dnl AMD64 mpn_sqr_basecase optimised for AMD Zen. dnl Copyright 2012, 2013, 2017 Free Software Foundation, Inc. dnl This file is part of the GNU MP Library. dnl dnl The GNU MP Library is free software; you can redistribute it and/or modify dnl it under the terms of either: dnl dnl * the GNU Lesser General Public License as published by the Free dnl Software Foundation; either version 3 of the License, or (at your dnl option) any later version. dnl dnl or dnl dnl * the GNU General Public License as published by the Free Software dnl Foundation; either version 2 of the License, or (at your option) any dnl later version. dnl dnl or both in parallel, as here. dnl dnl The GNU MP Library is distributed in the hope that it will be useful, but dnl WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY dnl or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License dnl for more details. dnl dnl You should have received copies of the GNU General Public License and the dnl GNU Lesser General Public License along with the GNU MP Library. If not, dnl see https://www.gnu.org/licenses/. include(`../config.m4') C TODO C * Do overlapped software pipelining. This should close the remaining gap to C mul_basecase. C C * Update un just once in the outer loop. C C * Perhaps keep un and n pre-multiplied by 8, thus suppressing ",8" from C loads and stores. At least in some cases, the non-scaled form is faster. C C * Optimise xit3 code, e.g., using shrx and sarx like in the main loop. C C * The mul_1 feed-in code has gotten little attention and could probably be C improved. Perhaps even expand it to 4 separate loops to allow straight C fall-through into the 4 addmul_1 loops. C C * Clean up ad-hoc scratch register usage in the addmul_1 feed-in code blocks. define(`rp', `%rdi') define(`up', `%rsi') define(`un_param',`%rdx') define(`un', `%rbp') define(`n', `%rcx') C these are used just for the small op code define(`w0', `%r8') define(`w1', `%r9') define(`w2', `%r10') define(`w3', `%r11') ABI_SUPPORT(DOS64) ABI_SUPPORT(STD64) ASM_START() TEXT ALIGN(16) PROLOGUE(mpn_sqr_basecase) FUNC_ENTRY(3) cmp $2, R32(un_param) jae L(gt1) mov (up), %rdx mulx( %rdx, %rax, %rdx) mov %rax, (rp) mov %rdx, 8(rp) FUNC_EXIT() ret L(gt1): jne L(gt2) mov (up), %rdx mov 8(up), %rcx mulx( %rcx, %r9, %r10) C v0 * v1 W 1 2 mulx( %rdx, %rax, %r8) C v0 * v0 W 0 1 mov %rcx, %rdx mulx( %rdx, %r11, %rdx) C v1 * v1 W 2 3 add %r9, %r9 C W 1 adc %r10, %r10 C W 2 adc $0, %rdx C W 3 add %r9, %r8 C W 1 adc %r11, %r10 C W 2 adc $0, %rdx C W 3 mov %rax, (rp) mov %r8, 8(rp) mov %r10, 16(rp) mov %rdx, 24(rp) FUNC_EXIT() ret L(gt2): cmp $4, R32(un_param) jae L(gt3) push %rbx mov (up), %rdx mulx( 8,(up), w2, w3) mulx( 16,(up), w0, w1) add w3, w0 mov 