/* $NetBSD: copyout.c,v 1.5.4.1 2020/03/09 10:11:40 martin Exp $ */ /*- * Copyright (c) 2010, 2011 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Raytheon BBN Technologies Corp and Defense Advanced Research Projects * Agency and which was developed by Matt Thomas of 3am Software Foundry. * * This material is based upon work supported by the Defense Advanced Research * Projects Agency and Space and Naval Warfare Systems Center, Pacific, under * Contract No. N66001-09-C-2073. * Approved for Public Release, Distribution Unlimited * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include __KERNEL_RCSID(0, "$NetBSD: copyout.c,v 1.5.4.1 2020/03/09 10:11:40 martin Exp $"); #define __UFETCHSTORE_PRIVATE #include #include #include #include #include static inline void copyout_uint8(uint8_t *udaddr, uint8_t data, register_t ds_msr) { register_t msr; __asm volatile( "mfmsr %[msr]" /* Save MSR */ "\n\t" "mtmsr %[ds_msr]; sync; isync" /* DS on */ "\n\t" "stb %[data],0(%[udaddr])" /* store user byte */ "\n\t" "mtmsr %[msr]; sync; isync" /* DS off */ : [msr] "=&r" (msr) : [ds_msr] "r" (ds_msr), [data] "r" (data), [udaddr] "b" (udaddr)); } static inline void copyout_uint16(uint16_t *udaddr, uint8_t data, register_t ds_msr) { register_t msr; __asm volatile( "mfmsr %[msr]" /* Save MSR */ "\n\t" "mtmsr %[ds_msr]; sync; isync" /* DS on */ "\n\t" "sth %[data],0(%[udaddr])" /* store user half */ "\n\t" "mtmsr %[msr]; sync; isync" /* DS off */ : [msr] "=&r" (msr) : [ds_msr] "r" (ds_msr), [data] "r" (data), [udaddr] "b" (udaddr)); } static inline void copyout_uint32(uint32_t * const udaddr, uint32_t data, register_t ds_msr) { register_t msr; __asm volatile( "mfmsr %[msr]" /* Save MSR */ "\n\t" "mtmsr %[ds_msr]; sync; isync" /* DS on */ "\n\t" "stw %[data],0(%[udaddr])" /* store user data */ "\n\t" "mtmsr %[msr]; sync; isync" /* DS off */ : [msr] "=&r" (msr) : [ds_msr] "r" (ds_msr), [data] "r" (data), [udaddr] "b" (udaddr)); } #if 0 static inline void copyout_le32(uint32_t * const udaddr, uint32_t data, register_t ds_msr) { register_t msr; __asm volatile( "mfmsr %[msr]" /* Save MSR */ "\n\t" "mtmsr %[ds_msr]; sync; isync" /* DS on */ "\n\t" "stwbrx %[data],0,%[udaddr]" /* store user data */ "\n\t" "mtmsr %[msr]; sync; isync" /* DS off */ : [msr] "=&r" (msr) : [ds_msr] "r" (ds_msr), [data] "r" (data), [udaddr] "b" (udaddr)); } static inline void copyout_le32_with_mask(uint32_t * const udaddr, uint32_t data, uint32_t mask, register_t ds_msr) { register_t msr; uint32_t tmp; KASSERT((data & ~mask) == 0); __asm volatile( "mfmsr %[msr]" /* Save MSR */ "\n\t" "mtmsr %[ds_msr]; sync; isync" /* DS on */ "\n\t" "lwbrx %[tmp],0,%[udaddr]" /* fetch user data */ "\n\t" "andc %[tmp],%[tmp],%[mask]" /* mask out new data */ "\n\t" "or %[tmp],%[tmp],%[data]" /* merge new data */ "\n\t" "stwbrx %[tmp],0,%[udaddr]" /* store user data */ "\n\t" "mtmsr %[msr]; sync; isync" /* DS off */ : [msr] "=&r" (msr), [tmp] "=&r" (tmp) : [ds_msr] "r" (ds_msr), [data] "r" (data), [mask] "r" (mask), [udaddr] "b" (udaddr)); } #endif static inline void copyout_16uint8s(const