/* $NetBSD: pmap.c,v 1.76.20.2 2020/03/09 10:36:42 martin Exp $ */ /* * Copyright 2001 Wasabi Systems, Inc. * All rights reserved. * * Written by Eduardo Horvath and Simon Burge for Wasabi Systems, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed for the NetBSD Project by * Wasabi Systems, Inc. * 4. The name of Wasabi Systems, Inc. may not be used to endorse * or promote products derived from this software without specific prior * written permission. * * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Copyright (C) 1995, 1996 Wolfgang Solfrank. * Copyright (C) 1995, 1996 TooLs GmbH. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by TooLs GmbH. * 4. The name of TooLs GmbH may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.76.20.2 2020/03/09 10:36:42 martin Exp $"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * kernmap is an array of PTEs large enough to map in * 4GB. At 16KB/page it is 256K entries or 2MB. */ #define KERNMAP_SIZE ((0xffffffffU/PAGE_SIZE)+1) void *kernmap; #define MINCTX 2 #define NUMCTX 256 volatile struct pmap *ctxbusy[NUMCTX]; #define TLBF_USED 0x1 #define TLBF_REF 0x2 #define TLBF_LOCKED 0x4 #define TLB_LOCKED(i) (tlb_info[(i)].ti_flags & TLBF_LOCKED) typedef struct tlb_info_s { char ti_flags; char ti_ctx; /* TLB_PID assiciated with the entry */ u_int ti_va; } tlb_info_t; volatile tlb_info_t tlb_info[NTLB]; /* We'll use a modified FIFO replacement policy cause it's cheap */ volatile int tlbnext; static int tlb_nreserved = 0; static int pmap_bootstrap_done = 0; /* Event counters */ struct evcnt tlbmiss_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP, NULL, "cpu", "tlbmiss"); struct evcnt tlbhit_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP, NULL, "cpu", "tlbhit"); struct evcnt tlbflush_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP, NULL, "cpu", "tlbflush"); struct evcnt tlbenter_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP, NULL, "cpu", "tlbenter"); EVCNT_ATTACH_STATIC(tlbmiss_ev); EVCNT_ATTACH_STATIC(tlbhit_ev); EVCNT_ATTACH_STATIC(tlbflush_ev); EVCNT_ATTACH_STATIC(tlbenter_ev); struct pmap kernel_pmap_; struct pmap *const kernel_pmap_ptr = &kernel_pmap_; static int npgs; static u_int nextavail; #ifndef MSGBUFADDR extern paddr_t msgbuf_paddr; #endif static struct mem_region *mem, *avail; /* * This is a cache of referenced/modified bits. * Bits herein are shifted by ATTRSHFT. */ static char *pmap_attrib; #define PV_WIRED 0x1 #define PV_WIRE(pv) ((pv)->pv_va |= PV_WIRED) #define PV_UNWIRE(pv) ((pv)->pv_va &= ~PV_WIRED) #define PV_ISWIRED(pv) ((pv)->pv_va & PV_WIRED) #define PV_CMPVA(va,pv) (!(((pv)->pv_va ^ (va)) & (~PV_WIRED))) struct pv_entry { struct pv_entry *pv_next; /* Linked list of mappings */ struct pmap *pv_pm; vaddr_t pv_va; /* virtual address of mapping */ }; /* Each index corresponds to TLB_SIZE_* value. */ static size_t tlbsize[] = { 1024, /* TLB_SIZE_1K */ 4096, /* TLB_SIZE_4K */ 16384, /* TLB_SIZE_16K */ 65536, /* TLB_SIZE_64K */ 262144, /* TLB_SIZE_256K */ 1048576, /* TLB_SIZE_1M */ 4194304, /* TLB_SIZE_4M */ 16777216, /* TLB_SIZE_16M */ }; struct pv_entry *pv_table; static struct pool pv_pool; static int pmap_initialized; static int ctx_flush(int); struct pv_entry *pa_to_pv(paddr_t); static inline char *pa_to_attr(paddr_t); static inline volatile u_int *pte_find(struct pmap *, vaddr_t); static inline int pte_enter(struct pmap *, vaddr_t, u_int); static inline int pmap_enter_pv(struct pmap *, vaddr_t, paddr_t, int); static void pmap_remove_pv(struct pmap *, vaddr_t, paddr_t); static int ppc4xx_tlb_size_mask(size_t, int *, int *); struct pv_entry * pa_to_pv(paddr_t pa) { uvm_physseg_t bank; psize_t pg; bank = uvm_physseg_find(atop(pa), &pg); if (bank == UVM_PHYSSEG_TYPE_INVALID) return NULL; return &uvm_physseg_get_pmseg(bank)->pvent[pg]; } static inline char * pa_to_attr(paddr_t pa) { uvm_physseg_t bank; psize_t pg; bank = uvm_physseg_find(atop(pa), &pg); if (bank == UVM_PHYSSEG_TYPE_INVALID) return NULL; return &uvm_physseg_get_pmseg(bank)->attrs[pg]; } /* * Insert PTE into page table. */ int pte_enter(struct pmap *pm, vaddr_t va, u_int pte) { int seg = STIDX(va); int ptn = PTIDX(va); u_int oldpte; if (!pm->pm_ptbl[seg]) { /* Don't allocate a page to clear a non-existent mapping. */ if (!pte) return (0); /* Allocate a page XXXX this will sleep! */ pm->pm_ptbl[seg] = (uint *)uvm_km_alloc(kernel_map, PAGE_SIZE, 0, UVM_KMF_WIRED | UVM_KMF_ZERO); } oldpte = pm->pm_ptbl[seg][ptn]; pm->pm_ptbl[seg][ptn] = pte; /* Flush entry. */ ppc4xx_tlb_flush(va, pm->pm_ctx); if (oldpte != pte) { if (pte == 0) pm->pm_stats.resident_count--; else