dnl X64-64 mpn_mullo_basecase optimised for AMD Zen. dnl Contributed to the GNU project by Torbjorn Granlund. dnl Copyright 2017 Free Software Foundation, Inc. dnl This file is part of the GNU MP Library. dnl dnl The GNU MP Library is free software; you can redistribute it and/or modify dnl it under the terms of either: dnl dnl * the GNU Lesser General Public License as published by the Free dnl Software Foundation; either version 3 of the License, or (at your dnl option) any later version. dnl dnl or dnl dnl * the GNU General Public License as published by the Free Software dnl Foundation; either version 2 of the License, or (at your option) any dnl later version. dnl dnl or both in parallel, as here. dnl dnl The GNU MP Library is distributed in the hope that it will be useful, but dnl WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY dnl or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License dnl for more details. dnl dnl You should have received copies of the GNU General Public License and the dnl GNU Lesser General Public License along with the GNU MP Library. If not, dnl see https://www.gnu.org/licenses/. include(`../config.m4') C The inner loops of this code are the result of running a code generation and C optimisation tool suite written by David Harvey and Torbjorn Granlund. define(`rp', `%rdi') define(`up', `%rsi') define(`vp_param', `%rdx') define(`n', `%rcx') define(`vp', `%r11') define(`nn', `%rbp') C TODO C * Rearrange feed-in jumps for short branch forms. C * Roll out the heavy artillery and 4-way unroll outer loop. Since feed-in C code implodes, the blow-up will not be more than perhaps 2.5x. C * Micro-optimise critical lead-in code blocks. C * Clean up register use, e.g. r15 vs vp, disuse of nn, etc. C * Write n < 4 code specifically for Zen (current code is for Haswell). ABI_SUPPORT(DOS64) ABI_SUPPORT(STD64) ASM_START() TEXT ALIGN(32) PROLOGUE(mpn_mullo_basecase) FUNC_ENTRY(4) cmp $4, R32(n) jae L(big) mov vp_param, vp mov (up), %rdx cmp $2, R32(n) jae L(gt1) L(n1): imul (vp), %rdx mov %rdx, (rp) FUNC_EXIT() ret L(gt1): ja L(gt2) L(n2): mov (vp), %r9 mulx( %r9, %rax, %rdx) mov %rax, (rp) mov 8(up), %rax imul %r9, %rax add %rax, %rdx mov 8(vp), %r9 mov (up), %rcx imul %r9, %rcx add %rcx, %rdx mov %rdx, 8(rp) FUNC_EXIT() ret L(gt2): L(n3): mov (vp), %r9 mulx( %r9, %rax, %r10) C u0 x v0 mov %rax, (rp) mov 8(up), %rdx mulx( %r9, %rax, %rdx) C u1 x v0 imul 16(up), %r9 C u2 x v0 add %rax, %r10 adc %rdx, %r9 mov 8(vp), %r8 mov (up), %rdx mulx( %r8, %rax, %rdx) C u0 x v1 add %rax, %r10 adc %rdx, %r9 imul 8(up), %r8 C u1 x v1 add %r8, %r9 mov %r10, 8(rp) mov 16(vp), %r10 mov (up), %rax imul %rax, %r10 C u0 x v2 add %r10, %r9 mov %r9, 16(rp) FUNC_EXIT() ret ALIGN(16) L(big): push %r15 push %r14 push %r13 push %r12 push %rbp push %rbx mov (up), %r9 lea -8(up,n,8), up lea -40(rp,n,8), rp mov $4, R32(%r14) sub n, %r14 mov -8(vp_param,n,8), %rbp imul %r9, %rbp lea 8(vp_param), %r15 mov (vp_param), %rdx test $1, R8(%r14) jnz L(mx0) L(mx1): test $2, R8(%r14) jz L(mb3) L(mb1): mulx( %r9, %rbx, %rax) lea -2(%r14), n .byte 0xc4,0x22,0xb3,0xf6,0x44,0xf6,0xf0 C mulx -0x10(%rsi,%r14,8),%r9,%r8 .byte 0xc4,0x22,0xa3,0xf6,0x54,0xf6,0xf8 C mulx -0x8(%rsi,%r14,8),%r11,%r10 jmp L(mlo1) L(mb3): mulx( %r9, %r11, %r10) .byte 0xc4,0x22,0x93,0xf6,0x64,0xf6,0xf0 C mulx -0x10(%rsi,%r14,8),%r13,%r12 .byte 0xc4,0xa2,0xe3,0xf6,0x44,0xf6,0xf8 C mulx -0x8(%rsi,%r14,8),%rbx,%rax lea (%r14), n jrcxz L(x) jmp L(mlo3) L(x): jmp