uint8_t *ksaddr8, uint8_t *udaddr8, register_t ds_msr) { register_t msr; __asm volatile( "mfmsr %[msr]" /* Save MSR */ "\n\t" "mtmsr %[ds_msr]; sync; isync" /* DS on */ "\n\t" "stb %[data0],0(%[udaddr8])" /* store user data */ "\n\t" "stb %[data1],1(%[udaddr8])" /* store user data */ "\n\t" "stb %[data2],2(%[udaddr8])" /* store user data */ "\n\t" "stb %[data3],3(%[udaddr8])" /* store user data */ "\n\t" "stb %[data4],4(%[udaddr8])" /* store user data */ "\n\t" "stb %[data5],5(%[udaddr8])" /* store user data */ "\n\t" "stb %[data6],6(%[udaddr8])" /* store user data */ "\n\t" "stb %[data7],7(%[udaddr8])" /* store user data */ "\n\t" "stb %[data8],8(%[udaddr8])" /* store user data */ "\n\t" "stb %[data9],9(%[udaddr8])" /* store user data */ "\n\t" "stb %[data10],10(%[udaddr8])" /* store user data */ "\n\t" "stb %[data11],11(%[udaddr8])" /* store user data */ "\n\t" "stb %[data12],12(%[udaddr8])" /* store user data */ "\n\t" "stb %[data13],13(%[udaddr8])" /* store user data */ "\n\t" "stb %[data14],14(%[udaddr8])" /* store user data */ "\n\t" "stb %[data15],15(%[udaddr8])" /* store user data */ "\n\t" "mtmsr %[msr]; sync; isync" /* DS off */ : [msr] "=&r" (msr) : [ds_msr] "r" (ds_msr), [udaddr8] "b" (udaddr8), [data0] "r" (ksaddr8[0]), [data1] "r" (ksaddr8[1]), [data2] "r" (ksaddr8[2]), [data3] "r" (ksaddr8[3]), [data4] "r" (ksaddr8[4]), [data5] "r" (ksaddr8[5]), [data6] "r" (ksaddr8[6]), [data7] "r" (ksaddr8[7]), [data8] "r" (ksaddr8[8]), [data9] "r" (ksaddr8[9]), [data10] "r" (ksaddr8[10]), [data11] "r" (ksaddr8[11]), [data12] "r" (ksaddr8[12]), [data13] "r" (ksaddr8[13]), [data14] "r" (ksaddr8[14]), [data15] "r" (ksaddr8[15])); } static inline void copyout_8uint32s(const uint32_t * const ksaddr32, uint32_t * const udaddr32, const register_t ds_msr, const size_t line_mask) { register_t msr; register_t tmp; __asm volatile( "and. %[tmp],%[line_mask],%[udaddr32]" "\n\t" "mfmsr %[msr]" /* Save MSR */ "\n\t" "mtmsr %[ds_msr]; sync; isync" /* DS on */ "\n\t" "bne 0,1f" "\n\t" "dcba 0,%[udaddr32]" "\n" "1:" "\n\t" "stw %[data0],0(%[udaddr32])" /* store user data */ "\n\t" "stw %[data1],4(%[udaddr32])" /* store user data */ "\n\t" "stw %[data2],8(%[udaddr32])" /* store user data */ "\n\t" "stw %[data3],12(%[udaddr32])" /* store user data */ "\n\t" "stw %[data4],16(%[udaddr32])" /* store user data */ "\n\t" "stw %[data5],20(%[udaddr32])" /* store user data */ "\n\t" "stw %[data6],24(%[udaddr32])" /* store user data */ "\n\t" "stw %[data7],28(%[udaddr32])" /* store user data */ "\n\t" "mtmsr %[msr]; sync; isync" /* DS off */ : [msr] "=&r" (msr), [tmp] "=&r" (tmp) : [ds_msr] "r" (ds_msr), [udaddr32] "b" (udaddr32), [line_mask] "r" (line_mask), [data0] "r" (ksaddr32[0]), [data1] "r" (ksaddr32[1]), [data2] "r" (ksaddr32[2]), [data3] "r" (ksaddr32[3]), [data4] "r" (ksaddr32[4]), [data5] "r" (ksaddr32[5]), [data6] "r" (ksaddr32[6]), [data7] "r" (ksaddr32[7]) : "cr0"); } static inline void copyout_16uint32s(const uint32_t * const ksaddr32, uint32_t * const udaddr32, const register_t ds_msr, const size_t