pm->pm_stats.resident_count++; } return (1); } /* * Get a pointer to a PTE in a page table. */ volatile u_int * pte_find(struct pmap *pm, vaddr_t va) { int seg = STIDX(va); int ptn = PTIDX(va); if (pm->pm_ptbl[seg]) return (&pm->pm_ptbl[seg][ptn]); return (NULL); } /* * This is called during initppc, before the system is really initialized. */ void pmap_bootstrap(u_int kernelstart, u_int kernelend) { struct mem_region *mp, *mp1; int cnt, i; u_int s, e, sz; tlbnext = tlb_nreserved; /* * Allocate the kernel page table at the end of * kernel space so it's in the locked TTE. */ kernmap = (void *)kernelend; /* * Initialize kernel page table. */ for (i = 0; i < STSZ; i++) { pmap_kernel()->pm_ptbl[i] = 0; } ctxbusy[0] = ctxbusy[1] = pmap_kernel(); /* * Announce page-size to the VM-system */ uvmexp.pagesize = NBPG; uvm_md_init(); /* * Get memory. */ mem_regions(&mem, &avail); for (mp = mem; mp->size; mp++) { physmem += btoc(mp->size); printf("+%lx,",mp->size); } printf("\n"); ppc4xx_tlb_init(); /* * Count the number of available entries. */ for (cnt = 0, mp = avail; mp->size; mp++) cnt++; /* * Page align all regions. * Non-page aligned memory isn't very interesting to us. * Also, sort the entries for ascending addresses. */ kernelstart &= ~PGOFSET; kernelend = (kernelend + PGOFSET) & ~PGOFSET; for (mp = avail; mp->size; mp++) { s = mp->start; e = mp->start + mp->size; printf("%08x-%08x -> ",s,e); /* * Check whether this region holds all of the kernel. */ if (s < kernelstart && e > kernelend) { avail[cnt].start = kernelend; avail[cnt++].size = e - kernelend; e = kernelstart; } /* * Look whether this regions starts within the kernel. */ if (s >= kernelstart && s < kernelend) { if (e <= kernelend) goto empty; s = kernelend; } /* * Now look whether this region ends within the kernel. */ if (e > kernelstart && e <= kernelend) { if (s >= kernelstart) goto empty; e = kernelstart; } /* * Now page align the start and size of the region. */ s = round_page(s); e = trunc_page(e); if (e < s) e = s; sz = e - s; printf("%08x-%08x = %x\n",s,e,sz); /* * Check whether some memory is left here. */ if (sz == 0) { empty: memmove(mp, mp + 1, (cnt - (mp - avail)) * sizeof *mp); cnt--; mp--; continue; } /* * Do an insertion sort. */ npgs += btoc(sz); for (mp1 = avail; mp1 < mp; mp1++) if (s < mp1->start) break; if (mp1 < mp) { memmove(mp1 + 1, mp1, (char *)mp - (char *)mp1); mp1->start = s; mp1->size = sz; } else { mp->start = s; mp->size = sz; } } /* * We cannot do pmap_steal_memory here, * since we don't run with translation enabled yet. */ #ifndef MSGBUFADDR /* * allow for msgbuf */ sz = round_page(MSGBUFSIZE); mp = NULL; for (mp1 = avail; mp1->size; mp1++) if (mp1->size >= sz) mp = mp1; if (mp == NULL) panic("not enough memory?"); npgs -= btoc(sz); msgbuf_paddr = mp->start + mp->size - sz; mp->size -= sz; if (mp->size <= 0) memmove(mp, mp + 1, (cnt - (mp - avail)) * sizeof *mp); #endif for (mp = avail; mp->size; mp++) uvm_page_physload(atop(mp->start), atop(mp->start + mp->size), atop(mp->start), atop(mp->start + mp->size), VM_FREELIST_DEFAULT); /* * Initialize kernel pmap and hardware. */ /* Setup TLB pid allocator so it knows we alreadu using PID 1 */ pmap_kernel()->pm_ctx = KERNEL_PID; nextavail = avail->start; pmap_bootstrap_done = 1; } /* * Restrict given range to physical memory * * (Used by /dev/mem) */ void pmap_real_memory(paddr_t *start, psize_t *size) { struct mem_region *mp; for (mp = mem; mp->size; mp++) { if (*start + *size > mp->start && *start < mp->start + mp->size) { if (*start < mp->start) { *size -= mp->start - *start; *start = mp->start; } if (*start + *size > mp->start + mp->size) *size = mp->start + mp->size - *start; return; } } *size = 0; } /* * Initialize anything else for pmap handling. * Called during vm_init(). */ void pmap_init(void) { struct pv_entry *pv; vsize_t sz; vaddr_t addr; int i, s; int bank; char *attr; sz = (vsize_t)((sizeof(struct pv_entry) + 1) * npgs); sz = round_page(sz); addr = uvm_km_alloc(kernel_map, sz, 0, UVM_KMF_WIRED | UVM_KMF_ZERO); s = splvm(); pv = pv_table = (struct pv_entry *)addr; for (i = npgs; --i >= 0;) pv++->pv_pm = NULL; pmap_attrib = (char *)pv; memset(pv, 0, npgs); pv = pv_table; attr = pmap_attrib; for (bank = uvm_physseg_get_first(); uvm_physseg_valid_p(bank); bank = uvm_physseg_get_next(bank)) { sz = uvm_physseg_get_end(bank) - uvm_physseg_get_start(bank); uvm_physseg_get_pmseg(bank)->pvent = pv; uvm_physseg_get_pmseg(bank)->attrs = attr; pv += sz; attr += sz; } pmap_initialized = 1; splx(s); /* Setup a pool for additional pvlist structures */ pool_init(&pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pv_entry", NULL, IPL_VM); } /* * How much virtual space is available to the kernel? */ void pmap_virtual_space(vaddr_t *start, vaddr_t *end) { #if 0 /* * Reserve one segment for kernel virtual memory */ *start = (vaddr_t)(KERNEL_SR << ADDR_SR_SHFT); *end = *start + SEGMENT_LENGTH; #else *start = (vaddr_t) VM_MIN_KERNEL_ADDRESS; *end = (vaddr_t) VM_MAX_KERNEL_ADDRESS; #endif } #ifdef PMAP_GROWKERNEL /* * Preallocate kernel page tables to a specified VA. * This simply loops through the first TTE for each * page table from the beginning of the kernel pmap, * reads the entry, and if the result is * zero (either invalid entry or no page table) it stores * a zero there, populating page tables in the process. * This is not the most efficient technique but i don't * expect it to be called that often. */ extern struct vm_page *vm_page_alloc1(void); extern void vm_page_free1(struct vm_page *); vaddr_t kbreak = VM_MIN_KERNEL_ADDRESS; vaddr_t pmap_growkernel(vaddr_t maxkvaddr) { int s; int seg; paddr_t pg; struct pmap *pm = pmap_kernel(); s = splvm(); /* Align with the start of a page table */ for (kbreak &= ~(PTMAP-1); kbreak < maxkvaddr; kbreak += PTMAP) { seg = STIDX(kbreak); if (pte_find(pm, kbreak)) continue; if (uvm.page_init_done) { pg = (paddr_t)VM_PAGE_TO_PHYS(vm_page_alloc1()); } else { if (!uvm_page_physget(&pg)) panic("pmap_growkernel: no memory"); } if (!pg) panic("pmap_growkernel: no pages"); pmap_zero_page((paddr_t)pg); /* XXX This is based on all phymem being addressable */ pm->pm_ptbl[seg] = (u_int *)pg; } splx(s); return (kbreak); } /* * vm_page_alloc1: * * Allocate and return a memory cell with no associated object. */ struct vm_page * vm_page_alloc1(void) { struct vm_page *pg; pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE); if (pg) { pg->wire_count = 1; /* no mappings yet */ pg->flags &= ~PG_BUSY; /* never busy */ } return pg; } /* * vm_page_free1: * * Returns the given page to the free list, * disassociating it with any VM object. * * Object and page must be locked prior to entry. */ void vm_page_free1(struct vm_page *pg) { #ifdef DIAGNOSTIC if (pg->flags != (PG_CLEAN|PG_FAKE)) { printf("Freeing invalid page %p\n", pg); printf("pa = %llx\n", (unsigned long long)VM_PAGE_TO_PHYS(pg)); #ifdef DDB Debugger(); #endif return; } #endif pg->flags |= PG_BUSY; pg->wire_count = 0; uvm_pagefree(pg); } #endif /* * Create and return a physical map. */ struct pmap * pmap_create(void) { struct pmap *pm; pm = kmem_alloc(sizeof(*pm), KM_SLEEP); memset(pm, 0, sizeof *pm); pm->pm_refs = 1; return pm; } /* * Add a reference to the given pmap. */ void pmap_reference(struct pmap *pm) { pm->pm_refs++; } /* * Retire the given pmap from service. * Should only be called if the map contains no valid mappings. */ void pmap_destroy(struct pmap *pm) { int i; if (--pm->pm_refs > 0) { return; } KASSERT(pm->pm_stats.resident_count == 0); KASSERT(pm->pm_stats.wired_count == 0); for (i = 0; i < STSZ; i++) if (pm->pm_ptbl[i]) { uvm_km_free(kernel_map, (vaddr_t)pm->pm_ptbl[i], PAGE_SIZE, UVM_KMF_WIRED); pm->pm_ptbl[i] = NULL; } if (pm->pm_ctx) ctx_free(pm); kmem_free(pm, sizeof(*pm)); } /* * Copy the range specified by src_addr/len * from the source map to the range dst_addr/len * in the destination map. * * This routine is only advisory and need not do anything. */ void pmap_copy(struct pmap *dst_pmap, struct pmap *src_pmap, vaddr_t dst_addr, vsize_t len, vaddr_t src_addr) { } /* * Require that all active physical maps contain no * incorrect entries NOW. */ void pmap_update(struct pmap *pmap) { } /* * Fill the given physical page with zeroes. */ void pmap_zero_page(paddr_t pa) { #ifdef PPC_4XX_NOCACHE memset((void *)pa, 0, PAGE_SIZE); #else int i; for (i = PAGE_SIZE/CACHELINESIZE; i > 0; i--) { __asm volatile ("dcbz 0,%0" :: "r"(pa)); pa += CACHELINESIZE; } #endif } /* * Copy the given physical source page to its destination. */ void pmap_copy_page(paddr_t src, paddr_t dst) { memcpy((void *)dst, (void *)src, PAGE_SIZE); dcache_wbinv_page(dst); } /* * This returns != 0 on success. */ static inline int pmap_enter_pv(struct pmap *pm, vaddr_t va, paddr_t pa, int flags) { struct pv_entry *pv, *npv = NULL; int s; if (!pmap_initialized) return 0; s = splvm(); pv = pa_to_pv(pa); if (!pv->pv_pm) { /* * No entries yet, use header as the first entry. */ pv->pv_va = va; pv->pv_pm = pm; pv->pv_next = NULL; } else { /* * There is at least one other VA mapping this page. * Place this entry after the header. */ npv = pool_get(&pv_pool, PR_NOWAIT); if (npv == NULL) { if ((flags & PMAP_CANFAIL) == 0) panic("pmap_enter_pv: failed"); splx(s); return 0; } npv->pv_va = va; npv->pv_pm = pm; npv->pv_next = pv->pv_next; pv->pv_next = npv; pv = npv; } if (flags & PMAP_WIRED) { PV_WIRE(pv); pm->pm_stats.wired_count++; } splx(s); return (1); } static void pmap_remove_pv(struct pmap *pm, vaddr_t va, paddr_t pa) { struct pv_entry *pv, *npv; /* * Remove from the PV table. */ pv = pa_to_pv(pa); if (!pv) return; /* * If it is the first entry on the list, it is actually * in the header and we must copy the following entry up * to the header. Otherwise we must search the list for * the entry. In either case we free the now unused entry. */ if (pm == pv->pv_pm && PV_CMPVA(va, pv)) { if (PV_ISWIRED(pv)) { pm->pm_stats.wired_count--; } if ((npv = pv->pv_next)) { *pv = *npv; pool_put(&pv_pool, npv); } else pv->pv_pm = NULL; } else { for (; (npv = pv->pv_next) != NULL; pv = npv) if (pm == npv->pv_pm && PV_CMPVA(va, npv)) break; if (npv) { pv->pv_next = npv->pv_next; if (PV_ISWIRED(npv)) { pm->pm_stats.wired_count--; } pool_put(&pv_pool, npv); } } } /* * Insert physical page at pa into the given pmap at virtual address va. */ int pmap_enter(struct pmap *pm, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags) { int s; u_int tte; bool managed; /* * Have to remove any existing mapping first. */ pmap_remove(pm, va, va + PAGE_SIZE); if (flags & PMAP_WIRED) flags |= prot; managed = uvm_pageismanaged(pa); /* * Generate TTE. */ tte = TTE_PA(pa); /* XXXX -- need to support multiple page sizes. */ tte |= TTE_SZ_16K; #ifdef DIAGNOSTIC if ((flags & (PMAP_NOCACHE | PME_WRITETHROUG)) == (PMAP_NOCACHE | PME_WRITETHROUG)) panic("pmap_enter: uncached & writethrough"); #endif if (flags & PMAP_NOCACHE) /* Must be I/O mapping */ tte |= TTE_I | TTE_G; #ifdef PPC_4XX_NOCACHE tte |= TTE_I; #else else if (flags & PME_WRITETHROUG) /* Uncached and writethrough are not compatible */ tte |= TTE_W; #endif if (pm == pmap_kernel()) tte |= TTE_ZONE(ZONE_PRIV); else tte |= TTE_ZONE(ZONE_USER); if (flags & VM_PROT_WRITE) tte |= TTE_WR; if (flags & VM_PROT_EXECUTE) tte |= TTE_EX; /* * Now record mapping for later back-translation. */ if (pmap_initialized && managed) { char *attr; if (!pmap_enter_pv(pm, va, pa, flags)) { /* Could not enter pv on a managed page */ return 1; } /* Now set attributes. */ attr = pa_to_attr(pa); #ifdef DIAGNOSTIC if (!attr) panic("managed but no attr"); #endif if (flags & VM_PROT_ALL) *attr |= PMAP_ATTR_REF; if (flags & VM_PROT_WRITE) *attr |= PMAP_ATTR_CHG; } s = splvm(); /* Insert page into page table. */ pte_enter(pm, va, tte); /* If this is a real fault, enter it in the tlb */ if (tte && ((flags & PMAP_WIRED) == 0)) { int s2 = splhigh(); ppc4xx_tlb_enter(pm->pm_ctx, va, tte); splx(s2); } splx(s); /* Flush the real memory from the instruction cache. */ if ((prot & VM_PROT_EXECUTE) && (tte & TTE_I) == 0) __syncicache((void *)pa, PAGE_SIZE); return 0; } void pmap_unwire(struct pmap *pm, vaddr_t va) { struct pv_entry *pv; paddr_t pa; int s; if (!pmap_extract(pm, va, &pa)) { return; } pv = pa_to_pv(pa); if (!pv) return; s = splvm(); while (pv != NULL) { if (pm == pv->pv_pm && PV_CMPVA(va, pv)) { if (PV_ISWIRED(pv)) { PV_UNWIRE(pv); pm->pm_stats.wired_count--; } break; } pv = pv->pv_next; } splx(s); } void pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags) { int s; u_int tte; struct pmap *pm = pmap_kernel(); /* * Have to remove any existing mapping first. */ /* * Generate TTE. * * XXXX * * Since the kernel does not handle execution privileges properly, * we will handle read and execute permissions together. */ tte = 0; if (prot & VM_PROT_ALL) { tte = TTE_PA(pa) | TTE_EX | TTE_ZONE(ZONE_PRIV); /* XXXX -- need to support multiple page sizes. */ tte |= TTE_SZ_16K; #ifdef DIAGNOSTIC if ((flags & (PMAP_NOCACHE | PME_WRITETHROUG)) == (PMAP_NOCACHE | PME_WRITETHROUG)) panic("pmap_kenter_pa: uncached & writethrough"); #endif if (flags & PMAP_NOCACHE) /* Must be I/O mapping */ tte |= TTE_I | TTE_G; #ifdef PPC_4XX_NOCACHE tte |= TTE_I; #else else if (prot & PME_WRITETHROUG) /* Uncached and writethrough are not compatible */ tte |= TTE_W; #endif if (prot & VM_PROT_WRITE) tte |= TTE_WR; } s = splvm(); /* Insert page into page table. */ pte_enter(pm, va, tte); splx(s); } void pmap_kremove(vaddr_t va, vsize_t len) { while (len > 0) { pte_enter(pmap_kernel(), va, 0); va += PAGE_SIZE; len -= PAGE_SIZE; } } /* * Remove the given range of mapping entries. */ void pmap_remove(struct pmap *pm, vaddr_t va, vaddr_t endva) { int s; paddr_t pa; volatile u_int *ptp; s = splvm(); while (va < endva) { if ((ptp = pte_find(pm, va)) && (pa = *ptp)) { pa = TTE_PA(pa); pmap_remove_pv(pm, va, pa); *ptp = 