/* $NetBSD: fault.c,v 1.118 2023/10/06 09:53:02 martin Exp $ */ /* * Copyright 2003 Wasabi Systems, Inc. * All rights reserved. * * Written by Steve C. Woodford for Wasabi Systems, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed for the NetBSD Project by * Wasabi Systems, Inc. * 4. The name of Wasabi Systems, Inc. may not be used to endorse * or promote products derived from this software without specific prior * written permission. * * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Copyright (c) 1994-1997 Mark Brinicombe. * Copyright (c) 1994 Brini. * All rights reserved. * * This code is derived from software written for Brini by Mark Brinicombe * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Brini. * 4. The name of the company nor the name of the author may be used to * endorse or promote products derived from this software without specific * prior written permission. * * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * RiscBSD kernel project * * fault.c * * Fault handlers * * Created : 28/11/94 */ #include "opt_ddb.h" #include "opt_kgdb.h" #include "opt_multiprocessor.h" #include __KERNEL_RCSID(0, "$NetBSD: fault.c,v 1.118 2023/10/06 09:53:02 martin Exp $"); #include #include #include #include #include #include #include #include #include #ifdef UVMHIST #include #endif #include #include #if defined(DDB) || defined(KGDB) #include #ifdef KGDB #include #endif #if !defined(DDB) #define kdb_trap kgdb_trap #endif #endif #include #include #if defined(DEBUG) && !defined(MULTIPROCESSOR) int last_fault_code; /* For the benefit of pmap_fault_fixup() */ #endif #if defined(CPU_ARM6) || defined(CPU_ARM7) || defined(CPU_ARM7TDMI) /* These CPUs may need data/prefetch abort fixups */ #define CPU_ABORT_FIXUP_REQUIRED #endif struct data_abort { int (*func)(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *); const char *desc; }; static int dab_fatal(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *); static int dab_align(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *); static int dab_buserr(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *); static const struct data_abort data_aborts[] = { {dab_fatal, "Vector Exception"}, {dab_align, "Alignment Fault 1"}, {dab_fatal, "Terminal Exception"}, {dab_align, "Alignment Fault 3"}, {dab_buserr, "External Linefetch Abort (S)"}, {NULL, "Translation Fault (S)"}, {dab_buserr, "External Linefetch Abort (P)"}, {NULL, "Translation Fault (P)"}, {dab_buserr, "External Non-Linefetch Abort (S)"}, {NULL, "Domain Fault (S)"}, {dab_buserr, "External Non-Linefetch Abort (P)"}, {NULL, "Domain Fault (P)"}, {dab_buserr, "External Translation Abort (L1)"}, {NULL, "Permission Fault (S)"}, {dab_buserr, "External Translation Abort (L2)"}, {NULL, "Permission Fault (P)"} }; /* Determine if 'x' is a permission fault */ #define IS_PERMISSION_FAULT(x) \ (((1 << ((x) & FAULT_TYPE_MASK)) & \ ((1 << FAULT_PERM_P) | (1 << FAULT_PERM_S))) != 0) #if 0 /* maybe one day we'll do emulations */ #define TRAPSIGNAL(l,k) (*(l)->l_proc->p_emul->e_trapsignal)((l), (k)) #else #define TRAPSIGNAL(l,k) trapsignal((l), (k)) #endif static inline void call_trapsignal(struct lwp *l, const struct trapframe *tf, ksiginfo_t *ksi) { if (l->l_proc->p_pid == 1 || cpu_printfataltraps) { printf("%d.