dnl AMD64 mpn_lshift optimised for CPUs with fast SSE. dnl Contributed to the GNU project by David Harvey and Torbjorn Granlund. dnl Copyright 2010, 2011, 2012 Free Software Foundation, Inc. dnl This file is part of the GNU MP Library. dnl The GNU MP Library is free software; you can redistribute it and/or modify dnl it under the terms of the GNU Lesser General Public License as published dnl by the Free Software Foundation; either version 3 of the License, or (at dnl your option) any later version. dnl The GNU MP Library is distributed in the hope that it will be useful, but dnl WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY dnl or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public dnl License for more details. dnl You should have received a copy of the GNU Lesser General Public License dnl along with the GNU MP Library. If not, see http://www.gnu.org/licenses/. include(`../config.m4') C cycles/limb cycles/limb good C 16-byte aligned 16-byte unaligned for cpu? C AMD K8,K9 ? ? C AMD K10 1.68 (1.45) 1.75 (1.49) Y C AMD bd1 1.82 (1.75) 1.82 (1.75) Y C AMD bobcat 4 4 C Intel P4 3 (2.7) 3 (2.7) Y C Intel core2 2.05 (1.67) 2.55 (1.75) C Intel NHM 2.05 (1.75) 2.09 (2) C Intel SBR 1.5 (1.3125) 1.5 (1.4375) Y C Intel atom ? ? C VIA nano 2.25 (2) 2.5 (2) Y C We try to do as many 16-byte operations as possible. The top-most and C bottom-most writes might need 8-byte operations. C There are two inner-loops, one for when rp = ap (mod 16) and one when this is C not true. The aligned case reads 16+8 bytes, the unaligned case reads C 16+8+X bytes, where X is 8 or 16 depending on how punpcklqdq is implemented. C This is not yet great code: C (1) The unaligned case makes many reads. C (2) We should do some unrolling, at least 2-way. C With 2-way unrolling but no scheduling we reach 1.5 c/l on K10 and 2 c/l on C Nano. C INPUT PARAMETERS define(`rp', `%rdi') define(`ap', `%rsi') define(`n', `%rdx') define(`cnt', `%rcx') ASM_START() TEXT ALIGN(64) PROLOGUE(mpn_lshift) movd R32(%rcx), %xmm4 mov $64, R32(%rax) sub R32(%rcx), R32(%rax) movd R32(%rax), %xmm5 neg R32(%rcx) mov -8(ap,n,8), %rax shr R8(%rcx), %rax cmp $2, n jle L(le2) lea (rp,n,8), R32(%rcx) test $8, R8(%rcx) je L(rp_aligned) C Do one initial limb in order to make rp aligned movq -8(ap,n,8), %xmm0 movq -16(ap,n,8), %xmm1 psllq %xmm4, %xmm0 psrlq %xmm5, %xmm1 por %xmm1, %xmm0 movq %xmm0, -8(rp,n,8) dec n L(rp_aligned): lea (ap,n,8), R32(%rcx) test $8, R8(%rcx) je L(aent) jmp L(uent) C ***************************************************************************** C Handle the case when ap != rp (mod 16). ALIGN(16) L(utop):movdqa -8(ap,n,8), %xmm0 movq (ap,n,8), %xmm1 punpcklqdq 8(ap,n,8), %xmm1 psllq %xmm4, %xmm1 psrlq %xmm5, %xmm0 por %xmm1, %xmm0 movdqa %xmm0, (rp,n,8) L(uent):sub $2, n ja L(utop) jne L(end8) movq (ap), %xmm1 pxor %xmm0, %xmm0 punpcklqdq %xmm1, %xmm0 punpcklqdq 8(ap), %xmm1 psllq %xmm4, %xmm1 psrlq %xmm5, %xmm0 por %xmm1, %xmm0 movdqa %xmm0, (rp) ret C ***************************************************************************** C Handle the case when ap = rp (mod 16). ALIGN(16) L(atop):movdqa (ap,n,8), %xmm0 C xmm0 = B*ap[n-1] + ap[n-2] movq -8(ap,n,8), %xmm1 C xmm1 = ap[n-3] punpcklqdq %xmm0, %xmm1 C xmm1 = B*ap[n-2] + ap[n-3] psllq %xmm4, %xmm0 psrlq %xmm5, %xmm1 por %xmm1, %xmm0 movdqa %xmm0, (rp,n,8) L(aent): sub $2, n ja L(atop) jne L(end8) movdqa (ap), %xmm1 pxor %xmm0, %xmm0 punpcklqdq %xmm1, %xmm0 psllq %xmm4, %xmm1 psrlq %xmm5, %xmm0 por %xmm1, %xmm0 movdqa %xmm0, (rp) ret C ***************************************************************************** ALIGN(16) L(le2): jne L(end8) movq 8(ap), %xmm0 movq (ap), %xmm1 psllq %xmm4, %xmm0 psrlq %xmm5, %xmm1 por %xmm1, %xmm0 movq %xmm0, 8(rp) L(end8):movq (ap), %xmm0 psllq %xmm4, %xmm0 movq %xmm0, (rp) ret EPILOGUE()