line_mask) { KASSERT(((uintptr_t)udaddr32 & line_mask) == 0); register_t msr; register_t tmp; __asm volatile( "and. %[tmp],%[line_mask],%[udaddr32]" "\n\t" "cmplwi 2,%[line_size],32" "\n\t" "mfmsr %[msr]" /* Save MSR */ "\n\t" "mtmsr %[ds_msr]; sync; isync" /* DS on */ "\n\t" "bne 0,1f" "\n\t" "dcba 0,%[udaddr32]" "\n\t" "bne 2,1f" "\n\t" "dcba %[line_size],%[udaddr32]" "\n" "1:" "\n\t" "stw %[data0],0(%[udaddr32])" /* store user data */ "\n\t" "stw %[data1],4(%[udaddr32])" /* store user data */ "\n\t" "stw %[data2],8(%[udaddr32])" /* store user data */ "\n\t" "stw %[data3],12(%[udaddr32])" /* store user data */ "\n\t" "stw %[data4],16(%[udaddr32])" /* store user data */ "\n\t" "stw %[data5],20(%[udaddr32])" /* store user data */ "\n\t" "stw %[data6],24(%[udaddr32])" /* store user data */ "\n\t" "stw %[data7],28(%[udaddr32])" /* store user data */ "\n\t" "stw %[data8],32(%[udaddr32])" /* store user data */ "\n\t" "stw %[data9],36(%[udaddr32])" /* store user data */ "\n\t" "stw %[data10],40(%[udaddr32])" /* store user data */ "\n\t" "stw %[data11],44(%[udaddr32])" /* store user data */ "\n\t" "stw %[data12],48(%[udaddr32])" /* store user data */ "\n\t" "stw %[data13],52(%[udaddr32])" /* store user data */ "\n\t" "stw %[data14],56(%[udaddr32])" /* store user data */ "\n\t" "stw %[data15],60(%[udaddr32])" /* store user data */ "\n\t" "mtmsr %[msr]; sync; isync" /* DS off */ : [msr] "=&r" (msr), [tmp] "=&r" (tmp) : [ds_msr] "r" (ds_msr), [udaddr32] "b" (udaddr32), [line_size] "r" (line_mask + 1), [line_mask] "r" (line_mask), [data0] "r" (ksaddr32[0]), [data1] "r" (ksaddr32[1]), [data2] "r" (ksaddr32[2]), [data3] "r" (ksaddr32[3]), [data4] "r" (ksaddr32[4]), [data5] "r" (ksaddr32[5]), [data6] "r" (ksaddr32[6]), [data7] "r" (ksaddr32[7]), [data8] "r" (ksaddr32[8]), [data9] "r" (ksaddr32[9]), [data10] "r" (ksaddr32[10]), [data11] "r" (ksaddr32[11]), [data12] "r" (ksaddr32[12]), [data13] "r" (ksaddr32[13]), [data14] "r" (ksaddr32[14]), [data15] "r" (ksaddr32[15]) : "cr0", "cr2"); } static inline void copyout_uint8s(vaddr_t ksaddr, vaddr_t udaddr, size_t len, register_t ds_msr) { const uint8_t *ksaddr8 = (void *)ksaddr; uint8_t *udaddr8 = (void *)udaddr; __builtin_prefetch(ksaddr8, 0, 1); for (; len >= 16; len -= 16, ksaddr8 += 16, udaddr8 += 16) { __builtin_prefetch(ksaddr8 + 16, 0, 1); copyout_16uint8s(ksaddr8, udaddr8, ds_msr); } while (len-- > 0) { copyout_uint8(udaddr8++, *ksaddr8++, ds_msr); } } static inline void copyout_uint32s(vaddr_t ksaddr, vaddr_t udaddr, size_t len, register_t ds_msr) { const size_t line_size = curcpu()->ci_ci.dcache_line_size; const size_t line_mask = line_size - 1; const size_t udalignment = udaddr & line_mask; KASSERT((ksaddr & 3) == 0); KASSERT((udaddr & 3) == 0); const uint32_t *ksaddr32 = (void *)ksaddr; uint32_t *udaddr32 = (void *)udaddr; len >>= 2; __builtin_prefetch(ksaddr32, 0, 1); if (udalignment != 0 && udalignment + 4*len > line_size) { size_t slen = (line_size - udalignment) >> 2; len -= slen; for (; slen >= 8; ksaddr32 += 8, udaddr32 += 8, slen -= 8) { copyout_8uint32s(ksaddr32, udaddr32, ds_msr, line_mask); } while (slen-- > 0) { copyout_uint32(udaddr32++, *ksaddr32++, ds_msr); } if (len == 0) return; } __builtin_prefetch(ksaddr32, 0, 1); while (len >= 16) { __builtin_prefetch(ksaddr32 + 8, 0, 1); __builtin_prefetch(ksaddr32 + 16, 0, 1); copyout_16uint32s(ksaddr32, udaddr32, ds_msr, line_mask); ksaddr32 += 16, udaddr32 += 16, len -= 16; } KASSERT(len <= 16); if (len >= 8) { __builtin_prefetch(ksaddr32 + 8, 0, 1); copyout_8uint32s(ksaddr32, udaddr32, ds_msr, line_mask); ksaddr32 += 8, udaddr32 += 8, len -= 8; } while (len-- > 0) { copyout_uint32(udaddr32++, *ksaddr32++, ds_msr); } } int _ustore_8(uint8_t *vusaddr, uint8_t val) { struct pcb * const pcb = lwp_getpcb(curlwp); struct faultbuf env; if (setfault(&env) != 0) { pcb->pcb_onfault = NULL; return EFAULT; } copyout_uint8(vusaddr, val, mfmsr() | PSL_DS); pcb->pcb_onfault = NULL; return 0; } int _ustore_16(uint16_t *vusaddr, uint16_t val) { struct pcb * const pcb = lwp_getpcb(curlwp); struct faultbuf env; if (setfault(&env) != 0) { pcb->pcb_onfault = NULL; return EFAULT; } copyout_uint16(vusaddr, val, mfmsr() | PSL_DS); pcb->pcb_onfault = NULL; return 0; } int _ustore_32(uint32_t *vusaddr, uint32_t val) { struct pcb * const pcb = lwp_getpcb(curlwp); struct faultbuf env; if (setfault(&env) != 0) { pcb->pcb_onfault = NULL; return EFAULT; } copyout_uint32(vusaddr, val, mfmsr() | PSL_DS); pcb->pcb_onfault = NULL; return 0; } int copyout(const void *vksaddr, void *vudaddr, size_t len) { struct pcb * const pcb = lwp_getpcb(curlwp); struct faultbuf env; vaddr_t udaddr = (vaddr_t) vudaddr; vaddr_t ksaddr = (vaddr_t) vksaddr; if (__predict_false(len == 0)) { return 0; } const register_t ds_msr = mfmsr() | PSL_DS; int rv = setfault(&env); if (rv != 0) { pcb->pcb_onfault = NULL; return rv; } if (__predict_false(len < 4)) { copyout_uint8s(ksaddr, udaddr, len, ds_msr); pcb->pcb_onfault = NULL; return 0; } const size_t alignment = (udaddr ^ ksaddr) & 3; if (__predict_true(alignment == 0)) { size_t slen; if (__predict_false(ksaddr & 3)) { slen = 4 - (ksaddr & 3); copyout_uint8s(ksaddr, udaddr, slen, ds_msr); udaddr += slen, ksaddr += slen, len -= slen; } slen = len & ~3; if (__predict_true(slen >= 4)) { copyout_uint32s(ksaddr, udaddr, slen, ds_msr); udaddr += slen, ksaddr += slen, len -= slen; } } if (len > 0) { copyout_uint8s(ksaddr, udaddr, len, ds_msr); } pcb->pcb_onfault = NULL; return 0; } #if 1 int copyoutstr(const void *ksaddr, void *udaddr, size_t len, size_t *done) { struct pcb * const pcb = lwp_getpcb(curlwp); struct faultbuf env; int rv; if (__predict_false(len == 0)) { if (done) *done = 0; return 0; } rv = setfault(&env); if (rv != 0) { pcb->pcb_onfault = NULL; if (done) *done = 0; return rv; } const register_t ds_msr = mfmsr() | PSL_DS; const uint8_t *ksaddr8 = ksaddr; size_t copylen = 0; uint8_t *udaddr8 = (void *)udaddr; while (copylen++ < len) { const uint8_t data = *ksaddr8++; copyout_uint8(udaddr8++, data, ds_msr); if (data == 0) goto out; } rv = ENAMETOOLONG; out: pcb->pcb_onfault = NULL; if (done) *done = copylen; return rv; } #else /* XXX This