/* $NetBSD: ti_gpio.c,v 1.3.2.2 2019/11/27 13:46:44 martin Exp $ */ /*- * Copyright (c) 2019 Jared McNeill * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __KERNEL_RCSID(0, "$NetBSD: ti_gpio.c,v 1.3.2.2 2019/11/27 13:46:44 martin Exp $"); #include #include #include #include #include #include #include #include #include #include #include #include #define TI_GPIO_NPINS 32 enum ti_gpio_type { TI_GPIO_OMAP3, TI_GPIO_OMAP4, TI_NGPIO }; enum { GPIO_IRQSTATUS1, GPIO_IRQENABLE1, /* OMAP3 */ GPIO_IRQENABLE1_SET, /* OMAP4 */ GPIO_IRQENABLE1_CLR, /* OMAP4 */ GPIO_OE, GPIO_DATAIN, GPIO_DATAOUT, GPIO_LEVELDETECT0, GPIO_LEVELDETECT1, GPIO_RISINGDETECT, GPIO_FALLINGDETECT, GPIO_CLEARDATAOUT, GPIO_SETDATAOUT, GPIO_NREG }; static const u_int ti_gpio_regmap[TI_NGPIO][GPIO_NREG] = { [TI_GPIO_OMAP3] = { [GPIO_IRQSTATUS1] = 0x18, [GPIO_IRQENABLE1] = 0x1c, [GPIO_OE] = 0x34, [GPIO_DATAIN] = 0x38, [GPIO_DATAOUT] = 0x3c, [GPIO_LEVELDETECT0] = 0x40, [GPIO_LEVELDETECT1] = 0x44, [GPIO_RISINGDETECT] = 0x48, [GPIO_FALLINGDETECT] = 0x4c, [GPIO_CLEARDATAOUT] = 0x90, [GPIO_SETDATAOUT] = 0x94, }, [TI_GPIO_OMAP4] = { [GPIO_IRQSTATUS1] = 0x2c, [GPIO_IRQENABLE1_SET] = 0x34, [GPIO_IRQENABLE1_CLR] = 0x38, [GPIO_OE] = 0x134, [GPIO_DATAIN] = 0x138, [GPIO_DATAOUT] = 0x13c, [GPIO_LEVELDETECT0] = 0x140, [GPIO_LEVELDETECT1] = 0x144, [GPIO_RISINGDETECT] = 0x148, [GPIO_FALLINGDETECT] = 0x14c, [GPIO_CLEARDATAOUT] = 0x190, [GPIO_SETDATAOUT] = 0x194, }, }; static const struct of_compat_data compat_data[] = { { "ti,omap3-gpio", TI_GPIO_OMAP3 }, { "ti,omap4-gpio", TI_GPIO_OMAP4 }, { NULL } }; struct ti_gpio_intr { u_int intr_pin; int (*intr_func)(void *); void *intr_arg; bool intr_mpsafe; }; struct ti_gpio_softc { device_t sc_dev; bus_space_tag_t sc_bst; bus_space_handle_t sc_bsh; kmutex_t sc_lock; enum ti_gpio_type sc_type; const char *sc_modname; void *sc_ih; struct gpio_chipset_tag sc_gp; gpio_pin_t sc_pins[TI_GPIO_NPINS]; bool sc_pinout[TI_GPIO_NPINS]; struct ti_gpio_intr sc_intr[TI_GPIO_NPINS]; device_t sc_gpiodev; }; struct ti_gpio_pin { struct ti_gpio_softc *pin_sc; u_int pin_nr; int pin_flags; bool pin_actlo; }; #define RD4(sc, reg) \ bus_space_read_4((sc)->sc_bst, (sc)->sc_bsh, ti_gpio_regmap[(sc)->sc_type][(reg)]) #define WR4(sc, reg, val) \ bus_space_write_4((sc)->sc_bst, (sc)->sc_bsh, ti_gpio_regmap[(sc)->sc_type][(reg)], (val)) static int ti_gpio_match(device_t, cfdata_t, void *); static void ti_gpio_attach(device_t, device_t, void *); CFATTACH_DECL_NEW(ti_gpio, sizeof(struct ti_gpio_softc), ti_gpio_match, ti_gpio_attach, NULL, NULL); static int ti_gpio_ctl(struct ti_gpio_softc *sc, u_int pin, int flags) { uint32_t oe; KASSERT(mutex_owned(&sc->sc_lock)); oe = RD4(sc, GPIO_OE); if (flags & GPIO_PIN_INPUT) oe |= __BIT(pin); else if (flags & GPIO_PIN_OUTPUT) oe &= ~__BIT(pin); WR4(sc, GPIO_OE, oe); sc->sc_pinout[pin] = (flags & GPIO_PIN_OUTPUT) != 0; return 0; } static void * ti_gpio_acquire(device_t dev, const void *data, size_t len, int flags) { struct ti_gpio_softc * const sc = device_private(dev); struct ti_gpio_pin *gpin; const u_int *gpio = data; int error; if (len != 12) return NULL; const uint8_t pin = be32toh(gpio[1]) & 0xff; const bool actlo = be32toh(gpio[2]) & 1; if (pin >= __arraycount(sc->sc_pins)) return NULL; mutex_enter(&sc->sc_lock); error = ti_gpio_ctl(sc, pin, flags); mutex_exit(&sc->sc_lock); if (error != 0) return NULL; gpin = kmem_zalloc(sizeof(*gpin), KM_SLEEP); gpin->pin_sc = sc; gpin->pin_nr = pin; gpin->pin_flags = flags; gpin->pin_actlo = actlo; return gpin; } static void ti_gpio_release(device_t dev, void *priv) { struct ti_gpio_softc * const sc = device_private(dev); struct ti_gpio_pin *pin = priv; mutex_enter(&sc->sc_lock); ti_gpio_ctl(pin->pin_sc, pin->pin_nr, GPIO_PIN_INPUT); mutex_exit(&sc->sc_lock); kmem_free(pin, sizeof(*pin)); } static int ti_gpio_read(device_t dev, void *priv, bool raw) { struct ti_gpio_softc * const sc = device_private(dev); struct ti_gpio_pin *pin = priv; uint32_t data; int val; KASSERT(sc == pin->pin_sc); const uint32_t data_mask = __BIT(pin->pin_nr); /* No lock required for reads */ if (sc->sc_pinout[pin->pin_nr]) data = RD4(sc, GPIO_DATAOUT); else data = RD4(sc, GPIO_DATAIN); val = __SHIFTOUT(data, data_mask); if (!raw && pin->pin_actlo) val = !val; return val; } static void ti_gpio_write(device_t dev, void *priv, int val, bool raw) { struct ti_gpio_softc * const sc = device_private(dev); struct ti_gpio_pin *pin = priv; KASSERT(sc == pin->pin_sc); const uint32_t data_mask = __BIT(pin->pin_nr); if (!raw && pin->pin_actlo) val = !val; const u_int data_reg = val ? GPIO_SETDATAOUT : GPIO_CLEARDATAOUT; WR4(sc, data_reg, data_mask); } static struct fdtbus_gpio_controller_func ti_gpio_funcs = { .acquire = ti_gpio_acquire, .release = ti_gpio_release, .read = ti_gpio_read, .write = ti_gpio_write, }; static void ti_gpio_intr_disestablish(device_t dev, void *ih) { struct ti_gpio_softc * const sc = device_private(dev); struct ti_gpio_intr *intr = ih; const u_int pin = intr->intr_pin; const uint32_t pin_mask = __BIT(pin); uint32_t val; /* Disable interrupts */ if (sc->sc_type == TI_GPIO_OMAP3) { val = RD4(sc, GPIO_IRQENABLE1); WR4(sc, GPIO_IRQENABLE1, val & ~pin_mask); } else { WR4(sc, GPIO_IRQENABLE1_CLR, pin_mask); } intr->intr_func = NULL; intr->intr_arg = NULL; } static void * ti_gpio_intr_establish(device_t dev, u_int *specifier, int ipl, int flags, int (*func)(void *), void *arg) { struct ti_gpio_softc * const sc = device_private(dev); uint32_t val; /* 1st cell is the pin */ /* 2nd cell is flags */ const u_int pin = be32toh(specifier[0]); const u_int type = be32toh(specifier[2]) & 0xf; if (ipl != IPL_VM || pin >= __arraycount(sc->sc_pins)) return