/* $NetBSD: arm32_machdep.c,v 1.128.2.1 2020/02/12 20:10:09 martin Exp $ */ /* * Copyright (c) 1994-1998 Mark Brinicombe. * Copyright (c) 1994 Brini. * All rights reserved. * * This code is derived from software written for Brini by Mark Brinicombe * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Mark Brinicombe * for the NetBSD Project. * 4. The name of the company nor the name of the author may be used to * endorse or promote products derived from this software without specific * prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * Machine dependent functions for kernel setup * * Created : 17/09/94 * Updated : 18/04/01 updated for new wscons */ #include __KERNEL_RCSID(0, "$NetBSD: arm32_machdep.c,v 1.128.2.1 2020/02/12 20:10:09 martin Exp $"); #include "opt_arm_debug.h" #include "opt_arm_start.h" #include "opt_fdt.h" #include "opt_modular.h" #include "opt_md.h" #include "opt_multiprocessor.h" #include "opt_pmap_debug.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if defined(FDT) #include #include #endif #ifdef VERBOSE_INIT_ARM #define VPRINTF(...) printf(__VA_ARGS__) #ifdef __HAVE_GENERIC_START void generic_prints(const char *); void generic_printx(int); #define VPRINTS(s) generic_prints(s) #define VPRINTX(x) generic_printx(x) #else #define VPRINTS(s) __nothing #define VPRINTX(x) __nothing #endif #else #define VPRINTF(...) __nothing #define VPRINTS(s) __nothing #define VPRINTX(x) __nothing #endif void (*cpu_reset_address)(void); /* Used by locore */ paddr_t cpu_reset_address_paddr; /* Used by locore */ struct vm_map *phys_map = NULL; #if defined(MEMORY_DISK_HOOKS) && !defined(MEMORY_DISK_ROOT_SIZE) extern size_t md_root_size; /* Memory disc size */ #endif /* MEMORY_DISK_HOOKS && !MEMORY_DISK_ROOT_SIZE */ pv_addr_t kernelstack; pv_addr_t abtstack; pv_addr_t fiqstack; pv_addr_t irqstack; pv_addr_t undstack; pv_addr_t idlestack; void * msgbufaddr; extern paddr_t msgbufphys; int kernel_debug = 0; int cpu_printfataltraps = 0; int cpu_fpu_present; int cpu_hwdiv_present; int cpu_neon_present; int cpu_simd_present; int cpu_simdex_present; int cpu_umull_present; int cpu_synchprim_present; int cpu_unaligned_sigbus; const char *cpu_arch = ""; int cpu_instruction_set_attributes[6]; int cpu_memory_model_features[4]; int cpu_processor_features[2]; int cpu_media_and_vfp_features[2]; /* exported variable to be filled in by the bootloaders */ char *booted_kernel; /* Prototypes */ void data_abort_handler(trapframe_t *frame); void prefetch_abort_handler(trapframe_t *frame); extern void configure(void); /* * arm32_vector_init: * * Initialize the vector page, and select whether or not to * relocate the vectors. * * NOTE: We expect the vector page to be mapped at its expected * destination. */ void arm32_vector_init(vaddr_t va, int which) { #if defined(CPU_ARMV7) || defined(CPU_ARM11) || defined(ARM_HAS_VBAR) /* * If this processor has the security extension, don't bother * to move/map the vector page. Simply point VBAR to the copy * that exists in the .text segment. */ #ifndef ARM_HAS_VBAR if (va == ARM_VECTORS_LOW && (armreg_pfr1_read() & ARM_PFR1_SEC_MASK) != 0) { #endif extern const uint32_t page0rel[]; vector_page = (vaddr_t)page0rel; KASSERT((vector_page & 0x1f) == 0); armreg_vbar_write(vector_page); VPRINTF(" vbar=%p", page0rel); cpu_control(CPU_CONTROL_VECRELOC, 0); return; #ifndef ARM_HAS_VBAR } #endif #endif #ifndef ARM_HAS_VBAR if (CPU_IS_PRIMARY(curcpu())) { extern unsigned int page0[], page0_data[]; unsigned int *vectors = (int *) va; unsigned int *vectors_data = vectors + (page0_data - page0); int vec; /* * Loop through the vectors we're taking over, and copy the * vector's insn and data word. */ for (vec = 0; vec < ARM_NVEC; vec++) { if ((which & (1 << vec)) == 0) { /* Don't want to take over this vector. */ continue; } vectors[vec] = page0[vec]; vectors_data[vec] = page0_data[vec]; } /* Now sync the vectors. */ cpu_icache_sync_range(va, (ARM_NVEC * 2) * sizeof(u_int)); vector_page = va; } if (va == ARM_VECTORS_HIGH) { /* * Assume the MD caller knows what it's doing here, and * really does want the vector page relocated. * * Note: This has to be done here (and not just in * cpu_setup()) because the vector page needs to be * accessible *before* cpu_startup() is called. * Think ddb(9) ... * * NOTE: If the CPU control register is not readable, * this will totally fail! We'll just assume that * any system that has high vector support has a * readable CPU control register, for now. If we * ever encounter one that does not, we'll have to * rethink this. */ cpu_control(CPU_CONTROL_VECRELOC, CPU_CONTROL_VECRELOC); } #endif } /* * Debug function just to park the CPU */ void halt(void) { while (1) cpu_sleep(0); } /* Sync the discs, unmount the filesystems, and adjust the todr */ void bootsync(void) { static bool bootsyncdone = false; if (bootsyncdone) return; bootsyncdone = true; /* Make sure we can still manage to do things */ if (GetCPSR() & I32_bit) { /* * If we get here then boot has been called without RB_NOSYNC * and interrupts were disabled. This means the boot() call * did not come from a user process e.g. shutdown, but must * have come from somewhere in the kernel. */ IRQenable; printf("Warning IRQ's disabled during boot()\n"); } vfs_shutdown(); resettodr(); } /* * void cpu_startup(void) * * Machine dependent startup code. * */ void cpu_startup(void) { vaddr_t minaddr; vaddr_t maxaddr; #ifndef __HAVE_GENERIC_START /* Set the CPU control register */ cpu_setup(boot_args); #endif #ifndef ARM_HAS_VBAR /* Lock down zero page */ vector_page_setprot(VM_PROT_READ); #endif /* * Give pmap a chance to set up a few more things now the vm * is initialised */ pmap_postinit(); #ifdef FDT if (arm_fdt_platform()->ap_startup != NULL) arm_fdt_platform()->ap_startup(); #endif /* * Initialize error message buffer (at end of core). */ /* msgbufphys was setup during the secondary boot strap */ if (!pmap_extract(pmap_kernel(), (vaddr_t)msgbufaddr, NULL)) { for (u_int loop = 0; loop < btoc(MSGBUFSIZE); ++loop) { pmap_kenter_pa((vaddr_t)msgbufaddr + loop * PAGE_SIZE, msgbufphys + loop * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, 0); } } pmap_update(pmap_kernel()); initmsgbuf(msgbufaddr, round_page(MSGBUFSIZE)); /* * Allocate a submap for physio */ minaddr = 0; phys_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr, VM_PHYS_SIZE, 0, false, NULL); banner(); /* * This is actually done by initarm_common, but not all ports use it * yet so do it here to catch them as well */ struct lwp * const l = &lwp0; struct pcb * const pcb = lwp_getpcb(l); /* Zero out the PCB. */ memset(pcb, 0, sizeof(*pcb)); pcb->pcb_ksp = uvm_lwp_getuarea(l) + USPACE_SVC_STACK_TOP; pcb->pcb_ksp -= sizeof(struct trapframe); struct trapframe * tf = (struct trapframe *)pcb->pcb_ksp; /* Zero out the trapframe. */ memset(tf, 0, sizeof(*tf)); lwp_settrapframe(l, tf); #if defined(__ARMEB__) tf->tf_spsr = PSR_USR32_MODE | (CPU_IS_ARMV7_P() ? PSR_E_BIT : 0); #else tf->tf_spsr = PSR_USR32_MODE; #endif cpu_startup_hook(); } __weak_alias(cpu_startup_hook,cpu_startup_default) void cpu_startup_default(void) { } /* * machine dependent system variables. */ static int sysctl_machdep_booted_device(SYSCTLFN_ARGS) { struct sysctlnode node; if (booted_device == NULL) return (EOPNOTSUPP); node = *rnode; node.sysctl_data = __UNCONST(device_xname(booted_device)); node.sysctl_size = strlen(device_xname(booted_device)) + 1; return (sysctl_lookup(SYSCTLFN_CALL(&node))); } static int sysctl_machdep_booted_kernel(SYSCTLFN_ARGS) { struct sysctlnode node; if (booted_kernel == NULL || booted_kernel[0] == '\0') return (EOPNOTSUPP); node = *rnode; node.sysctl_data = booted_kernel; node.sysctl_size = strlen(booted_kernel) + 1; return (sysctl_lookup(SYSCTLFN_CALL(&node))); } static int sysctl_machdep_cpu_arch(SYSCTLFN_ARGS) { struct sysctlnode node = *rnode; node.sysctl_data = __UNCONST(cpu_arch); node.sysctl_size = strlen(cpu_arch) + 1; return sysctl_lookup(SYSCTLFN_CALL(&node)); } static int sysctl_machdep_powersave(SYSCTLFN_ARGS) { struct sysctlnode node = *rnode; int error, newval; newval = cpu_do_powersave; node.sysctl_data = &newval; if (cpufuncs.cf_sleep == (void *) cpufunc_nullop) node.sysctl_flags &= ~CTLFLAG_READWRITE; error = sysctl_lookup(SYSCTLFN_CALL(&node)); if (error || newp == NULL || newval == cpu_do_powersave) return (error); if (newval < 0 || newval > 1) return (EINVAL); cpu_do_powersave = newval; return (0); } SYSCTL_SETUP(sysctl_machdep_setup, "sysctl machdep subtree setup") { sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT, CTLTYPE_NODE, "machdep", NULL, NULL, 0, NULL, 0, CTL_MACHDEP, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "debug", NULL, NULL, 0, &kernel_debug, 0, CTL_MACHDEP, CPU_DEBUG, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT, CTLTYPE_STRING, "booted_device", NULL, sysctl_machdep_booted_device, 0, NULL, 0, CTL_MACHDEP, CPU_BOOTED_DEVICE, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT, CTLTYPE_STRING, "booted_kernel", NULL, sysctl_machdep_booted_kernel, 0, NULL, 0, CTL_MACHDEP, CPU_BOOTED_KERNEL, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT, CTLTYPE_STRUCT, "console_device", NULL, sysctl_consdev, 0, NULL, sizeof(dev_t), CTL_MACHDEP, CPU_CONSDEV, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT, CTLTYPE_STRING, "cpu_arch", NULL, sysctl_machdep_cpu_arch, 0, NULL, 0, CTL_MACHDEP, CTL_CREATE, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "powersave", NULL, sysctl_machdep_powersave, 0, &cpu_do_powersave, 0, CTL_MACHDEP, CPU_POWERSAVE, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE, CTLTYPE_INT, "cpu_id", NULL, NULL, curcpu()->ci_arm_cpuid, NULL, 0, CTL_MACHDEP, CTL_CREATE, CTL_EOL); #ifdef FPU_VFP sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READONLY, CTLTYPE_INT, "fpu_id", NULL, NULL, 0, &cpu_info_store.ci_vfp_id, 0, CTL_MACHDEP, CTL_CREATE, CTL_EOL); #endif sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READONLY, CTLTYPE_INT, "fpu_present", NULL, NULL, 0, &cpu_fpu_present, 0, CTL_MACHDEP, CTL_CREATE, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READONLY, CTLTYPE_INT, "hwdiv_present", NULL, NULL, 0, &cpu_hwdiv_present, 