%d(%s): trap: signo=%d code=%d addr=%p trap=%#x\n", l->l_proc->p_pid, l->l_lid, l->l_proc->p_comm, ksi->ksi_signo, ksi->ksi_code, ksi->ksi_addr, ksi->ksi_trap); printf("r0=%08x r1=%08x r2=%08x r3=%08x\n", tf->tf_r0, tf->tf_r1, tf->tf_r2, tf->tf_r3); printf("r4=%08x r5=%08x r6=%08x r7=%08x\n", tf->tf_r4, tf->tf_r5, tf->tf_r6, tf->tf_r7); printf("r8=%08x r9=%08x rA=%08x rB=%08x\n", tf->tf_r8, tf->tf_r9, tf->tf_r10, tf->tf_r11); printf("ip=%08x sp=%08x lr=%08x pc=%08x spsr=%08x\n", tf->tf_r12, tf->tf_usr_sp, tf->tf_usr_lr, tf->tf_pc, tf->tf_spsr); } TRAPSIGNAL(l, ksi); } static inline int data_abort_fixup(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l) { #ifdef CPU_ABORT_FIXUP_REQUIRED int error; /* Call the CPU specific data abort fixup routine */ error = cpu_dataabt_fixup(tf); if (__predict_true(error != ABORT_FIXUP_FAILED)) return error; /* * Oops, couldn't fix up the instruction */ printf("%s: fixup for %s mode data abort failed.\n", __func__, TRAP_USERMODE(tf) ? "user" : "kernel"); #ifdef THUMB_CODE if (tf->tf_spsr & PSR_T_bit) { printf("pc = 0x%08x, opcode 0x%04x, 0x%04x, insn = ", tf->tf_pc, *((uint16 *)(tf->tf_pc & ~1)), *((uint16 *)((tf->tf_pc + 2) & ~1))); } else #endif { printf("pc = 0x%08x, opcode 0x%08x, insn = ", tf->tf_pc, *((u_int *)tf->tf_pc)); } disassemble(tf->tf_pc); /* Die now if this happened in kernel mode */ if (!TRAP_USERMODE(tf)) dab_fatal(tf, fsr, far, l, NULL); return error; #else return ABORT_FIXUP_OK; #endif /* CPU_ABORT_FIXUP_REQUIRED */ } void data_abort_handler(trapframe_t *tf) { struct vm_map *map; struct lwp * const l = curlwp; struct cpu_info * const ci = curcpu(); u_int far, fsr; vm_prot_t ftype; void *onfault; vaddr_t va; int error; ksiginfo_t ksi; UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist); /* Grab FAR/FSR before enabling interrupts */ far = cpu_faultaddress(); fsr = cpu_faultstatus(); /* Update vmmeter statistics */ ci->ci_data.cpu_ntrap++; /* Re-enable interrupts if they were enabled previously */ KASSERT(!TRAP_USERMODE(tf) || VALID_PSR(tf->tf_spsr)); #ifdef __NO_FIQ if (__predict_true((tf->tf_spsr & I32_bit) != I32_bit)) restore_interrupts(tf->tf_spsr & IF32_bits); #else if (__predict_true((tf->tf_spsr & IF32_bits) != IF32_bits)) restore_interrupts(tf->tf_spsr & IF32_bits); #endif /* Get the current lwp structure */ UVMHIST_LOG(maphist, " (l=%#jx, far=%#jx, fsr=%#jx", (uintptr_t)l, far, fsr, 0); UVMHIST_LOG(maphist, " tf=%#jx, pc=%#jx)", (uintptr_t)tf, (uintptr_t)tf->tf_pc, 0, 0); /* Data abort came from user mode? */ bool user = (TRAP_USERMODE(tf) != 0); /* Grab the current pcb */ struct pcb * const pcb = lwp_getpcb(l); curcpu()->ci_abt_evs[fsr & FAULT_TYPE_MASK].ev_count++; /* Invoke the appropriate handler, if necessary */ if (__predict_false(data_aborts[fsr & FAULT_TYPE_MASK].func != NULL)) { #ifdef DIAGNOSTIC printf("%s: data_aborts fsr=0x%x far=0x%x\n", __func__, fsr, far); #endif if ((data_aborts[fsr & FAULT_TYPE_MASK].func)(tf, fsr, far, l, &ksi)) goto do_trapsignal; goto out; } /* * At this point, we're dealing with one of the following data aborts: * * FAULT_TRANS_S - Translation -- Section * FAULT_TRANS_P - Translation -- Page * FAULT_DOMAIN_S - Domain -- Section * FAULT_DOMAIN_P - Domain -- Page * FAULT_PERM_S - Permission -- Section * FAULT_PERM_P - Permission -- Page * * These are the main virtual memory-related faults signalled by * the MMU. */ KASSERTMSG(!user || tf == lwp_trapframe(l), "tf %p vs %p", tf, lwp_trapframe(l)); /* * Make sure the Program Counter is sane. We could fall foul of * someone executing Thumb code, in which case the PC might not * be word-aligned. This would cause a kernel alignment fault * further down if we have to decode the current instruction. */ #ifdef THUMB_CODE /* * XXX: It would be nice to be able to support Thumb in the kernel * at some point. */ if (__predict_false(!user && (tf->tf_pc & 3) != 0)) { printf("\n%s: Misaligned Kernel-mode Program Counter\n", __func__); dab_fatal(tf, fsr, far, l, NULL); } #else if (__predict_false((tf->tf_pc & 3) != 0)) { if (user) { /* * Give the user an illegal instruction signal. */ /* Deliver a SIGILL to the process */ KSI_INIT_TRAP(&ksi); ksi.ksi_signo = SIGILL; ksi.ksi_code = ILL_ILLOPC; ksi.ksi_addr = (uint32_t *)(intptr_t) far; ksi.ksi_trap = fsr; goto do_trapsignal; } /* * The kernel never executes Thumb code. */ printf("\n%s: Misaligned Kernel-mode Program Counter\n", __func__); dab_fatal(tf, fsr, far, l, NULL); } #endif /* See if the CPU state needs to be fixed up */ switch (data_abort_fixup(tf, fsr, far, l)) { case ABORT_FIXUP_RETURN: return; case ABORT_FIXUP_FAILED: /* Deliver a SIGILL to the process */ KSI_INIT_TRAP(&ksi); ksi.ksi_signo = SIGILL; ksi.ksi_code = ILL_ILLOPC; ksi.ksi_addr = (uint32_t *)(intptr_t) far; ksi.ksi_trap = fsr; goto do_trapsignal; default: break; } va = trunc_page((vaddr_t)far); /* * It is only a kernel address space fault iff: * 1. user == 0 and * 2. pcb_onfault not set or * 3. pcb_onfault set and not LDRT/LDRBT/STRT/STRBT instruction. */ if (!user && (va >= VM_MIN_KERNEL_ADDRESS || (va < VM_MIN_ADDRESS && vector_page == ARM_VECTORS_LOW)) && __predict_true((pcb->pcb_onfault == NULL || (read_insn(tf->tf_pc, false) & 0x05200000) != 0x04200000))) { map = kernel_map; /* Was the fault due to the FPE ? */ if (__predict_false((tf->tf_spsr & PSR_MODE)==PSR_UND32_MODE)) { KSI_INIT_TRAP(&ksi); ksi.ksi_signo = SIGSEGV; ksi.ksi_code = SEGV_ACCERR; ksi.ksi_addr = (uint32_t *)(intptr_t) far; ksi.ksi_trap = fsr; /* * Force exit via userret() * This is necessary as the FPE is an extension to * userland that actually runs in a priveledged mode * but uses USR mode permissions for its accesses. */ user = true; goto do_trapsignal; } } else { map = &l->l_proc->p_vmspace->vm_map; } /* * We need to know whether the page should be mapped as R or R/W. * Before ARMv6, the MMU did not give us the info as to whether the * fault was caused by a read or a write. * * However, we know that a permission fault can only be the result of * a