NULL; /* * Enabling both high and low level triggers will cause the GPIO * controller to always assert the interrupt. */ if ((type & (FDT_INTR_TYPE_LOW_LEVEL|FDT_INTR_TYPE_HIGH_LEVEL)) == (FDT_INTR_TYPE_LOW_LEVEL|FDT_INTR_TYPE_HIGH_LEVEL)) return NULL; if (sc->sc_intr[pin].intr_func != NULL) return NULL; /* Set pin as input */ if (ti_gpio_ctl(sc, pin, GPIO_PIN_INPUT) != 0) return NULL; sc->sc_intr[pin].intr_pin = pin; sc->sc_intr[pin].intr_func = func; sc->sc_intr[pin].intr_arg = arg; sc->sc_intr[pin].intr_mpsafe = (flags & FDT_INTR_MPSAFE) != 0; const uint32_t pin_mask = __BIT(pin); /* Configure triggers */ val = RD4(sc, GPIO_LEVELDETECT0); if ((type & FDT_INTR_TYPE_LOW_LEVEL) != 0) val |= pin_mask; else val &= ~pin_mask; WR4(sc, GPIO_LEVELDETECT0, val); val = RD4(sc, GPIO_LEVELDETECT1); if ((type & FDT_INTR_TYPE_HIGH_LEVEL) != 0) val |= pin_mask; else val &= ~pin_mask; WR4(sc, GPIO_LEVELDETECT1, val); val = RD4(sc, GPIO_RISINGDETECT); if ((type & FDT_INTR_TYPE_POS_EDGE) != 0) val |= pin_mask; else val &= ~pin_mask; WR4(sc, GPIO_RISINGDETECT, val); val = RD4(sc, GPIO_FALLINGDETECT); if ((type & FDT_INTR_TYPE_NEG_EDGE) != 0) val |= pin_mask; else val &= ~pin_mask; WR4(sc, GPIO_FALLINGDETECT, val); /* Enable interrupts */ if (sc->sc_type == TI_GPIO_OMAP3) { val = RD4(sc, GPIO_IRQENABLE1); WR4(sc, GPIO_IRQENABLE1, val | pin_mask); } else { WR4(sc, GPIO_IRQENABLE1_SET, pin_mask); } return &sc->sc_intr[pin]; } static bool ti_gpio_intrstr(device_t dev, u_int *specifier, char *buf, size_t buflen) { struct ti_gpio_softc * const sc = device_private(dev); /* 1st cell is the pin */ /* 2nd cell is flags */ const u_int pin = be32toh(specifier[0]); if (pin >= __arraycount(sc->sc_pins)) return false; snprintf(buf, buflen, "%s pin %d", sc->sc_modname, pin); return true; } static struct fdtbus_interrupt_controller_func ti_gpio_intrfuncs = { .establish = ti_gpio_intr_establish, .disestablish = ti_gpio_intr_disestablish, .intrstr = ti_gpio_intrstr, }; static int ti_gpio_pin_read(void *priv, int pin) { struct ti_gpio_softc * const sc = priv; uint32_t data; int val; KASSERT(pin < __arraycount(sc->sc_pins)); const uint32_t data_mask = __BIT(pin); data = RD4(sc, GPIO_DATAIN); val = __SHIFTOUT(data, data_mask); return val; } static void ti_gpio_pin_write(void *priv, int pin, int val) { struct ti_gpio_softc * const sc = priv; KASSERT(pin < __arraycount(sc->sc_pins)); const u_int data_reg = val ? GPIO_SETDATAOUT : GPIO_CLEARDATAOUT; const uint32_t data_mask = __BIT(pin); WR4(sc, data_reg, data_mask); } static void ti_gpio_pin_ctl(void *priv, int pin, int flags) { struct ti_gpio_softc * const sc = priv; KASSERT(pin < __arraycount(sc->sc_pins)); mutex_enter(&sc->sc_lock); ti_gpio_ctl(sc, pin, flags); mutex_exit(&sc->sc_lock); } static void ti_gpio_attach_ports(struct ti_gpio_softc *sc) { struct gpio_chipset_tag *gp = &sc->sc_gp; struct gpiobus_attach_args gba; u_int pin; gp->gp_cookie = sc; gp->gp_pin_read = ti_gpio_pin_read; gp->gp_pin_write = ti_gpio_pin_write; gp->gp_pin_ctl = ti_gpio_pin_ctl; for (pin = 0; pin < __arraycount(sc->sc_pins); pin++) { sc->sc_pins[pin].pin_num = pin; sc->sc_pins[pin].pin_caps = GPIO_PIN_INPUT | GPIO_PIN_OUTPUT; sc->sc_pins[pin].pin_state = ti_gpio_pin_read(sc, pin); } memset(&gba, 0, sizeof(gba)); gba.gba_gc = gp; gba.gba_pins = sc->sc_pins; gba.gba_npins = __arraycount(sc->sc_pins); sc->sc_gpiodev = config_found_ia(sc->sc_dev, "gpiobus", &gba, NULL); } static int ti_gpio_intr(void *priv) { struct ti_gpio_softc * const sc = priv; uint32_t status; u_int bit; int rv = 0; status = RD4(sc, GPIO_IRQSTATUS1); WR4(sc, GPIO_IRQSTATUS1, status); while ((bit = ffs32(status)) != 0) { const u_int pin = bit - 1; const uint32_t pin_mask = __BIT(pin); struct ti_gpio_intr *intr = &sc->sc_intr[pin]; status &= ~pin_mask; if (intr->intr_func == NULL) continue; if (!intr->intr_mpsafe) KERNEL_LOCK(1, curlwp); rv |= intr->intr_func(intr->intr_arg); if (!intr->intr_mpsafe) KERNEL_UNLOCK_ONE(curlwp); } return rv; } static int ti_gpio_match(device_t parent, cfdata_t cf, void *aux) { struct fdt_attach_args * const faa = aux; return of_match_compat_data(faa->faa_phandle, compat_data); } static void ti_gpio_attach(device_t parent, device_t self, void *aux) { struct ti_gpio_softc * const sc = device_private(self); struct fdt_attach_args * const faa = aux; const int phandle = faa->faa_phandle; char intrstr[128]; bus_addr_t addr; bus_size_t size; if (fdtbus_get_reg(phandle, 0, &addr, &size) != 0) { aprint_error(": couldn't get registers\n"); return; } if (!fdtbus_intr_str(phandle, 0, intrstr, sizeof(intrstr))) { aprint_error(": couldn't decode interrupt\n"); return; } if (ti_prcm_enable_hwmod(phandle, 0) != 0) { aprint_error(": couldn't enable module\n"); return; } sc->sc_dev = self; sc->sc_bst = faa->faa_bst; if (bus_space_map(sc->sc_bst, addr, size, 0, &sc->sc_bsh) != 0) { aprint_error(": couldn't map registers\n"); return; } sc->sc_type = of_search_compatible(phandle, compat_data)->data; mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_VM); sc->sc_modname = fdtbus_get_string(phandle, "ti,hwmods"); if (sc->sc_modname == NULL) sc->sc_modname = fdtbus_get_string(OF_parent(phandle), "ti,hwmods"); aprint_naive("\n"); aprint_normal(": GPIO (%s)\n", sc->sc_modname); fdtbus_register_gpio_controller(self, phandle, &ti_gpio_funcs); ti_gpio_attach_ports(sc); sc->sc_ih = fdtbus_intr_establish(phandle, 0, IPL_VM, FDT_INTR_MPSAFE, ti_gpio_intr, sc); if (sc->sc_ih == NULL) { aprint_error_dev(self, "failed to establish interrupt on %s\n", intrstr); return; } aprint_normal_dev(self, "interrupting on %s\n", intrstr); fdtbus_register_interrupt_controller(self, phandle, &ti_gpio_intrfuncs); }