0; ppc4xx_tlb_flush(va, pm->pm_ctx); pm->pm_stats.resident_count--; } va += PAGE_SIZE; } splx(s); } /* * Get the physical page address for the given pmap/virtual address. */ bool pmap_extract(struct pmap *pm, vaddr_t va, paddr_t *pap) { int seg = STIDX(va); int ptn = PTIDX(va); u_int pa = 0; int s; s = splvm(); if (pm->pm_ptbl[seg] && (pa = pm->pm_ptbl[seg][ptn]) && pap) { *pap = TTE_PA(pa) | (va & PGOFSET); } splx(s); return (pa != 0); } /* * Lower the protection on the specified range of this pmap. * * There are only two cases: either the protection is going to 0, * or it is going to read-only. */ void pmap_protect(struct pmap *pm, vaddr_t sva, vaddr_t eva, vm_prot_t prot) { volatile u_int *ptp; int s, bic; if ((prot & VM_PROT_READ) == 0) { pmap_remove(pm, sva, eva); return; } bic = 0; if ((prot & VM_PROT_WRITE) == 0) { bic |= TTE_WR; } if ((prot & VM_PROT_EXECUTE) == 0) { bic |= TTE_EX; } if (bic == 0) { return; } s = splvm(); while (sva < eva) { if ((ptp = pte_find(pm, sva)) != NULL) { *ptp &= ~bic; ppc4xx_tlb_flush(sva, pm->pm_ctx); } sva += PAGE_SIZE; } splx(s); } bool pmap_check_attr(struct vm_page *pg, u_int mask, int clear) { paddr_t pa; char *attr; int s, rv; /* * First modify bits in cache. */ pa = VM_PAGE_TO_PHYS(pg); attr = pa_to_attr(pa); if (attr == NULL) return false; s = splvm(); rv = ((*attr & mask) != 0); if (clear) { *attr &= ~mask; pmap_page_protect(pg, mask == PMAP_ATTR_CHG ? VM_PROT_READ : 0); } splx(s); return rv; } /* * Lower the protection on the specified physical page. * * There are only two cases: either the protection is going to 0, * or it is going to read-only. */ void pmap_page_protect(struct vm_page *pg, vm_prot_t prot) { paddr_t pa = VM_PAGE_TO_PHYS(pg); vaddr_t va; struct pv_entry *pvh, *pv, *npv; struct pmap *pm; pvh = pa_to_pv(pa); if (pvh == NULL) return; /* Handle extra pvs which may be deleted in the operation */ for (pv = pvh->pv_next; pv; pv = npv) { npv = pv->pv_next; pm = pv->pv_pm; va = pv->pv_va; pmap_protect(pm, va, va + PAGE_SIZE, prot); } /* Now check the head pv */ if (pvh->pv_pm) { pv = pvh; pm = pv->pv_pm; va = pv->pv_va; pmap_protect(pm, va, va + PAGE_SIZE, prot); } } /* * Activate the address space for the specified process. If the process * is the current process, load the new MMU context. */ void pmap_activate(struct lwp *l) { #if 0 struct pcb *pcb = lwp_getpcb(l); pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap; /* * XXX Normally performed in cpu_lwp_fork(). */ printf("pmap_activate(%p), pmap=%p\n",l,pmap); pcb->pcb_pm = pmap; #endif } /* * Deactivate the specified process's address space. */ void pmap_deactivate(struct lwp *l) { } /* * Synchronize caches corresponding to [addr, addr+len) in p. */ void pmap_procwr(struct proc *p, vaddr_t va, size_t len) { struct pmap *pm = p->p_vmspace->vm_map.pmap; int msr, ctx, opid, step; step = CACHELINESIZE; /* * Need to turn off IMMU and switch to user context. * (icbi uses DMMU). */ if (!(ctx = pm->pm_ctx)) { /* No context -- assign it one */ ctx_alloc(pm); ctx = pm->pm_ctx; } __asm volatile( "mfmsr %0;" "li %1,0x20;" /* Turn off IMMU */ "andc %1,%0,%1;" "ori %1,%1,0x10;" /* Turn on DMMU for sure */ "mtmsr %1;" "sync;isync;" "mfpid %1;" "mtpid %2;" "sync; isync;" "1:" "dcbst 0,%3;" "icbi 0,%3;" "add %3,%3,%5;" "addc. %4,%4,%6;" "bge 1b;" "mtpid %1;" "mtmsr %0;" "sync; isync" : "=&r" (msr), "=&r" (opid) : "r" (ctx), "r" (va), "r" (len), "r" (step), "r" (-step)); } /* This has to be done in real mode !!! */ void ppc4xx_tlb_flush(vaddr_t va, int pid) { u_long i, found; u_long msr; /* If there's no context then it can't be mapped. */ if (!pid) return; __asm volatile( "mfpid %1;" /* Save PID */ "mfmsr %2;" /* Save MSR */ "li %0,0;" /* Now clear MSR */ "mtmsr %0;" "mtpid %4;" /* Set PID */ "sync;" "tlbsx. %0,0,%3;" /* Search TLB */ "sync;" "mtpid %1;" /* Restore PID */ "mtmsr %2;" /* Restore MSR */ "sync;isync;" "li %1,1;" "beq 1f;" "li %1,0;" "1:" : "=&r" (i), "=&r" (found), "=&r" (msr) : "r" (va), "r" (pid)); if (found && !TLB_LOCKED(i)) { /* Now flush translation */ __asm volatile( "tlbwe %0,%1,0;" "sync;isync;" : : "r" (0), "r" (i)); tlb_info[i].ti_ctx = 0; tlb_info[i].ti_flags = 0; tlbnext = i; /* Successful flushes */ tlbflush_ev.ev_count++; } } void ppc4xx_tlb_flush_all(void) { u_long i; for (i = 0; i < NTLB; i++) if (!TLB_LOCKED(i)) { __asm volatile( "tlbwe %0,%1,0;" "sync;isync;" : : "r" (0), "r" (i)); tlb_info[i].ti_ctx = 0; tlb_info[i].ti_flags = 0; } __asm volatile("sync;isync"); } /* Find a TLB entry to evict. */ static int ppc4xx_tlb_find_victim(void) { int flags; for (;;) { if (++tlbnext >= NTLB) tlbnext = tlb_nreserved; flags = tlb_info[tlbnext].ti_flags; if (!