0, CTL_MACHDEP, CTL_CREATE, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READONLY, CTLTYPE_INT, "neon_present", NULL, NULL, 0, &cpu_neon_present, 0, CTL_MACHDEP, CTL_CREATE, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READONLY, CTLTYPE_STRUCT, "id_isar", NULL, NULL, 0, cpu_instruction_set_attributes, sizeof(cpu_instruction_set_attributes), CTL_MACHDEP, CTL_CREATE, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READONLY, CTLTYPE_STRUCT, "id_mmfr", NULL, NULL, 0, cpu_memory_model_features, sizeof(cpu_memory_model_features), CTL_MACHDEP, CTL_CREATE, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READONLY, CTLTYPE_STRUCT, "id_pfr", NULL, NULL, 0, cpu_processor_features, sizeof(cpu_processor_features), CTL_MACHDEP, CTL_CREATE, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READONLY, CTLTYPE_STRUCT, "id_mvfr", NULL, NULL, 0, cpu_media_and_vfp_features, sizeof(cpu_media_and_vfp_features), CTL_MACHDEP, CTL_CREATE, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READONLY, CTLTYPE_INT, "simd_present", NULL, NULL, 0, &cpu_simd_present, 0, CTL_MACHDEP, CTL_CREATE, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READONLY, CTLTYPE_INT, "simdex_present", NULL, NULL, 0, &cpu_simdex_present, 0, CTL_MACHDEP, CTL_CREATE, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READONLY, CTLTYPE_INT, "synchprim_present", NULL, NULL, 0, &cpu_synchprim_present, 0, CTL_MACHDEP, CTL_CREATE, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "printfataltraps", NULL, NULL, 0, &cpu_printfataltraps, 0, CTL_MACHDEP, CTL_CREATE, CTL_EOL); cpu_unaligned_sigbus = !CPU_IS_ARMV6_P() && !CPU_IS_ARMV7_P(); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READONLY, CTLTYPE_INT, "unaligned_sigbus", SYSCTL_DESCR("Do SIGBUS for fixed unaligned accesses"), NULL, 0, &cpu_unaligned_sigbus, 0, CTL_MACHDEP, CTL_CREATE, CTL_EOL); } void parse_mi_bootargs(char *args) { int integer; if (get_bootconf_option(args, "single", BOOTOPT_TYPE_BOOLEAN, &integer) || get_bootconf_option(args, "-s", BOOTOPT_TYPE_BOOLEAN, &integer)) if (integer) boothowto |= RB_SINGLE; if (get_bootconf_option(args, "kdb", BOOTOPT_TYPE_BOOLEAN, &integer) || get_bootconf_option(args, "-k", BOOTOPT_TYPE_BOOLEAN, &integer) || get_bootconf_option(args, "-d", BOOTOPT_TYPE_BOOLEAN, &integer)) if (integer) boothowto |= RB_KDB; if (get_bootconf_option(args, "ask", BOOTOPT_TYPE_BOOLEAN, &integer) || get_bootconf_option(args, "-a", BOOTOPT_TYPE_BOOLEAN, &integer)) if (integer) boothowto |= RB_ASKNAME; #ifdef PMAP_DEBUG if (get_bootconf_option(args, "pmapdebug", BOOTOPT_TYPE_INT, &integer)) { pmap_debug_level = integer; pmap_debug(pmap_debug_level); } #endif /* PMAP_DEBUG */ /* if (get_bootconf_option(args, "nbuf", BOOTOPT_TYPE_INT, &integer)) bufpages = integer;*/ #if defined(MEMORY_DISK_HOOKS) && !defined(MEMORY_DISK_ROOT_SIZE) if (get_bootconf_option(args, "memorydisc", BOOTOPT_TYPE_INT, &integer) || get_bootconf_option(args, "memorydisk", BOOTOPT_TYPE_INT, &integer)) { md_root_size = integer; md_root_size *= 1024; if (md_root_size < 32*1024) md_root_size = 32*1024; if (md_root_size > 2048*1024) md_root_size = 2048*1024; } #endif /* MEMORY_DISK_HOOKS && !MEMORY_DISK_ROOT_SIZE */ if (get_bootconf_option(args, "quiet", BOOTOPT_TYPE_BOOLEAN, &integer) || get_bootconf_option(args, "-q", BOOTOPT_TYPE_BOOLEAN, &integer)) if (integer) boothowto |= AB_QUIET; if (get_bootconf_option(args, "verbose", BOOTOPT_TYPE_BOOLEAN, &integer) || get_bootconf_option(args, "-v", BOOTOPT_TYPE_BOOLEAN, &integer)) if (integer) boothowto |= AB_VERBOSE; if (get_bootconf_option(args, "debug", BOOTOPT_TYPE_BOOLEAN, &integer) || get_bootconf_option(args, "-x", BOOTOPT_TYPE_BOOLEAN, &integer)) if (integer) boothowto |= AB_DEBUG; } #ifdef __HAVE_FAST_SOFTINTS #if IPL_SOFTSERIAL != IPL_SOFTNET + 1 #error IPLs are screwed up #elif IPL_SOFTNET != IPL_SOFTBIO + 1 #error IPLs are screwed up #elif IPL_SOFTBIO != IPL_SOFTCLOCK + 1 #error IPLs are screwed up #elif !