8(up), %rdx mulx( 16,(up), %rax, w3) adc %rax, w1 adc $0, w3 test R32(%rbx), R32(%rbx) mov (up), %rdx mulx( %rdx, %rbx, %rcx) mov %rbx, (rp) mov 8(up), %rdx mulx( %rdx, %rax, %rbx) mov 16(up), %rdx mulx( %rdx, %rsi, %rdx) adcx( w2, w2) adcx( w0, w0) adcx( w1, w1) adcx( w3, w3) adox( w2, %rcx) adox( w0, %rax) adox( w1, %rbx) adox( w3, %rsi) mov $0, R32(%r8) adox( %r8, %rdx) adcx( %r8, %rdx) mov %rcx, 8(rp) mov %rax, 16(rp) mov %rbx, 24(rp) mov %rsi, 32(rp) mov %rdx, 40(rp) pop %rbx FUNC_EXIT() ret L(gt3): push %r15 C push %r14 push %r13 push %r12 push %rbp push %rbx mov R32(un_param), R32(un) mov (up), %rdx C up[0] mov 8(up), %r9 C up[1] mulx( %rdx, %rax, %r15) C up[0]^2 mov %rax, (rp) shl %rdx lea (up,un,8), up lea -32(rp,un,8), rp neg un lea 4(un), n and $-4, n test $1, R8(un) jnz L(mx0) L(mx1): test $2, R8(un) jz L(mb3) L(mb1): mulx( %r9, %rbx, %rax) .byte 0xc4,0x62,0xb3,0xf6,0x44,0xee,0x10 C mulx 16(up,un,8), %r9, %r8 .byte 0xc4,0x62,0xa3,0xf6,0x54,0xee,0x18 C mulx 24(up,un,8), %r11, %r10 add %r15, %rbx jmp L(mlo1) L(mb3): mulx( %r9, %r11, %r10) .byte 0xc4,0x62,0x93,0xf6,0x64,0xee,0x10 C mulx 16(up,un,8), %r13, %r12 .byte 0xc4,0xe2,0xe3,0xf6,0x44,0xee,0x18 C mulx 24(up,un,8), %rbx, %rax add %r15, %r11 jrcxz L(n4) jmp L(mlo3) L(n4): mov %r11, 8(rp) adc %r10, %r13 adc %r12, %rbx jmp L(m) L(mx0): test $2, R8(un) jnz L(mb0) L(mb2): mulx( %r9, %r13, %r12) .byte 0xc4,0xe2,0xe3,0xf6,0x44,0xee,0x10 C mulx 16(up,un,8), %rbx, %rax .byte 0xc4,0x62,0xb3,0xf6,0x44,0xee,0x18 C mulx 24(up,un,8), %r9, %r8 add %r15, %r13 jmp L(mlo2) L(mb0): mulx( %r9, %r9, %r8) .byte 0xc4,0x62,0xa3,0xf6,0x54,0xee,0x10 C mulx 16(up,un,8), %r11, %r10 .byte 0xc4,0x62,0x93,0xf6,0x64,0xee,0x18 C mulx 24(up,un,8), %r13, %r12 add %r15, %r9 jmp L(mlo0) ALIGN(16) L(mtop):jrcxz L(mend) adc %r8, %r11 mov %r9, (rp,n,8) L(mlo3):.byte 0xc4,0x62,0xb3,0xf6,0x04,0xce C mulx (up,n,8), %r9, %r8 adc %r10, %r13 mov %r11, 8(rp,n,8) L(mlo2):.byte 0xc4,0x62,0xa3,0xf6,0x54,0xce,0x08 C mulx 8(up,n,8), %r11, %r10 adc %r12, %rbx mov %r13, 16(rp,n,8) L(mlo1):.byte 0xc4,0x62,0x93,0xf6,0x64,0xce,0x10 C mulx 16(up,n,8), %r13, %r12 adc %rax, %r9 mov %rbx, 24(rp,n,8) L(mlo0):.byte 0xc4,0xe2,0xe3,0xf6,0x44,0xce,0x18 C mulx 24(up,n,8), %rbx, %rax lea 4(n), n jmp L(mtop) L(mend):mov %r9, (rp) adc %r8, %r11 mov %r11, 8(rp) adc %r10, %r13 mov %r13, 16(rp) adc %r12, %rbx adc $0, %rax mov %rbx, 24(rp) mov %rax, 32(rp) lea 2(un), un mov $63, R32(%r15) C keep at 63 for shrx/sarx. test $1, R8(un) jz L(x0) L(x1): test $2, R8(un) jz L(f3) jmp L(f1) L(x0): test $2, R8(un) jz L(f0) C jmp L(f2) L(f2): mov -8(up,un,8), %rdx C up[0] lea 2(un), n lea 8(rp), rp .byte 0xc4,0x62,0x82,0xf7,0x5c,0xee,0xf0 C sarx %r15, -16(up,un,8), %r11 .byte 0xc4,0x62,0x83,0xf7,0x6c,0xee,0xf0 