write to a read-only location, so we can deal with those quickly. * * Otherwise we need to disassemble the instruction responsible to * determine if it was a write. */ if (CPU_IS_ARMV6_P() || CPU_IS_ARMV7_P()) { ftype = (fsr & FAULT_WRITE) ? VM_PROT_WRITE : VM_PROT_READ; } else if (IS_PERMISSION_FAULT(fsr)) { ftype = VM_PROT_WRITE; } else { #ifdef THUMB_CODE /* Fast track the ARM case. */ if (__predict_false(tf->tf_spsr & PSR_T_bit)) { u_int insn = read_thumb_insn(tf->tf_pc, user); u_int insn_f8 = insn & 0xf800; u_int insn_fe = insn & 0xfe00; if (insn_f8 == 0x6000 || /* STR(1) */ insn_f8 == 0x7000 || /* STRB(1) */ insn_f8 == 0x8000 || /* STRH(1) */ insn_f8 == 0x9000 || /* STR(3) */ insn_f8 == 0xc000 || /* STM */ insn_fe == 0x5000 || /* STR(2) */ insn_fe == 0x5200 || /* STRH(2) */ insn_fe == 0x5400) /* STRB(2) */ ftype = VM_PROT_WRITE; else ftype = VM_PROT_READ; } else #endif { u_int insn = read_insn(tf->tf_pc, user); if (((insn & 0x0c100000) == 0x04000000) || /* STR[B] */ ((insn & 0x0e1000b0) == 0x000000b0) || /* STR[HD]*/ ((insn & 0x0a100000) == 0x08000000) || /* STM/CDT*/ ((insn & 0x0f9000f0) == 0x01800090)) /* STREX[BDH] */ ftype = VM_PROT_WRITE; else if ((insn & 0x0fb00ff0) == 0x01000090)/* SWP */ ftype = VM_PROT_READ | VM_PROT_WRITE; else ftype = VM_PROT_READ; } } /* * See if the fault is as a result of ref/mod emulation, * or domain mismatch. */ #if defined(DEBUG) && !defined(MULTIPROCESSOR) last_fault_code = fsr; #endif if (pmap_fault_fixup(map->pmap, va, ftype, user)) { UVMHIST_LOG(maphist, " <- ref/mod emul", 0, 0, 0, 0); goto out; } if (__predict_false(curcpu()->ci_intr_depth > 0)) { if (pcb->pcb_onfault) { tf->tf_r0 = EINVAL; tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault; return; } printf("\nNon-emulated page fault with intr_depth > 0\n"); dab_fatal(tf, fsr, far, l, NULL); } #ifdef PMAP_FAULTINFO struct pcb_faultinfo * const pfi = &pcb->pcb_faultinfo; struct proc * const p = curproc; if (p->p_pid == pfi->pfi_lastpid && va == pfi->pfi_faultaddr) { if (++pfi->pfi_repeats > 4) { tlb_asid_t asid = tlb_get_asid(); pt_entry_t *ptep = pfi->pfi_faultptep; printf("%s: fault #%u (%x/%s) for %#" PRIxVADDR "(%#x) at pc %#" PRIxREGISTER " curpid=%u/%u " "ptep@%p=%#" PRIxPTE ")\n", __func__, pfi->pfi_repeats, fsr & FAULT_TYPE_MASK, data_aborts[fsr & FAULT_TYPE_MASK].desc, va, far, tf->tf_pc, map->pmap->pm_pai[0].pai_asid, asid, ptep, ptep ? *ptep : 0); cpu_Debugger(); } } else { pfi->pfi_lastpid = p->p_pid; pfi->pfi_faultaddr = va; pfi->pfi_repeats = 0; pfi->pfi_faultptep = NULL; pfi->pfi_faulttype = fsr & FAULT_TYPE_MASK; } #endif /* PMAP_FAULTINFO */ onfault = pcb->pcb_onfault; pcb->pcb_onfault = NULL; error = uvm_fault(map, va, ftype); pcb->pcb_onfault = onfault; if (__predict_true(error == 0)) { if (user) uvm_grow(l->l_proc, va); /* Record any stack growth */ UVMHIST_LOG(maphist, " <- uvm", 0, 0, 0, 0); goto out; } if (user == 0) { if (pcb->pcb_onfault) { tf->tf_r0 = error; tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault; return; } printf("\nuvm_fault(%p, %lx, %x) -> %x\n", map, va, ftype, error); dab_fatal(tf, fsr, far, l, NULL); } KSI_INIT_TRAP(&ksi); switch (error) { case ENOMEM: printf("UVM: pid %d (%s), uid %d killed: " "out of swap\n", l->l_proc->p_pid, l->l_proc->p_comm, l->l_cred ? kauth_cred_geteuid(l->l_cred) : -1); ksi.ksi_signo = SIGKILL; break; case EACCES: ksi.ksi_signo = SIGSEGV; ksi.ksi_code = SEGV_ACCERR; break; case EINVAL: ksi.ksi_signo = SIGBUS; ksi.ksi_code = BUS_ADRERR; break; default: ksi.ksi_signo = SIGSEGV; ksi.ksi_code = SEGV_MAPERR; break; } ksi.ksi_addr = (uint32_t *)(intptr_t) far; ksi.ksi_trap = fsr; UVMHIST_LOG(maphist, " <- error (%jd)", error, 0, 0, 0); do_trapsignal: call_trapsignal(l, tf, &ksi); out: /* If returning to user mode, make sure to invoke userret() */ if (user) userret(l); } /* * dab_fatal() handles the following data aborts: * * FAULT_WRTBUF_0 - Vector Exception * FAULT_WRTBUF_1 - Terminal Exception * * We should never see these on a properly functioning system. * * This function is also called by the other handlers if they * detect a fatal problem. * * Note: If 'l' is NULL, we assume we're dealing with a prefetch abort. */ static int dab_fatal(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l, ksiginfo_t *ksi) { const char * const mode = TRAP_USERMODE(tf) ? "user" : "kernel"; if (l != NULL) { printf("Fatal %s mode data abort: '%s'\n", mode, data_aborts[fsr & FAULT_TYPE_MASK].desc); printf("trapframe: %p\nFSR=%08x, FAR=", tf, fsr); if ((fsr & FAULT_IMPRECISE) == 0) printf("%08x, ", far); else printf("Invalid, "); printf("spsr=%08x\n", tf->tf_spsr); } else { printf("Fatal %s mode prefetch abort at 0x%08x\n", mode, tf->tf_pc); printf("trapframe: %p, spsr=%08x\n", tf, tf->tf_spsr); } printf("r0 =%08x, r1 =%08x, r2 =%08x, r3 =%08x\n", tf->tf_r0, tf->tf_r1, tf->tf_r2, tf->tf_r3); printf("r4 =%08x, r5 =%08x, r6 =%08x, r7 =%08x\n", tf->tf_r4, tf->tf_r5, tf->tf_r6, tf->tf_r7); printf("r8 =%08x, r9 =%08x, r10=%08x, r11=%08x\n", tf->tf_r8, tf->tf_r9, tf->tf_r10, tf->tf_r11); printf("r12=%08x, ", tf->tf_r12); if (TRAP_USERMODE(tf)) printf("usp=%08x, ulr=%08x", tf->tf_usr_sp, tf->tf_usr_lr); else printf("ssp=%08x, slr=%08x", tf->tf_svc_sp, tf->tf_svc_lr); printf(", pc =%08x\n\n", tf->tf_pc); #if defined(DDB) || defined(KGDB) kdb_trap(T_FAULT, tf); #endif panic("Fatal abort"); /*NOTREACHED*/ } /* * dab_align() handles the following data aborts: * * FAULT_ALIGN_0 - Alignment fault * FAULT_ALIGN_0 - Alignment fault * * These faults are fatal if they happen in kernel mode. Otherwise, we * deliver a bus error to the process. */ static int dab_align(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l, ksiginfo_t *ksi) { /* Alignment faults are always fatal if they occur in kernel mode */ if (!TRAP_USERMODE(tf)) dab_fatal(tf, fsr, far, l, NULL); /* pcb_onfault *must* be NULL at this point */ KDASSERT(((struct pcb *)lwp_getpcb(l))->pcb_onfault == NULL); /* See if the CPU state needs to be fixed up */ (void) data_abort_fixup(tf, fsr, far, l); /* Deliver a bus error signal to the process */ KSI_INIT_TRAP(ksi); ksi->ksi_signo = SIGBUS; ksi->ksi_code = BUS_ADRALN; ksi->ksi_addr = (uint32_t *)(intptr_t)far; ksi->ksi_trap = fsr; KASSERTMSG(tf == lwp_trapframe(l), "tf %p vs %p", tf, lwp_trapframe(l)); return 1; } /* * dab_buserr() handles the following data aborts: * * FAULT_BUSERR_0 - External Abort on Linefetch -- Section * FAULT_BUSERR_1 - External Abort on Linefetch -- Page * FAULT_BUSERR_2 - External Abort on Non-linefetch -- Section * FAULT_BUSERR_3 - External Abort on Non-linefetch -- Page * FAULT_BUSTRNL1 - External abort on Translation -- Level 1 * FAULT_BUSTRNL2 - External abort on Translation -- Level 2 * * If pcb_onfault is set, flag the fault and return to the handler. * If the fault occurred in user mode, give the process a SIGBUS. * * Note: On XScale, FAULT_BUSERR_0, FAULT_BUSERR_1, and FAULT_BUSERR_2 * can be flagged as imprecise in the FSR. This causes a real headache * since some of the machine state is lost. In this case, tf->tf_pc * may not actually point to the offending instruction. In fact, if * we've taken a double abort fault, it generally points somewhere near * the top of "data_abort_entry" in exception.S. * * In all other cases, these data aborts are considered fatal. */ static int dab_buserr(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l, ksiginfo_t *ksi) { struct pcb *pcb = lwp_getpcb(l); #ifdef __XSCALE__ if ((fsr & FAULT_IMPRECISE) != 0 && (tf->tf_spsr & PSR_MODE) == PSR_ABT32_MODE) { /* * Oops, an imprecise, double abort fault. We've lost the * r14_abt/spsr_abt values corresponding to the original * abort, and the spsr saved in the trapframe indicates * ABT mode. */ tf->tf_spsr &= ~PSR_MODE; /* * We use a simple heuristic to determine if the double abort * happened as a result of a kernel or user mode access. * If the current trapframe is at the top of the kernel stack, * the fault _must_ have come from user mode. */ if (tf != ((trapframe_t *)pcb->pcb_ksp) - 1) { /* * Kernel mode. We're either about to die a * spectacular death, or pcb_onfault will come * to our rescue. Either way, the current value * of tf->tf_pc is irrelevant. */ tf->tf_spsr |= PSR_SVC32_MODE; if (pcb->pcb_onfault == NULL) printf("\nKernel mode double abort!\n"); } else { /* * User mode. We've lost the program counter at the * time of the fault (not that it was accurate anyway; * it's not called an imprecise fault for nothing). * About all we can do is copy r14_usr to tf_pc and * hope for the best. The process is about to get a * SIGBUS, so it's probably history anyway. */ tf->tf_spsr |= PSR_USR32_MODE; tf->tf_pc = tf->tf_usr_lr; #ifdef THUMB_CODE tf->tf_spsr &= ~PSR_T_bit; if (tf->tf_usr_lr & 1) tf->tf_spsr |= PSR_T_bit; #endif } } /* FAR is invalid for imprecise exceptions */ if ((fsr & FAULT_IMPRECISE) != 0) far = 0; #endif /* __XSCALE__ */ if (pcb->pcb_onfault) { KDASSERT(TRAP_USERMODE(tf) == 0); tf->tf_r0 = EFAULT; tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault; return 0; } /* See if the CPU state needs to be fixed up */ (void) data_abort_fixup(tf, fsr, far, l); /* * At this point, if the fault happened in kernel mode, we're toast */ if (!TRAP_USERMODE(tf)) dab_fatal(tf, fsr, far, l, NULL); /* Deliver a bus