/* * ==================================================== * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. * * Developed at SunPro, a Sun Microsystems, Inc. business. * Permission to use, copy, modify, and distribute this * software is freely granted, provided that this notice * is preserved. * ==================================================== */ /* * from: @(#)fdlibm.h 5.1 93/09/24 * $NetBSD: math_private.h,v 1.27 2023/08/03 20:45:49 andvar Exp $ */ #ifndef _MATH_PRIVATE_H_ #define _MATH_PRIVATE_H_ #include /* The original fdlibm code used statements like: n0 = ((*(int*)&one)>>29)^1; * index of high word * ix0 = *(n0+(int*)&x); * high word of x * ix1 = *((1-n0)+(int*)&x); * low word of x * to dig two 32 bit words out of the 64 bit IEEE floating point value. That is non-ANSI, and, moreover, the gcc instruction scheduler gets it wrong. We instead use the following macros. Unlike the original code, we determine the endianness at compile time, not at run time; I don't see much benefit to selecting endianness at run time. */ /* A union which permits us to convert between a double and two 32 bit ints. */ /* * The ARM ports are little endian except for the FPA word order which is * big endian. */ #if (BYTE_ORDER == BIG_ENDIAN) || (defined(__arm__) && !defined(__VFP_FP__)) typedef union { double value; struct { u_int32_t msw; u_int32_t lsw; } parts; struct { u_int64_t w; } xparts; } ieee_double_shape_type; #endif #if (BYTE_ORDER == LITTLE_ENDIAN) && \ !(defined(__arm__) && !defined(__VFP_FP__)) typedef union { double value; struct { u_int32_t lsw; u_int32_t msw; } parts; struct { u_int64_t w; } xparts; } ieee_double_shape_type; #endif /* Get two 32 bit ints from a double. */ #define EXTRACT_WORDS(ix0,ix1,d) \ do { \ ieee_double_shape_type ew_u; \ ew_u.value = (d); \ (ix0) = ew_u.parts.msw; \ (ix1) = ew_u.parts.lsw; \ } while (0) /* Get a 64-bit int from a double. */ #define EXTRACT_WORD64(ix,d) \ do { \ ieee_double_shape_type ew_u; \ ew_u.value = (d); \ (ix) = ew_u.xparts.w; \ } while (0) /* Get the more significant 32 bit int from a double. */ #define GET_HIGH_WORD(i,d) \ do { \ ieee_double_shape_type gh_u; \ gh_u.value = (d); \ (i) = gh_u.parts.msw; \ } while (0) /* Get the less significant 32 bit int from a double. */ #define GET_LOW_WORD(i,d) \ do { \ ieee_double_shape_type gl_u; \ gl_u.value = (d); \ (i) = gl_u.parts.lsw; \ } while (0) /* Set a double from two 32 bit ints. */ #define INSERT_WORDS(d,ix0,ix1) \ do { \ ieee_double_shape_type iw_u; \ iw_u.parts.msw = (ix0); \ iw_u.parts.lsw = (ix1); \ (d) = iw_u.value; \ } while (0) /* Set a double from a 64-bit int. */ #define INSERT_WORD64(d,ix) \ do { \ ieee_double_shape_type iw_u; \ iw_u.xparts.w = (ix); \ (d) = iw_u.value; \ } while (0) /* Set the more significant 32 bits of a double from an int. */ #define SET_HIGH_WORD(d,v) \ do { \ ieee_double_shape_type sh_u; \ sh_u.value = (d); \ sh_u.parts.msw = (v); \ (d) = sh_u.value; \ } while (0) /* Set the less significant 32 bits of a double from an int. */ #define SET_LOW_WORD(d,v) \ do { \ ieee_double_shape_type sl_u; \ sl_u.value = (d); \ sl_u.parts.lsw = (v); \ (d) = sl_u.value; \ } while (0) /* A union which permits us to convert between a float and a 32 bit int. */ typedef union { float value; u_int32_t word; } ieee_float_shape_type; /* Get a 32 bit int from a float. */ #define GET_FLOAT_WORD(i,d) \ do { \ ieee_float_shape_type gf_u; \ gf_u.value = (d); \ (i) = gf_u.word; \ } while (0) /* Set a float from a 32 bit int. */ #define SET_FLOAT_WORD(d,i) \ do { \ ieee_float_shape_type sf_u; \ sf_u.word = (i); \ (d) = sf_u.value; \ } while (0) /* * Attempt to get strict C99 semantics for assignment with non-C99 compilers. */ #if FLT_EVAL_METHOD == 0 || __GNUC__ == 0 #define STRICT_ASSIGN(type, lval, rval) ((lval) = (rval)) #else #define STRICT_ASSIGN(type, lval, rval) do { \ volatile type __lval; \ \ if (sizeof(type) >= sizeof(long double)) \ (lval) = (rval); \ else { \ __lval = (rval); \ (lval) = __lval; \ } \ } while (0) #endif /* Support switching the mode to FP_PE if necessary. */ #if defined(__i386__) && !defined(NO_FPSETPREC) #define ENTERI() ENTERIT(long double) #define ENTERIT(returntype) \ returntype __retval; \ fp_prec_t __oprec; \ \ if ((__oprec = fpgetprec()) != FP_PE) \ fpsetprec(FP_PE) #define RETURNI(x) do { \ __retval = (x); \ if (__oprec != FP_PE) \ fpsetprec(__oprec); \ RETURNF(__retval); \ } while (0) #define ENTERV() \ fp_prec_t __oprec; \ \ if ((__oprec = fpgetprec()) != FP_PE) \ fpsetprec(FP_PE) #define RETURNV() do { \ if (__oprec != FP_PE) \ fpsetprec(__oprec); \ return; \ } while (0) #else #define ENTERI() #define ENTERIT(x) #define RETURNI(x) RETURNF(x) #define ENTERV() #define