std::cout) const |
Verify vector-space methods. | |
Private Types | |
typedef std::vector< Element >::size_type | uint |
Private Attributes | |
Ptr< std::vector< Element > > | scaling_vec_ |
Ptr< PrimalScaledStdVector< Real > > | primal_vec_ |
bool | isDualInitialized_ |
Provides the std::vector implementation of the ROL::Vector interface that handles scalings in the inner product. Also see ROL::PrimalScaledStdVector.
Definition at line 136 of file ROL_ScaledStdVector.hpp.
|
private |
Definition at line 138 of file ROL_ScaledStdVector.hpp.
|
inline |
Definition at line 148 of file ROL_ScaledStdVector.hpp.
|
inlinevirtual |
Compute \( \langle y,x \rangle \) where \(y = \mathtt{*this}\).
@param[in] x is the vector that forms the dot product with \f$\mathtt{*this}\f$. @return The number equal to \f$\langle \mathtt{*this}, x \rangle\f$. ---
Reimplemented from ROL::StdVector< Real, Element >.
Definition at line 153 of file ROL_ScaledStdVector.hpp.
References ROL::StdVector< Real, Element >::dimension(), and ROL::StdVector< Real, Element >::getVector().
Referenced by main().
|
inlinevirtual |
Clone to make a new (uninitialized) vector.
@return A reference-counted pointer to the cloned vector. Provides the means of allocating temporary memory in ROL. ---
Reimplemented from ROL::StdVector< Real, Element >.
Definition at line 165 of file ROL_ScaledStdVector.hpp.
References ROL::StdVector< Real, Element >::dimension(), ROL::StdVector< Real, Element >::getVector(), and ROL::DualScaledStdVector< Real, Element >::scaling_vec_.
Referenced by main().
|
inlinevirtual |
Return dual representation of \(\mathtt{*this}\), for example, the result of applying a Riesz map, or change of basis, or change of memory layout.
By default, returns the current object. Please overload if you need a dual representation.
Reimplemented from ROL::Vector< Real >.
Definition at line 171 of file ROL_ScaledStdVector.hpp.
References ROL::StdVector< Real, Element >::getVector(), ROL::DualScaledStdVector< Real, Element >::isDualInitialized_, ROL::DualScaledStdVector< Real, Element >::primal_vec_, and ROL::DualScaledStdVector< Real, Element >::scaling_vec_.
Referenced by main().
|
inlinevirtual |
Apply \(\mathtt{*this}\) to a dual vector. This is equivalent to the call \(\mathtt{this->dot(x.dual())}\).
[in] | x | is a vector |
Reimplemented from ROL::Vector< Real >.
Definition at line 186 of file ROL_ScaledStdVector.hpp.
References ROL::StdVector< Real, Element >::dot().
Referenced by main().
|
private |
Definition at line 142 of file ROL_ScaledStdVector.hpp.
Referenced by ROL::DualScaledStdVector< Real, Element >::clone(), and ROL::DualScaledStdVector< Real, Element >::dual().
|
mutableprivate |
Definition at line 143 of file ROL_ScaledStdVector.hpp.
Referenced by ROL::DualScaledStdVector< Real, Element >::dual().
|
mutableprivate |
Definition at line 144 of file ROL_ScaledStdVector.hpp.
Referenced by ROL::DualScaledStdVector< Real, Element >::dual().