L(mcor) L(mb2): mulx( %r9, %r13, %r12) .byte 0xc4,0xa2,0xe3,0xf6,0x44,0xf6,0xf0 C mulx -0x10(%rsi,%r14,8),%rbx,%rax lea -1(%r14), n .byte 0xc4,0x22,0xb3,0xf6,0x44,0xf6,0xf8 C mulx -0x8(%rsi,%r14,8),%r9,%r8 jmp L(mlo2) L(mx0): test $2, R8(%r14) jz L(mb2) L(mb0): mulx( %r9, %r9, %r8) .byte 0xc4,0x22,0xa3,0xf6,0x54,0xf6,0xf0 C mulx -0x10(%rsi,%r14,8),%r11,%r10 .byte 0xc4,0x22,0x93,0xf6,0x64,0xf6,0xf8 C mulx -0x8(%rsi,%r14,8),%r13,%r12 lea -3(%r14), n jmp L(mlo0) ALIGN(16) L(mtop):jrcxz L(mend) adc %r8, %r11 mov %r9, (rp,n,8) L(mlo3):.byte 0xc4,0x62,0xb3,0xf6,0x04,0xce C mulx (up,n,8), %r9, %r8 adc %r10, %r13 mov %r11, 8(rp,n,8) L(mlo2):.byte 0xc4,0x62,0xa3,0xf6,0x54,0xce,0x08 C mulx 8(up,n,8), %r11, %r10 adc %r12, %rbx mov %r13, 16(rp,n,8) L(mlo1):.byte 0xc4,0x62,0x93,0xf6,0x64,0xce,0x10 C mulx 16(up,n,8), %r13, %r12 adc %rax, %r9 mov %rbx, 24(rp,n,8) L(mlo0):.byte 0xc4,0xe2,0xe3,0xf6,0x44,0xce,0x18 C mulx 24(up,n,8), %rbx, %rax lea 4(n), n jmp L(mtop) L(mend):mov %r9, (rp) adc %r8, %r11 mov %r11, 8(rp) adc %r10, %r13 mov %r13, 16(rp) adc %r12, %rbx mov %rbx, 24(rp) L(outer): mulx( (up), %r10, %r8) C FIXME r8 unused (use imul?) adc %rax, %rbp add %r10, %rbp mov (%r15), %rdx add $8, %r15 mov -24(up,%r14,8), %r8 lea -8(up), up test $1, R8(%r14) jz L(x0) L(x1): test $2, R8(%r14) jnz L(b3) L(b1): mulx( %r8, %rbx, %rax) lea -1(%r14), n .byte 0xc4,0x62,0xb3,0xf6,0x04,0xce C mulx (%rsi,%rcx,8),%r9,%r8 .byte 0xc4,0x62,0xa3,0xf6,0x54,0xce,0x08 C mulx 0x8(%rsi,%rcx,8),%r11,%r10 jmp L(lo1) L(x0): test $2, R8(%r14) jz L(b2) L(b0): mulx( %r8, %r9, %r8) lea -2(%r14), n .byte 0xc4,0x22,0xa3,0xf6,0x54,0xf6,0xf8 C mulx -0x8(%rsi,%r14,8),%r11,%r10 .byte 0xc4,0x22,0x93,0xf6,0x24,0xf6 C mulx (%rsi,%r14,8),%r13,%r12 jmp L(lo0) L(b3): mulx( %r8, %r11, %r10) lea 1(%r14), n .byte 0xc4,0x22,0x93,0xf6,0x64,0xf6,0xf8 C mulx -0x8(%rsi,%r14,8),%r13,%r12 .byte 0xc4,0xa2,0xe3,0xf6,0x04,0xf6 C mulx (%rsi,%r14,8),%rbx,%rax add %r10, %r13 adc %r12, %rbx adc $0, %rax jrcxz L(cor) jmp L(lo3) L(cor): add 8(rp), %r11 mov 16(rp), %r10 mov 24(rp), %r12 L(mcor):mov %r11, 8(rp) adc %r10, %r13 adc %r12, %rbx mulx( (up), %r10, %r8) C FIXME r8 unused (use imul?) adc %rax, %rbp add %r10, %rbp mov (%r15), %rdx mov -24(up), %r8 mulx( %r8, %r9, %r12) mulx( -16,(up), %r14, %rax) add %r12, %r14 adc $0, %rax adc %r9, %r13 mov %r13, 16(rp) adc %r14, %rbx mulx( -8,(up), %r10, %r8) C FIXME r8 unused (use imul?) adc %rax, %rbp add %r10, %rbp mov 8(%r15), %rdx mulx( -24,(up), %r14, %rax) add %r14, %rbx mov %rbx, 24(rp) mulx( -16,(up), %r10, %r8) C FIXME r8 unused (use imul?) adc %rax, %rbp add %r10, %rbp mov %rbp, 32(rp) pop %rbx pop %rbp pop %r12 pop %r13 pop %r14 pop %r15 FUNC_EXIT() ret L(b2): mulx( %r8, %r13, %r12) lea (%r14), n .byte 0xc4,0xa2,0xe3,0xf6,0x44,0xf6,0xf8 C mulx -0x8(%rsi,%r14,8),%rbx,%rax add %r12, %rbx adc $0, %rax .byte 0xc4,0x22,0xb3,0xf6,0x04,0xf6 C mulx (%rsi,%r14,8),%r9,%r8 jmp L(lo2) ALIGN(16) L(top): add %r9, (rp,n,8) L(lo3): .byte 0xc4,0x62,0xb3,0xf6,0x04,0xce C mulx (up,n,8), %r9, %r8 adc %r11, 8(rp,n,8) L(lo2): .byte 0xc4,0x62,0xa3,0xf6,0x54,0xce,0x08 C mulx 8(up,n,8), %r11, %r10 adc %r13, 16(rp,n,8) L(lo1): .byte 0xc4,0x62,0x93,0xf6,0x64,0xce,0x10 C mulx 16(up,n,8), %r13, %r12 adc %rbx, 24(rp,n,8) adc %rax, %r9 L(lo0): .byte 0xc4,0xe2,0xe3,0xf6,0x44,0xce,0x18 C mulx 24(up,n,8), %rbx, %rax adc %r8, %r11 adc %r10, %r13 adc %r12, %rbx adc $0, %rax add $4, n js L(top) add %r9, (rp) adc %r11, 8(rp) adc %r13, 16(rp) adc %rbx, 24(rp) inc %r14 jmp L(outer) EPILOGUE()