(IPL_SOFTCLOCK > IPL_NONE) #error IPLs are screwed up #elif (IPL_NONE != 0) #error IPLs are screwed up #endif #ifndef __HAVE_PIC_FAST_SOFTINTS #define SOFTINT2IPLMAP \ (((IPL_SOFTSERIAL - IPL_SOFTCLOCK) << (SOFTINT_SERIAL * 4)) | \ ((IPL_SOFTNET - IPL_SOFTCLOCK) << (SOFTINT_NET * 4)) | \ ((IPL_SOFTBIO - IPL_SOFTCLOCK) << (SOFTINT_BIO * 4)) | \ ((IPL_SOFTCLOCK - IPL_SOFTCLOCK) << (SOFTINT_CLOCK * 4))) #define SOFTINT2IPL(l) ((SOFTINT2IPLMAP >> ((l) * 4)) & 0x0f) /* * This returns a mask of softint IPLs that be dispatch at * SOFTIPLMASK(IPL_NONE) = 0x0000000f * SOFTIPLMASK(IPL_SOFTCLOCK) = 0x0000000e * SOFTIPLMASK(IPL_SOFTBIO) = 0x0000000c * SOFTIPLMASK(IPL_SOFTNET) = 0x00000008 * SOFTIPLMASK(IPL_SOFTSERIAL) = 0x00000000 */ #define SOFTIPLMASK(ipl) ((0x0f << (ipl)) & 0x0f) void softint_switch(lwp_t *, int); void softint_trigger(uintptr_t mask) { curcpu()->ci_softints |= mask; } void softint_init_md(lwp_t *l, u_int level, uintptr_t *machdep) { lwp_t ** lp = &l->l_cpu->ci_softlwps[level]; KASSERT(*lp == NULL || *lp == l); *lp = l; *machdep = 1 << SOFTINT2IPL(level); KASSERT(level != SOFTINT_CLOCK || *machdep == (1 << (IPL_SOFTCLOCK - IPL_SOFTCLOCK))); KASSERT(level != SOFTINT_BIO || *machdep == (1 << (IPL_SOFTBIO - IPL_SOFTCLOCK))); KASSERT(level != SOFTINT_NET || *machdep == (1 << (IPL_SOFTNET - IPL_SOFTCLOCK))); KASSERT(level != SOFTINT_SERIAL || *machdep == (1 << (IPL_SOFTSERIAL - IPL_SOFTCLOCK))); } void dosoftints(void) { struct cpu_info * const ci = curcpu(); const int opl = ci->ci_cpl; const uint32_t softiplmask = SOFTIPLMASK(opl); splhigh(); for (;;) { u_int softints = ci->ci_softints & softiplmask; KASSERT((softints != 0) == ((ci->ci_softints >> opl) != 0)); KASSERT(opl == IPL_NONE || (softints & (1 << (opl - IPL_SOFTCLOCK))) == 0); if (softints == 0) { splx(opl); return; } #define DOSOFTINT(n) \ if (ci->ci_softints & (1 << (IPL_SOFT ## n - IPL_SOFTCLOCK))) { \ ci->ci_softints &= \ ~(1 << (IPL_SOFT ## n - IPL_SOFTCLOCK)); \ softint_switch(ci->ci_softlwps[SOFTINT_ ## n], \ IPL_SOFT ## n); \ continue; \ } DOSOFTINT(SERIAL); DOSOFTINT(NET); DOSOFTINT(BIO); DOSOFTINT(CLOCK); panic("dosoftints wtf (softints=%u?, ipl=%d)", softints, opl); } } #endif /* !__HAVE_PIC_FAST_SOFTINTS */ #endif /* __HAVE_FAST_SOFTINTS */ #ifdef MODULAR /* * Push any modules loaded by the boot loader. */ void module_init_md(void) { } #endif /* MODULAR */ int mm_md_physacc(paddr_t pa, vm_prot_t prot) { if (pa >= physical_start && pa < physical_end) return 0; return kauth_authorize_machdep(kauth_cred_get(), KAUTH_MACHDEP_UNMANAGEDMEM, NULL, NULL, NULL, NULL); } #ifdef __HAVE_CPU_UAREA_ALLOC_IDLELWP vaddr_t cpu_uarea_alloc_idlelwp(struct cpu_info *ci) { const vaddr_t va = idlestack.pv_va + cpu_index(ci) * USPACE; // printf("%s: %s: va=%lx\n", __func__, ci->ci_data.cpu_name, va); return va; } #endif #ifdef MULTIPROCESSOR /* * Initialise a secondary processor. * * printf isn't