C shrx %r15, -16(up,un,8), %r13 and %rdx, %r11 C "ci" in C code mulx( %rdx, %rax, %r10) C up[0]^2 lea (%r13,%rdx,2), %rdx C "u0" arg in C code add %rax, %r11 .byte 0xc4,0x62,0x93,0xf6,0x24,0xee C mulx (up,un,8), %r13, %r12 .byte 0xc4,0xe2,0xe3,0xf6,0x44,0xee,0x08 C mulx 8(up,un,8), %rbx, %rax adc %r10, %r13 adc %r12, %rbx adc $0, %rax jmp L(b2) ALIGN(16) L(top2):add %r9, (rp,n,8) L(b2): .byte 0xc4,0x62,0xb3,0xf6,0x04,0xce C mulx (up,n,8), %r9, %r8 adc %r11, 8(rp,n,8) .byte 0xc4,0x62,0xa3,0xf6,0x54,0xce,0x08 C mulx 8(up,n,8), %r11, %r10 adc %r13, 16(rp,n,8) .byte 0xc4,0x62,0x93,0xf6,0x64,0xce,0x10 C mulx 16(up,n,8), %r13, %r12 adc %rbx, 24(rp,n,8) adc %rax, %r9 .byte 0xc4,0xe2,0xe3,0xf6,0x44,0xce,0x18 C mulx 24(up,n,8), %rbx, %rax adc %r8, %r11 adc %r10, %r13 adc %r12, %rbx adc $0, %rax add $4, n jnz L(top2) inc un add %r9, (rp) adc %r11, 8(rp) adc %r13, 16(rp) adc %rbx, 24(rp) adc $0, %rax mov %rax, 32(rp) L(f1): mov -8(up,un,8), %rdx C up[0] lea 1(un), n lea 8(rp), rp .byte 0xc4,0x62,0x82,0xf7,0x6c,0xee,0xf0 C sarx %r15, -16(up,un,8), %r13 .byte 0xc4,0xe2,0x83,0xf7,0x5c,0xee,0xf0 C shrx %r15, -16(up,un,8), %rbx and %rdx, %r13 C "ci" in C code mulx( %rdx, %rax, %r12) C up[0]^2 lea (%rbx,%rdx,2), %rdx C "u0" arg in C code add %rax, %r13 .byte 0xc4,0xe2,0xe3,0xf6,0x04,0xee C mulx (up,un,8), %rbx, %rax adc %r12, %rbx adc $0, %rax .byte 0xc4,0x62,0xb3,0xf6,0x44,0xee,0x08 C mulx 8(up,un,8), %r9, %r8 jmp L(b1) ALIGN(16) L(top1):add %r9, (rp,n,8) .byte 0xc4,0x62,0xb3,0xf6,0x04,0xce C mulx (up,n,8), %r9, %r8 adc %r11, 8(rp,n,8) L(b1): .byte 0xc4,0x62,0xa3,0xf6,0x54,0xce,0x08 C mulx 8(up,n,8), %r11, %r10 adc %r13, 16(rp,n,8) .byte 0xc4,0x62,0x93,0xf6,0x64,0xce,0x10 C mulx 16(up,n,8), %r13, %r12 adc %rbx, 24(rp,n,8) adc %rax, %r9 .byte 0xc4,0xe2,0xe3,0xf6,0x44,0xce,0x18 C mulx 24(up,n,8), %rbx, %rax adc %r8, %r11 adc %r10, %r13 adc %r12, %rbx adc $0, %rax add $4, n jnz L(top1) inc un add %r9, (rp) adc %r11, 8(rp) adc %r13, 16(rp) adc %rbx, 24(rp) adc $0, %rax mov %rax, 32(rp) L(f0): mov -8(up,un,8), %rdx C up[0] lea (un), n lea 8(rp), rp .byte 0xc4,0xe2,0x82,0xf7,0x5c,0xee,0xf0 C sarx %r15, -16(up,un,8), %rbx .byte 0xc4,0x62,0x83,0xf7,0x4c,0xee,0xf0 C shrx %r15, -16(up,un,8), %r9 and %rdx, %rbx C "ci" in C code mulx( %rdx, %r10, %rax) C up[0]^2 lea (%r9,%rdx,2), %rdx C "u0" arg in C code add %r10, %rbx adc $0, %rax C "cin" in C code .byte 0xc4,0x62,0xb3,0xf6,0x04,0xce C mulx (up,un,8), %r9, %r8 .byte 0xc4,0x62,0xa3,0xf6,0x54,0xee,0x08 C mulx 8(up,un,8), %r11, %r10 jmp L(b0) ALIGN(16) L(top0):add %r9, (rp,n,8) .byte 0xc4,0x62,0xb3,0xf6,0x04,0xce C mulx (up,n,8), %r9, %r8 adc %r11, 8(rp,n,8) .byte 0xc4,0x62,0xa3,0xf6,0x54,0xce,0x08 C mulx 8(up,n,8), %r11, %r10 adc %r13, 16(rp,n,8) L(b0): .byte 