(flags & TLBF_USED) || (flags & (TLBF_LOCKED | TLBF_REF)) == 0) { u_long va, stack = (u_long)&va; if (!((tlb_info[tlbnext].ti_va ^ stack) & (~PGOFSET)) && (tlb_info[tlbnext].ti_ctx == KERNEL_PID) && (flags & TLBF_USED)) { /* Kernel stack page */ flags |= TLBF_REF; tlb_info[tlbnext].ti_flags = flags; } else { /* Found it! */ return (tlbnext); } } else { tlb_info[tlbnext].ti_flags = (flags & ~TLBF_REF); } } } void ppc4xx_tlb_enter(int ctx, vaddr_t va, u_int pte) { u_long th, tl, idx; int msr, pid; paddr_t pa; int sz; tlbenter_ev.ev_count++; sz = (pte & TTE_SZ_MASK) >> TTE_SZ_SHIFT; pa = (pte & TTE_RPN_MASK(sz)); th = (va & TLB_EPN_MASK) | (sz << TLB_SIZE_SHFT) | TLB_VALID; tl = (pte & ~TLB_RPN_MASK) | pa; tl |= ppc4xx_tlbflags(va, pa); idx = ppc4xx_tlb_find_victim(); #ifdef DIAGNOSTIC if ((idx < tlb_nreserved) || (idx >= NTLB) || (idx & 63) == 0) { panic("ppc4xx_tlb_enter: replacing entry %ld", idx); } #endif tlb_info[idx].ti_va = (va & TLB_EPN_MASK); tlb_info[idx].ti_ctx = ctx; tlb_info[idx].ti_flags = TLBF_USED | TLBF_REF; __asm volatile( "mfmsr %0;" /* Save MSR */ "li %1,0;" "mtmsr %1;" /* Clear MSR */ "tlbwe %1,%3,0;" /* Invalidate old entry. */ "mfpid %1;" /* Save old PID */ "mtpid %2;" /* Load translation ctx */ "sync; isync;" "tlbwe %4,%3,1; tlbwe %5,%3,0;" /* Set TLB */ "sync; isync;" "mtpid %1; mtmsr %0;" /* Restore PID and MSR */ "sync; isync;" : "=&r" (msr), "=&r" (pid) : "r" (ctx), "r" (idx), "r" (tl), "r" (th)); } void ppc4xx_tlb_init(void) { int i; /* Mark reserved TLB entries */ for (i = 0; i < tlb_nreserved; i++) { tlb_info[i].ti_flags = TLBF_LOCKED | TLBF_USED; tlb_info[i].ti_ctx = KERNEL_PID; } /* Setup security zones */ /* Z0 - accessible by kernel only if TLB entry permissions allow * Z1,Z2 - access is controlled by TLB entry permissions * Z3 - full access regardless of TLB entry permissions */ __asm volatile( "mtspr %0,%1;" "sync;" :: "K"(SPR_ZPR), "r" (0x1b000000)); } /* * ppc4xx_tlb_size_mask: * * Roundup size to supported page size, return TLBHI mask and real size. */ static int ppc4xx_tlb_size_mask(size_t size, int *mask, int *rsiz) { int i; for (i = 0; i < __arraycount(tlbsize); i++) if (size <= tlbsize[i]) { *mask = (i << TLB_SIZE_SHFT); *rsiz = tlbsize[i]; return (0); } return (EINVAL); } /* * ppc4xx_tlb_mapiodev: * * Lookup virtual address of mapping previously entered via * ppc4xx_tlb_reserve. Search TLB directly so that we don't * need to waste extra storage for reserved mappings. Note * that reading TLBHI also sets PID, but all reserved mappings * use KERNEL_PID, so the side effect is nil. */ void * ppc4xx_tlb_mapiodev(paddr_t base, psize_t len) { paddr_t pa; vaddr_t va; u_int lo, hi, sz; int i; /* tlb_nreserved is only allowed to grow, so this is safe. */ for (i = 0; i < tlb_nreserved; i++) { __asm volatile ( " tlbre %0,%2,1 \n" /* TLBLO */ " tlbre %1,%2,0 \n" /* TLBHI */ : "=&r" (lo), "=&r" (hi) : "r" (i)); KASSERT(hi & TLB_VALID); KASSERT(mfspr(SPR_PID) == KERNEL_PID); pa = (lo & TLB_RPN_MASK); if (base < pa) continue; sz = tlbsize[(hi & TLB_SIZE_MASK) >> TLB_SIZE_SHFT]; if ((base + len) > (pa + sz)) continue; va = (hi & TLB_EPN_MASK) + (base & (sz - 1)); /* sz = 2^n */ return (void *)(va); } return (NULL); } /* * ppc4xx_tlb_reserve: * * Map physical range to kernel virtual chunk via reserved TLB entry. */ void ppc4xx_tlb_reserve(paddr_t pa, vaddr_t va, size_t size, int flags) { u_int lo, hi; int szmask, rsize; /* Called before pmap_bootstrap(), va outside kernel space. */ KASSERT(va < VM_MIN_KERNEL_ADDRESS || va >= VM_MAX_KERNEL_ADDRESS); KASSERT(! pmap_bootstrap_done); KASSERT(tlb_nreserved < NTLB); /* Resolve size. */ if (ppc4xx_tlb_size_mask(size, &szmask, &rsize) != 0) panic("ppc4xx_tlb_reserve: entry %d, %zuB too large", size, tlb_nreserved); /* Real size will be power of two >= 1024, so this is OK. */ pa &= ~(rsize - 1); /* RPN */ va &= ~(rsize - 1); /* EPN */ lo = pa | TLB_WR | flags; hi = va | TLB_VALID | szmask; #ifdef PPC_4XX_NOCACHE lo |= TLB_I; #endif __asm volatile( " tlbwe %1,%0,1 \n" /* write TLBLO */ " tlbwe %2,%0,0 \n" /* write TLBHI */ " sync \n" " isync \n" : : "r" (tlb_nreserved), "r" (lo), "r" (hi)); tlb_nreserved++; } /* * We should pass the ctx in from trap code. */ int pmap_tlbmiss(vaddr_t va, int ctx) { volatile u_int *pte; u_long tte; tlbmiss_ev.ev_count++; /* * We will reserve 0 upto VM_MIN_KERNEL_ADDRESS for va == pa mappings. * Physical RAM is expected to live in this range, care must be taken * to not clobber 0 upto ${physmem} with device mappings in machdep * code. */ if (ctx != KERNEL_PID || (va >= VM_MIN_KERNEL_ADDRESS && va < VM_MAX_KERNEL_ADDRESS)) { pte = pte_find((struct pmap *)__UNVOLATILE(ctxbusy[ctx]), va); if (pte == NULL) { /* Map unmanaged addresses directly for kernel access */ return 1; } tte = *pte; if (tte == 0) { return 1; } } else { /* Create a 16MB writable mapping. */ #ifdef PPC_4XX_NOCACHE tte = TTE_PA(va) | TTE_ZONE(ZONE_PRIV) | TTE_SZ_16M | TTE_I |TTE_WR; #else tte = TTE_PA(va) | TTE_ZONE(ZONE_PRIV) | TTE_SZ_16M | TTE_WR; #endif } tlbhit_ev.ev_count++; ppc4xx_tlb_enter(ctx, va, tte); return 0; } /* * Flush all the entries matching a context from the TLB. */ static int ctx_flush(int cnum) { int i; /* We gotta steal this context */ for (i = tlb_nreserved; i < NTLB; i++) { if (tlb_info[i].ti_ctx == cnum) { /* Can't steal ctx if it has a locked entry. */ if (TLB_LOCKED(i)) { #ifdef DIAGNOSTIC printf("ctx_flush: can't invalidate " "locked mapping %d " "for context %d\n", i, cnum); #ifdef DDB Debugger(); #endif #endif return (1); } #ifdef DIAGNOSTIC if (i < tlb_nreserved) panic("TLB entry %d not locked", i); #endif /* Invalidate particular TLB entry regardless of locked status */ __asm volatile("tlbwe %0,%1,0" : :"r"(0),"r"(i)); tlb_info[i].ti_ctx = 0; tlb_info[i].ti_flags = 0; } } return (0); } /* * Allocate a context. If necessary, steal one from someone else. * * The new context is flushed from the TLB before returning. */ int ctx_alloc(struct pmap *pm) { int s, cnum; static int next = MINCTX; if (pm == pmap_kernel()) { #ifdef DIAGNOSTIC printf("ctx_alloc: kernel pmap!\n"); #endif return (0); } s = splvm(); /* Find a likely context. */ cnum = next; do { if ((++cnum) >= NUMCTX) cnum = MINCTX; } while (ctxbusy[cnum] != NULL && cnum != next); /* Now clean it out */ oops: if (cnum < MINCTX) cnum = MINCTX; /* Never steal ctx 0 or 1 */ if (ctx_flush(cnum)) { /* oops -- something's wired. */ if ((++cnum) >= NUMCTX) cnum = MINCTX; goto oops; } if (ctxbusy[cnum]) { #ifdef DEBUG /* We should identify this pmap and clear it */ printf("Warning: stealing context %d\n", cnum); #endif ctxbusy[cnum]->pm_ctx = 0; } ctxbusy[cnum] = pm; next = cnum; splx(s); pm->pm_ctx = cnum; return cnum; } /* * Give away a context. */ void ctx_free(struct pmap *pm) { int oldctx; oldctx = pm->pm_ctx; if (oldctx == 0) panic("ctx_free: freeing kernel context"); #ifdef DIAGNOSTIC if (ctxbusy[oldctx] == 0) printf("ctx_free: freeing free context %d\n", oldctx); if (ctxbusy[oldctx] != pm) { printf("ctx_free: freeing someone esle's context\n " "ctxbusy[%d] = %p, pm->pm_ctx = %p\n", oldctx, (void *)(u_long)ctxbusy[oldctx], pm); #ifdef DDB Debugger(); #endif } #endif /* We should verify it has not been stolen and reallocated... */ ctxbusy[oldctx] = NULL; ctx_flush(oldctx); } #ifdef DEBUG /* * Test ref/modify handling. */ void pmap_testout(void); void pmap_testout(void) { vaddr_t va; volatile int *loc; int val = 0; paddr_t pa; struct vm_page *pg; int ref, mod; /* Allocate a page */ va = (vaddr_t)uvm_km_alloc(kernel_map, PAGE_SIZE, 0, UVM_KMF_WIRED | UVM_KMF_ZERO); loc = (int*)va; pmap_extract(pmap_kernel(), va, &pa); pg = PHYS_TO_VM_PAGE(pa); pmap_unwire(pmap_kernel(), va); pmap_kremove(va, PAGE_SIZE); pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0); pmap_update(pmap_kernel()); /* Now clear reference and modify */ ref = pmap_clear_reference(pg); mod = pmap_clear_modify(pg); printf("Clearing page va %p pa %lx: ref %d, mod %d\n", (void *)(u_long)va, (long)pa, ref, mod); /* Check it's properly cleared */ ref = pmap_is_referenced(pg); mod = pmap_is_modified(pg); printf("Checking cleared page: ref %d, mod %d\n", ref, mod); /* Reference page */ val = *loc; ref = pmap_is_referenced(pg); mod = pmap_is_modified(pg); printf("Referenced page: ref %d, mod %d val %x\n", ref, mod, val); /* Now clear reference and modify */ ref = pmap_clear_reference(pg); mod = pmap_clear_modify(pg); printf("Clearing page va %p pa %lx: ref %d, mod %d\n", (void *)(u_long)va, (long)pa, ref, mod); /* Modify page */ *loc = 1; ref = pmap_is_referenced(pg); mod = pmap_is_modified(pg); printf("Modified page: ref %d, mod %d\n", ref, mod); /* Now clear reference and modify */ ref = pmap_clear_reference(pg); mod = pmap_clear_modify(pg); printf("Clearing page va %p pa %lx: ref %d, mod %d\n", (void *)(u_long)va, (long)pa, ref, mod); /* Check it's properly cleared */ ref = pmap_is_referenced(pg); mod = pmap_is_modified(pg); printf("Checking cleared page: ref %d, mod %d\n", ref, mod); /* Modify page */ *loc = 1; ref = pmap_is_referenced(pg); mod = pmap_is_modified(pg); printf("Modified page: ref %d, mod %d\n", ref, mod); /* Check pmap_protect() */ pmap_protect(pmap_kernel(), va, va+1, VM_PROT_READ); pmap_update(pmap_kernel()); ref = pmap_is_referenced(pg); mod = pmap_is_modified(pg); printf("pmap_protect(VM_PROT_READ): ref %d, mod %d\n", ref, mod); /* Now clear reference and modify */ ref = pmap_clear_reference(pg); mod = pmap_clear_modify(pg); printf("Clearing page va %p pa %lx: ref %d, mod %d\n", (void *)(u_long)va, (long)pa, ref, mod); /* Reference page */ val = *loc; ref = pmap_is_referenced(pg); mod = pmap_is_modified(pg); printf("Referenced page: ref %d, mod %d val %x\n", ref, mod, val); /* Now clear reference and modify */ ref = pmap_clear_reference(pg); mod = pmap_clear_modify(pg); printf("Clearing page va %p pa %lx: ref %d, mod %d\n", (void *)(u_long)va, (long)pa, ref, mod); /* Modify page */ #if 0 pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0); pmap_update(pmap_kernel()); #endif *loc = 1; ref = pmap_is_referenced(pg); mod = pmap_is_modified(pg); printf("Modified page: ref %d, mod %d\n", ref, mod); /* Check pmap_protect() */ pmap_protect(pmap_kernel(), va, va+1, VM_PROT_NONE); pmap_update(pmap_kernel()); ref = pmap_is_referenced(pg); mod = pmap_is_modified(pg); printf("pmap_protect(): ref %d, mod %d\n", ref, mod); /* Now clear reference and modify */ ref = pmap_clear_reference(pg); mod = pmap_clear_modify(pg); printf("Clearing page va %p pa %lx: ref %d, mod %d\n", (void *)(u_long)va, (long)pa, ref, mod); /* Reference page */ val = *loc; ref = pmap_is_referenced(pg); mod = pmap_is_modified(pg); printf("Referenced page: ref %d, mod %d val %x\n", ref, mod, val); /* Now clear reference and modify */ ref = pmap_clear_reference(pg); mod = pmap_clear_modify(pg); printf("Clearing page va %p pa %lx: ref %d, mod %d\n", (void *)(u_long)va, (long)pa, ref, mod); /* Modify page */ #if 0 pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0); pmap_update(pmap_kernel()); #endif *loc = 1; ref = pmap_is_referenced(pg); mod = pmap_is_modified(pg); printf("Modified page: ref %d, mod %d\n", ref, mod); /* Check pmap_pag_protect() */ pmap_page_protect(pg, VM_PROT_READ); ref = pmap_is_referenced(pg); mod = pmap_is_modified(pg); printf("pmap_page_protect(VM_PROT_READ): ref %d, mod %d\n", ref, mod); /* Now clear reference and modify */ ref = pmap_clear_reference(pg); mod = pmap_clear_modify(pg); printf("Clearing page va %p pa %lx: ref %d, mod %d\n", (void *)(u_long)va, (long)pa, ref, mod); /* Reference page */ val = *loc; ref = pmap_is_referenced(pg); mod = pmap_is_modified(pg); printf("Referenced page: ref %d, mod %d val %x\n", ref, mod, val); /* Now clear reference and modify */ ref = pmap_clear_reference(pg); mod = pmap_clear_modify(pg); printf("Clearing page va %p pa %lx: ref %d, mod %d\n", (void *)(u_long)va, (long)pa, ref, mod); /* Modify page */ #if 0 pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0); pmap_update(pmap_kernel()); #endif *loc = 1; ref = pmap_is_referenced(pg); mod = pmap_is_modified(pg); printf("Modified page: ref %d, mod %d\n", ref, mod); /* Check pmap_pag_protect() */ pmap_page_protect(pg, VM_PROT_NONE); ref = pmap_is_referenced(pg); mod = pmap_is_modified(pg); printf("pmap_page_protect(): ref %d, mod %d\n", ref, mod); /* Now clear reference and modify */ ref = pmap_clear_reference(pg); mod = pmap_clear_modify(pg); printf("Clearing page va %p pa %lx: ref %d, mod %d\n", (void *)(u_long)va, (long)pa, ref, mod); /* Reference page */ val = *loc; ref = pmap_is_referenced(pg); mod = pmap_is_modified(pg); printf("Referenced page: ref %d, mod %d val %x\n", ref, mod, val); /* Now clear reference and modify */ ref = pmap_clear_reference(pg); mod = pmap_clear_modify(pg); printf("Clearing page va %p pa %lx: ref %d, mod %d\n", (void *)(u_long)va, (long)pa, ref, mod); /* Modify page */ #if 0 pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0); pmap_update(pmap_kernel()); #endif *loc = 1; ref = pmap_is_referenced(pg); mod = pmap_is_modified(pg); printf("Modified page: ref %d, mod %d\n", ref, mod); /* Unmap page */ pmap_remove(pmap_kernel(), va, va+1); pmap_update(pmap_kernel()); ref = pmap_is_referenced(pg); mod = pmap_is_modified(pg); printf("Unmapped page: ref %d, mod %d\n", ref, mod); /* Now clear reference and modify */ ref = pmap_clear_reference(pg); mod = pmap_clear_modify(pg); printf("Clearing page va %p pa %lx: ref %d, mod %d\n", (void *)(u_long)va, (long)pa, ref, mod); /* Check it's properly cleared */ ref = pmap_is_referenced(pg); mod = pmap_is_modified(pg); printf("Checking cleared page: ref %d, mod %d\n", ref, mod); pmap_remove(pmap_kernel(), va, va + PAGE_SIZE); pmap_kenter_pa(va, pa, VM_PROT_ALL, 0); uvm_km_free(kernel_map, (vaddr_t)va, PAGE_SIZE, UVM_KMF_WIRED); } #endif