RETURNV() return #endif #ifdef _COMPLEX_H /* * Quoting from ISO/IEC 9899:TC2: * * 6.2.5.13 Types * Each complex type has the same representation and alignment requirements as * an array type containing exactly two elements of the corresponding real type; * the first element is equal to the real part, and the second element to the * imaginary part, of the complex number. */ typedef union { float complex z; float parts[2]; } float_complex; typedef union { double complex z; double parts[2]; } double_complex; typedef union { long double complex z; long double parts[2]; } long_double_complex; #define REAL_PART(z) ((z).parts[0]) #define IMAG_PART(z) ((z).parts[1]) /* * Inline functions that can be used to construct complex values. * * The C99 standard intends x+I*y to be used for this, but x+I*y is * currently unusable in general since gcc introduces many overflow, * underflow, sign and efficiency bugs by rewriting I*y as * (0.0+I)*(y+0.0*I) and laboriously computing the full complex product. * In particular, I*Inf is corrupted to NaN+I*Inf, and I*-0 is corrupted * to -0.0+I*0.0. * * The C11 standard introduced the macros CMPLX(), CMPLXF() and CMPLXL() * to construct complex values. Compilers that conform to the C99 * standard require the following functions to avoid the above issues. */ #ifndef CMPLXF static __inline float complex CMPLXF(float x, float y) { float_complex z; REAL_PART(z) = x; IMAG_PART(z) = y; return (z.z); } #endif #ifndef CMPLX static __inline double complex CMPLX(double x, double y) { double_complex z; REAL_PART(z) = x; IMAG_PART(z) = y; return (z.z); } #endif #ifndef CMPLXL static __inline long double complex CMPLXL(long double x, long double y) { long_double_complex z; REAL_PART(z) = x; IMAG_PART(z) = y; return (z.z); } #endif #endif /* _COMPLEX_H */ /* ieee style elementary functions */ extern double __ieee754_sqrt __P((double)); extern double __ieee754_acos __P((double)); extern double __ieee754_acosh __P((double)); extern double __ieee754_log __P((double)); extern double __ieee754_atanh __P((double)); extern double __ieee754_asin __P((double)); extern double __ieee754_atan2 __P((double,double)); extern double __ieee754_exp __P((double)); extern double __ieee754_cosh __P((double)); extern double __ieee754_fmod __P((double,double)); extern double __ieee754_pow __P((double,double)); extern double __ieee754_lgamma_r __P((double,int *)); extern double __ieee754_gamma_r __P((double,int *)); extern double __ieee754_lgamma __P((double)); extern double __ieee754_gamma __P((double)); extern double __ieee754_log10 __P((double)); extern double __ieee754_log2 __P((double)); extern double __ieee754_sinh __P((double)); extern double __ieee754_hypot __P((double,double)); extern double __ieee754_j0 __P((double)); extern double __ieee754_j1 __P((double)); extern double __ieee754_y0 __P((double)); extern double __ieee754_y1 __P((double)); extern double __ieee754_jn __P((int,double)); extern double __ieee754_yn __P((int,double)); extern double __ieee754_remainder __P((double,double)); extern int32_t __ieee754_rem_pio2 __P((double,double*)); extern double __ieee754_scalb __P((double,double)); /* fdlibm kernel function */ extern double __kernel_standard __P((double,double,int)); extern double __kernel_sin __P((double,double,int)); extern double __kernel_cos __P((double,double)); extern double __kernel_tan __P((double,double,int)); extern int __kernel_rem_pio2 __P((double*,double*,int,int,int)); /* ieee style elementary float functions */ extern float __ieee754_sqrtf __P((float)); extern float __ieee754_acosf __P((float)); extern float __ieee754_acoshf __P((float)); extern float __ieee754_logf __P((float)); extern float __ieee754_atanhf __P((float)); extern float __ieee754_asinf __P((float)); extern float __ieee754_atan2f __P((float,float)); extern float __ieee754_expf __P((float)); extern float __ieee754_coshf __P((float)); extern float __ieee754_fmodf __P((float,float)); extern float __ieee754_powf __P((float,float)); extern float __ieee754_lgammaf_r __P((float,int *)); extern float __ieee754_gammaf_r __P((float,int *)); extern float __ieee754_lgammaf __P((float)); extern float __ieee754_gammaf __P((float)); extern float __ieee754_log10f __P((float)); extern float __ieee754_log2f __P((float)); extern float __ieee754_sinhf __P((float)); extern float __ieee754_hypotf __P((float,float)); extern float __ieee754_j0f __P((float)); extern float __ieee754_j1f __P((float)); extern float __ieee754_y0f __P((float)); extern float __ieee754_y1f __P((float)); extern float __ieee754_jnf __P((int,float)); extern float __ieee754_ynf __P((int,float)); extern float __ieee754_remainderf __P((float,float)); extern int32_t __ieee754_rem_pio2f __P((float,float*)); extern float __ieee754_scalbf __P((float,float)); /* float versions of fdlibm kernel functions */ extern float __kernel_sinf __P((float,float,int)); extern float __kernel_cosf __P((float,float)); extern float __kernel_tanf __P((float,float,int)); extern int __kernel_rem_pio2f __P((float*,float*,int,int,int,const int32_t*)); /* ieee style elementary long double functions */ extern long double __ieee754_fmodl(long double, long double); extern long double __ieee754_sqrtl(long double); /* * TRUNC() is a macro that sets the trailing 27 bits in the mantissa of an * IEEE double variable to zero. It must be expression-like for syntactic * reasons, and we implement this expression using an inline function * instead of a pure macro to avoid depending on the gcc feature of * statement-expressions. */ #define TRUNC(d) (_b_trunc(&(d))) static __inline void _b_trunc(volatile double *_dp) { uint32_t _lw; GET_LOW_WORD(_lw, *_dp); SET_LOW_WORD(*_dp, _lw & 0xf8000000); } struct Double { double a; double b; }; /* * Functions internal to the math package, yet not static. */ double __exp__D(double, double); struct Double __log__D(double); /* * The rnint() family rounds to the nearest integer for a restricted range * range of args (up to about 2**MANT_DIG). We assume that the current * rounding mode is FE_TONEAREST so that this can be done efficiently. * Extra precision causes more problems in practice, and we only centralize * this here to reduce those problems, and have not solved the efficiency * problems. The exp2() family uses a more delicate version of this that * requires extracting bits from the intermediate value, so it is not * centralized here and should copy any solution of the efficiency problems. */ static inline double rnint(double x) { /* * This casts to double to kill any extra precision. This depends * on the cast being applied to a double_t to avoid compiler bugs * (this is a cleaner version of STRICT_ASSIGN()). This is * inefficient if there actually is extra precision, but is hard * to improve on. We use double_t in the API to minimise conversions * for just calling here. Note that we cannot easily change the * magic number to the one that works directly with double_t, since * the rounding precision is variable at runtime on x86 so the * magic number would need to be variable. Assuming that the * rounding precision is always the default is too fragile. This * and many other complications will move when the default is * changed to FP_PE. */ return ((double)(x + 0x1.8p52) - 0x1.8p52); } static inline float rnintf(float x) { /* * As for rnint(), except we could just call that to handle the * extra precision case, usually without losing efficiency. */ return ((float)(x + 0x1.8p23F) - 0x1.8p23F); } #ifdef LDBL_MANT_DIG /* * The complications for extra precision are smaller for rnintl() since it * can safely assume that the rounding precision has been increased from * its default to FP_PE on x86. We don't exploit that here to get small * optimizations from limiting the range to double. We just need it for * the magic number to work with long doubles. ld128 callers should use * rnint() instead of this if possible. ld80 callers should prefer * rnintl() since for amd64 this avoids swapping the register set, while * for i386 it makes no difference (assuming FP_PE), and for other arches * it makes little difference. */ static inline long double rnintl(long double x) { return (x + ___CONCAT(0x1.8p,LDBL_MANT_DIG) / 2 - ___CONCAT(0x1.8p,LDBL_MANT_DIG) / 2); } #endif /* LDBL_MANT_DIG */ /* * irint() and i64rint() give the same result as casting to their integer * return type provided their arg is a floating point integer. They can * sometimes be more efficient because no rounding is required. */ #if (defined(amd64) || defined(__i386__)) && defined(__GNUCLIKE_ASM) #define irint(x) \ (sizeof(x) == sizeof(float) && \ sizeof(__float_t) == sizeof(long double) ? irintf(x) : \ sizeof(x) == sizeof(double) && \ sizeof(__double_t) == sizeof(long double) ? irintd(x) : \ sizeof(x) == sizeof(long double) ? irintl(x) : (int)(x)) #else #define irint(x) ((int)(x)) #endif #define i64rint(x) ((int64_t)(x)) /* only needed for ld128 so not opt. */ #if defined(__i386__) && defined(__GNUCLIKE_ASM) static __inline int irintf(float x) { int n; __asm("fistl %0" : "=m" (n) : "t" (x)); return (n); } static __inline int irintd(double x) { int n; __asm("fistl %0" : "=m" (n) : "t" (x)); return (n); } #endif #if (defined(__amd64__) || defined(__i386__)) && defined(__GNUCLIKE_ASM) static __inline int irintl(long double x) { int n; __asm("fistl %0" : "=m" (n) : "t" (x)); return (n); } #endif #endif /* _MATH_PRIVATE_H_ */