0xc4,0x62,0x93,0xf6,0x64,0xce,0x10 C mulx 16(up,n,8), %r13, %r12 adc %rbx, 24(rp,n,8) adc %rax, %r9 .byte 0xc4,0xe2,0xe3,0xf6,0x44,0xce,0x18 C mulx 24(up,n,8), %rbx, %rax adc %r8, %r11 adc %r10, %r13 adc %r12, %rbx adc $0, %rax add $4, n jnz L(top0) inc un add %r9, (rp) adc %r11, 8(rp) adc %r13, 16(rp) adc %rbx, 24(rp) adc $0, %rax mov %rax, 32(rp) L(f3): mov -8(up,un,8), %rdx C up[0] lea 3(un), n lea 8(rp), rp .byte 0xc4,0x62,0x82,0xf7,0x4c,0xee,0xf0 C sarx %r15, -16(up,un,8), %r9 .byte 0xc4,0x62,0x83,0xf7,0x5c,0xee,0xf0 C shrx %r15, -16(up,un,8), %r11 and %rdx, %r9 C "ci" in C code mulx( %rdx, %rax, %r8) C up[0]^2 lea (%r11,%rdx,2), %rdx C "u0" arg in C code add %rax, %r9 .byte 0xc4,0x62,0xa3,0xf6,0x14,0xee C mulx (%rsi,%rbp,8),%r11,%r10 .byte 0xc4,0x62,0x93,0xf6,0x64,0xee,0x08 C mulx 0x8(%rsi,%rbp,8),%r13,%r12 .byte 0xc4,0xe2,0xe3,0xf6,0x44,0xee,0x10 C mulx 0x10(%rsi,%rbp,8),%rbx,%rax adc %r8, %r11 adc %r10, %r13 adc %r12, %rbx adc $0, %rax jrcxz L(xit3) jmp L(top3) C FIXME perhaps fall through ALIGN(16) L(top3):add %r9, (rp,n,8) .byte 0xc4,0x62,0xb3,0xf6,0x04,0xce C mulx (up,n,8), %r9, %r8 adc %r11, 8(rp,n,8) .byte 0xc4,0x62,0xa3,0xf6,0x54,0xce,0x08 C mulx 8(up,n,8), %r11, %r10 adc %r13, 16(rp,n,8) .byte 0xc4,0x62,0x93,0xf6,0x64,0xce,0x10 C mulx 16(up,n,8), %r13, %r12 adc %rbx, 24(rp,n,8) adc %rax, %r9 .byte 0xc4,0xe2,0xe3,0xf6,0x44,0xce,0x18 C mulx 24(up,n,8), %rbx, %rax adc %r8, %r11 adc %r10, %r13 adc %r12, %rbx adc $0, %rax add $4, n jnz L(top3) inc un add %r9, (rp) adc %r11, 8(rp) adc %r13, 16(rp) adc %rbx, 24(rp) adc $0, %rax mov %rax, 32(rp) jmp L(f2) L(xit3):add %r9, (rp) adc %r11, 8(rp) adc 16(rp), %r13 adc 24(rp), %rbx L(m): adc $0, %rax mov %rax, 32(rp) mov -24(up), %rdx C FIXME: CSE mov -32(up), %r9 C FIXME: CSE sar $63, %r9 and %rdx, %r9 add %r13, %r9 mulx( %rdx, %rax, %r10) mov -16(up), %r8 C FIXME: CSE adc $0, %r10 add %rax, %r9 adc $0, %r10 mov %r9, 16(rp) mov -32(up), %rax shl %rax adc %rdx, %rdx mulx( %r8, %r13, %r12) mulx( -8,(up), %r11, %rax) C FIXME: CSE add %r10, %r13 adc %r12, %r11 adc $0, %rax add %rbx, %r13 mov %r13, 24(rp) adc 32(rp), %r11 adc $0, %rax mov -16(up), %rdx C FIXME: CSE mov -8(up), %r8 C FIXME: CSE mov -24(up), %r9 sar $63, %r9 and %rdx, %r9 add %r11, %r9 mulx( %rdx, %rbp, %r10) adc $0, %r10 add %rbp, %r9 adc $0, %r10 mov %r9, 32(rp) mov -24(up), %rbp shl %rbp adc %rdx, %rdx mulx( %r8, %rbx, %rbp) add %r10, %rbx adc $0, %rbp adc %rbx, %rax mov %rax, 40(rp) adc $0, %rbp mov -8(up), %rdx C FIXME: CSE mov -16(up), %r9 C FIXME: CSE sar $63, %r9 and %rdx, %r9 add %rbp, %r9 mulx( %rdx, %rbp, %r10) adc $0, %r10 add %rbp, %r9 adc $0, %r10 mov %r9, 48(rp) mov %r10, 56(rp) pop %rbx pop %rbp pop %r12 pop %r13 C pop %r14 pop %r15 FUNC_EXIT() ret EPILOGUE()