error signal to the process */ KSI_INIT_TRAP(ksi); ksi->ksi_signo = SIGBUS; ksi->ksi_code = BUS_ADRERR; ksi->ksi_addr = (uint32_t *)(intptr_t)far; ksi->ksi_trap = fsr; KASSERTMSG(tf == lwp_trapframe(l), "tf %p vs %p", tf, lwp_trapframe(l)); return 1; } static inline int prefetch_abort_fixup(trapframe_t *tf) { #ifdef CPU_ABORT_FIXUP_REQUIRED int error; /* Call the CPU specific prefetch abort fixup routine */ error = cpu_prefetchabt_fixup(tf); if (__predict_true(error != ABORT_FIXUP_FAILED)) return error; /* * Oops, couldn't fix up the instruction */ printf("%s: fixup for %s mode prefetch abort failed.\n", __func__, TRAP_USERMODE(tf) ? "user" : "kernel"); #ifdef THUMB_CODE if (tf->tf_spsr & PSR_T_bit) { printf("pc = 0x%08x, opcode 0x%04x, 0x%04x, insn = ", tf->tf_pc, *((uint16 *)(tf->tf_pc & ~1)), *((uint16 *)((tf->tf_pc + 2) & ~1))); } else #endif { printf("pc = 0x%08x, opcode 0x%08x, insn = ", tf->tf_pc, *((u_int *)tf->tf_pc)); } disassemble(tf->tf_pc); /* Die now if this happened in kernel mode */ if (!TRAP_USERMODE(tf)) dab_fatal(tf, 0, tf->tf_pc, NULL, NULL); return error; #else return ABORT_FIXUP_OK; #endif /* CPU_ABORT_FIXUP_REQUIRED */ } /* * void prefetch_abort_handler(trapframe_t *tf) * * Abort handler called when instruction execution occurs at * a non existent or restricted (access permissions) memory page. * If the address is invalid and we were in SVC mode then panic as * the kernel should never prefetch abort. * If the address is invalid and the page is mapped then the user process * does not have read permission so send it a signal. * Otherwise fault the page in and try again. */ void prefetch_abort_handler(trapframe_t *tf) { struct lwp *l; struct pcb *pcb __diagused; struct vm_map *map; vaddr_t fault_pc, va; ksiginfo_t ksi; int error, user; UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist); /* Update vmmeter statistics */ curcpu()->ci_data.cpu_ntrap++; l = curlwp; pcb = lwp_getpcb(l); user = TRAP_USERMODE(tf) != 0; /* * Enable IRQ's (disabled by the abort) This always comes * from user mode so we know interrupts were not disabled. * But we check anyway. */ KASSERT(!user || VALID_PSR(tf->tf_spsr)); #ifdef __NO_FIQ if (__predict_true((tf->tf_spsr & I32_bit) != I32_bit)) restore_interrupts(tf->tf_spsr & IF32_bits); #else if (__predict_true((tf->tf_spsr & IF32_bits) != IF32_bits)) restore_interrupts(tf->tf_spsr & IF32_bits); #endif /* See if the CPU state needs to be fixed up */ switch (prefetch_abort_fixup(tf)) { case ABORT_FIXUP_RETURN: KASSERT(!TRAP_USERMODE(tf) || VALID_PSR(tf->tf_spsr)); return; case ABORT_FIXUP_FAILED: /* Deliver a SIGILL to the process */ KSI_INIT_TRAP(&ksi); ksi.ksi_signo = SIGILL; ksi.ksi_code = ILL_ILLOPC; ksi.ksi_addr = (uint32_t *)(intptr_t) tf->tf_pc; KASSERTMSG(tf == lwp_trapframe(l), "tf %p vs %p", tf, lwp_trapframe(l)); goto do_trapsignal; default: break; } /* Prefetch aborts cannot happen in kernel mode */ if (__predict_false(!user)) dab_fatal(tf, 0, tf->tf_pc, NULL, NULL); /* Get fault address */ fault_pc = tf->tf_pc; KASSERTMSG(tf == lwp_trapframe(l), "tf %p vs %p", tf, lwp_trapframe(l)); UVMHIST_LOG(maphist, " (pc=%#jx, l=%#jx, tf=%#jx)", fault_pc, (uintptr_t)l, (uintptr_t)tf, 0); #ifdef THUMB_CODE recheck: #endif /* Ok validate the address, can only execute in USER space */ if (__predict_false(fault_pc >= VM_MAXUSER_ADDRESS || (fault_pc < VM_MIN_ADDRESS && vector_page == ARM_VECTORS_LOW))) { KSI_INIT_TRAP(&ksi); ksi.ksi_signo = SIGSEGV; ksi.ksi_code = SEGV_ACCERR; ksi.ksi_addr = (uint32_t *)(intptr_t) fault_pc; ksi.ksi_trap = fault_pc; goto do_trapsignal; } map = &l->l_proc->p_vmspace->vm_map; va = trunc_page(fault_pc); /* * See if the pmap can handle this fault on its own... */ #if defined(DEBUG) && !defined(MULTIPROCESSOR) last_fault_code = -1; #endif if (pmap_fault_fixup(map->pmap, va, VM_PROT_READ|VM_PROT_EXECUTE, 1)) { UVMHIST_LOG (maphist, " <- emulated", 0, 0, 0, 0); goto out; } #ifdef DIAGNOSTIC if (__predict_false(curcpu()->ci_intr_depth > 0)) { printf("\nNon-emulated prefetch abort with intr_depth > 0\n"); dab_fatal(tf, 0, tf->tf_pc, NULL, NULL); } #endif KASSERT(pcb->pcb_onfault == NULL); error = uvm_fault(map, va, VM_PROT_READ|VM_PROT_EXECUTE); if (__predict_true(error == 0)) { UVMHIST_LOG (maphist, " <- uvm", 0, 0, 0, 0); goto out; } KSI_INIT_TRAP(&ksi); UVMHIST_LOG (maphist, " <- fatal (%jd)", error, 0, 0, 0); if (error == ENOMEM) { printf("UVM: pid %d (%s), uid %d killed: " "out of swap\n", l->l_proc->p_pid, l->l_proc->p_comm, l->l_cred ? kauth_cred_geteuid(l->l_cred) : -1); ksi.ksi_signo = SIGKILL; } else ksi.ksi_signo = SIGSEGV; ksi.ksi_code = SEGV_MAPERR; ksi.ksi_addr = (uint32_t *)(intptr_t) fault_pc; ksi.ksi_trap = fault_pc; do_trapsignal: call_trapsignal(l, tf, &ksi); out: #ifdef THUMB_CODE #define THUMB_32BIT(hi) (((hi) & 0xe000) == 0xe000 && ((hi) & 0x1800)) /* thumb-32 instruction was located on page boundary? */ if ((tf->tf_spsr & PSR_T_bit) && ((fault_pc & PAGE_MASK) == (PAGE_SIZE - THUMB_INSN_SIZE)) && THUMB_32BIT(*(uint16_t *)tf->tf_pc)) { fault_pc = tf->tf_pc + THUMB_INSN_SIZE; goto recheck; } #endif /* THUMB_CODE */ KASSERT(!TRAP_USERMODE(tf) || VALID_PSR(tf->tf_spsr)); userret(l); } /* * Tentatively read an 8, 16, or 32-bit value from 'addr'. * If the read succeeds, the value is written to 'rptr' and zero is returned. * Else, return EFAULT. */ int badaddr_read(void *addr, size_t size, void *rptr) { extern int badaddr_read_1(const uint8_t *, uint8_t *); extern int badaddr_read_2(const uint16_t *, uint16_t *); extern int badaddr_read_4(const uint32_t *, uint32_t *); union { uint8_t v1; uint16_t v2; uint32_t v4; } u; int rv, s; cpu_drain_writebuf(); s = splhigh(); /* Read from the test address. */ switch (size) { case sizeof(uint8_t): rv = badaddr_read_1(addr, &u.v1); if (rv == 0 && rptr) *(uint8_t *) rptr = u.v1; break; case sizeof(uint16_t): rv = badaddr_read_2(addr, &u.v2); if (rv == 0 && rptr) *(uint16_t *) rptr = u.v2; break; case sizeof(uint32_t): rv = badaddr_read_4(addr, &u.v4); if (rv == 0 && rptr) *(uint32_t *) rptr = u.v4; break; default: panic("%s: invalid size (%zu)", __func__, size); } splx(s); /* Return EFAULT if the address was invalid, else zero */ return rv; }