available to us for a number of reasons. * * - kprint_init has been called and printf will try to take locks which we * can't do just yet because bootstrap translation tables do not allowing * caching. * * - kmutex(9) relies on curcpu which isn't setup yet. * */ void cpu_init_secondary_processor(int cpuindex) { // pmap_kernel has been sucessfully built and we can switch to it cpu_domains(DOMAIN_DEFAULT); cpu_idcache_wbinv_all(); VPRINTS("index: "); VPRINTX(cpuindex); VPRINTS(" ttb"); cpu_setup(boot_args); #ifdef ARM_MMU_EXTENDED /* * TTBCR should have been initialized by the MD start code. */ KASSERT((armreg_contextidr_read() & 0xff) == 0); KASSERT(armreg_ttbcr_read() == __SHIFTIN(1, TTBCR_S_N)); /* * Disable lookups via TTBR0 until there is an activated pmap. */ armreg_ttbcr_write(armreg_ttbcr_read() | TTBCR_S_PD0); cpu_setttb(pmap_kernel()->pm_l1_pa , KERNEL_PID); arm_isb(); #else cpu_setttb(pmap_kernel()->pm_l1->l1_physaddr, true); #endif cpu_tlb_flushID(); VPRINTS(" (TTBR0="); VPRINTX(armreg_ttbr_read()); VPRINTS(")"); #ifdef ARM_MMU_EXTENDED VPRINTS(" (TTBR1="); VPRINTX(armreg_ttbr1_read()); VPRINTS(")"); VPRINTS(" (TTBCR="); VPRINTX(armreg_ttbcr_read()); VPRINTS(")"); #endif VPRINTS(" hatched="); VPRINTX(arm_cpu_hatched | __BIT(cpuindex)); VPRINTS("\n\r"); atomic_or_uint(&arm_cpu_hatched, __BIT(cpuindex)); /* return to assembly to wait for cpu_boot_secondary_processors */ } void cpu_boot_secondary_processors(void) { VPRINTF("%s: writing mbox with %#x\n", __func__, arm_cpu_hatched); arm_cpu_mbox = arm_cpu_hatched; membar_producer(); #ifdef _ARM_ARCH_7 __asm __volatile("sev; sev; sev"); #endif while (membar_consumer(), arm_cpu_mbox) { __asm __volatile("wfe" ::: "memory"); } } void xc_send_ipi(struct cpu_info *ci) { KASSERT(kpreempt_disabled()); KASSERT(curcpu() != ci); intr_ipi_send(ci != NULL ? ci->ci_kcpuset : NULL, IPI_XCALL); } void cpu_ipi(struct cpu_info *ci) { KASSERT(kpreempt_disabled()); KASSERT(curcpu() != ci); intr_ipi_send(ci != NULL ? ci->ci_kcpuset : NULL, IPI_GENERIC); } #endif /* MULTIPROCESSOR */ #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS bool mm_md_direct_mapped_phys(paddr_t pa, vaddr_t *vap) { bool rv; vaddr_t va = pmap_direct_mapped_phys(pa, &rv, 0); if (rv) { *vap = va; } return rv; } #endif bool mm_md_page_color(paddr_t pa, int *colorp) { #if (ARM_MMU_V6 + ARM_MMU_V7) != 0 *colorp = atop(pa & arm_cache_prefer_mask); return arm_cache_prefer_mask ? false : true; #else *colorp = 0; return true; #endif } #if defined(FDT) extern char KERNEL_BASE_phys[]; #define KERNEL_BASE_PHYS ((paddr_t)KERNEL_BASE_phys) void cpu_kernel_vm_init(paddr_t memory_start, psize_t memory_size) { const struct arm_platform *plat = arm_fdt_platform(); #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS const bool mapallmem_p = true; #ifndef PMAP_NEED_ALLOC_POOLPAGE if (memory_size > KERNEL_VM_BASE - KERNEL_BASE) { VPRINTF("%s: dropping RAM size from %luMB to %uMB\n", __func__, (unsigned long) (memory_size >> 20), (KERNEL_VM_BASE - KERNEL_BASE) >> 20); memory_size = KERNEL_VM_BASE - KERNEL_BASE; } #endif #else const bool mapallmem_p = false; #endif VPRINTF("%s: kernel phys start %" PRIxPADDR " end %" PRIxPADDR "\n", __func__, memory_start, memory_start + memory_size); arm32_bootmem_init(memory_start, memory_size, KERNEL_BASE_PHYS); arm32_kernel_vm_init(KERNEL_VM_BASE, ARM_VECTORS_HIGH, 0, plat->ap_devmap(), mapallmem_p); } #endif