version of copyoutstr(9) has never beeen enabled so far. */ int copyoutstr(const void *ksaddr, void *udaddr, size_t len, size_t *lenp) { struct pcb * const pcb = lwp_getpcb(curlwp); struct faultbuf env; if (__predict_false(len == 0)) { if (lenp) *lenp = 0; return 0; } if (setfault(&env)) { pcb->pcb_onfault = NULL; if (lenp) *lenp = 0; return EFAULT; } const register_t ds_msr = mfmsr() | PSL_DS; const uint8_t *ksaddr8 = ksaddr; size_t copylen = 0; uint32_t *udaddr32 = (void *)((uintptr_t)udaddr & ~3); size_t boff = (uintptr_t)udaddr & 3; bool done = false; size_t wlen = 0; size_t data = 0; /* * If the destination buffer doesn't start on a 32-bit boundary * try to partially fill in the first word. If we succeed we can * finish writing it while preserving the bytes on front. */ if (boff > 0) { KASSERT(len > 0); do { data = (data << 8) | *ksaddr8++; wlen++; done = ((uint8_t)data == 0 || len == wlen); } while (!done && boff + wlen < 4); KASSERT(wlen > 0); data <<= 8 * boff; if (!done || boff + wlen == 4) { uint32_t mask = 0xffffffff << (8 * boff); copyout_le32_with_mask(udaddr32++, data, mask, ds_msr); boff = 0; copylen = wlen; wlen = 0; data = 0; } } /* * Now we get to the heart of the routine. Build up complete words * if possible. When we have one, write it to the user's address * space and go for the next. If we ran out of space or we found the * end of the string, stop building. If we managed to build a complete * word, just write it and be happy. Otherwise we have to deal with * the trailing bytes. */ KASSERT(done || boff == 0); KASSERT(done || copylen < len); while (!done) { KASSERT(wlen == 0); KASSERT(copylen < len); do { data = (data << 8) | *ksaddr8++; wlen++; done = ((uint8_t)data == 0 || copylen + wlen == len); } while (!done && wlen < 4); KASSERT(done || wlen == 4); if (__predict_true(wlen == 4)) { copyout_le32(udaddr32++, data, ds_msr); data = 0; copylen += wlen; wlen = 0; KASSERT(copylen < len || done); } } KASSERT(wlen < 3); if (wlen) { /* * Remember even though we are running big-endian we are using * byte reversed load/stores so we need to deal with things as * little endian. * * wlen=1 boff=0: * (~(~0 << 8) << 0) -> (~(0xffffff00) << 0) -> 0x000000ff * wlen=1 boff=1: * (~(~0 << 8) << 8) -> (~(0xffffff00) << 8) -> 0x0000ff00 * wlen=1 boff=2: * (~(~0 << 8) << 16) -> (~(0xffffff00) << 16) -> 0x00ff0000 * wlen=1 boff=3: * (~(~0 << 8) << 24) -> (~(0xffffff00) << 24) -> 0xff000000 * wlen=2 boff=0: * (~(~0 << 16) << 0) -> (~(0xffff0000) << 0) -> 0x0000ffff * wlen=2 boff=1: * (~(~0 << 16) << 8) -> (~(0xffff0000) << 8) -> 0x00ffff00 * wlen=2 boff=2: * (~(~0 << 16) << 16) -> (~(0xffff0000) << 16) -> 0xffff0000 * wlen=3 boff=0: * (~(~0 << 24) << 0) -> (~(0xff000000) << 0) -> 0x00ffffff * wlen=3 boff=1: * (~(~0 << 24) << 8) -> (~(0xff000000) << 8) -> 0xffffff00 */ KASSERT(boff + wlen <= 4); uint32_t mask = (~(~0 << (8 * wlen))) << (8 * boff); KASSERT(mask != 0xffffffff); copyout_le32_with_mask(udaddr32, data, mask, ds_msr); copylen += wlen; } pcb->pcb_onfault = NULL; if (lenp) *lenp = copylen; return 0; } #endif