dnl AMD64 mpn_mullo_basecase. dnl Contributed to the GNU project by Torbjorn Granlund. dnl Copyright 2008, 2009, 2011, 2012 Free Software Foundation, Inc. dnl This file is part of the GNU MP Library. dnl dnl The GNU MP Library is free software; you can redistribute it and/or modify dnl it under the terms of either: dnl dnl * the GNU Lesser General Public License as published by the Free dnl Software Foundation; either version 3 of the License, or (at your dnl option) any later version. dnl dnl or dnl dnl * the GNU General Public License as published by the Free Software dnl Foundation; either version 2 of the License, or (at your option) any dnl later version. dnl dnl or both in parallel, as here. dnl dnl The GNU MP Library is distributed in the hope that it will be useful, but dnl WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY dnl or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License dnl for more details. dnl dnl You should have received copies of the GNU General Public License and the dnl GNU Lesser General Public License along with the GNU MP Library. If not, dnl see https://www.gnu.org/licenses/. include(`../config.m4') C The inner loops of this code are the result of running a code generation and C optimisation tool suite written by David Harvey and Torbjorn Granlund. C NOTES C * There is a major stupidity in that we call mpn_mul_1 initially, for a C large trip count. Instead, we should start with mul_2 for any operand C size congruence class. C * Stop iterating addmul_2 earlier, falling into straight-line triangle code C for the last 2-3 iterations. C * Perhaps implement n=4 special code. C * The reload of the outer loop jump address hurts branch prediction. C * The addmul_2 loop ends with an MUL whose high part is not used upon loop C exit. C INPUT PARAMETERS define(`rp', `%rdi') define(`up', `%rsi') define(`vp_param', `%rdx') define(`n', `%rcx') define(`vp', `%r11') define(`outer_addr', `%r8') define(`j', `%r9') define(`v0', `%r13') define(`v1', `%r14') define(`w0', `%rbx') define(`w1', `%r15') define(`w2', `%rbp') define(`w3', `%r10') ABI_SUPPORT(DOS64) ABI_SUPPORT(STD64) ASM_START() TEXT ALIGN(16) PROLOGUE(mpn_mullo_basecase) FUNC_ENTRY(4) cmp $4, n jge L(gen) mov (up), %rax C u0 mov (vp_param), %r8 C v0 lea L(tab)(%rip), %r9 ifdef(`PIC', ` movslq (%r9,%rcx,4), %r10 add %r10, %r9 jmp *%r9 ',` jmp *(%r9,n,8) ') JUMPTABSECT ALIGN(8) L(tab): JMPENT( L(tab), L(tab)) C not allowed JMPENT( L(1), L(tab)) C 1 JMPENT( L(2), L(tab)) C 2 JMPENT( L(3), L(tab)) C 3 dnl JMPENT( L(0m4), L(tab)) C 4 dnl JMPENT( L(1m4), L(tab)) C 5 dnl JMPENT( L(2m4), L(tab)) C 6 dnl JMPENT( L(3m4), L(tab)) C 7 dnl JMPENT( L(0m4), L(tab)) C 8 dnl JMPENT( L(1m4), L(tab)) C 9 dnl JMPENT( L(2m4), L(tab)) C 10 dnl JMPENT( L(3m4), L(tab)) C 11 TEXT L(1): imul %r8, %rax mov %rax, (rp) FUNC_EXIT() ret L(2): mov 8(vp_param), %r11 imul %rax, %r11 C u0 x v1 mul %r8 C u0 x v0 mov %rax, (rp) imul 8(up), %r8 C u1 x v0 lea (%r11, %rdx), %rax add %r8, %rax mov %rax, 8(rp) FUNC_EXIT() ret L(3): mov 8(vp_param), %r9 C v1 mov 16(vp_param), %r11 mul %r8 C u0 x v0 -> mov %rax, (rp) C r0 mov (up), %rax C u0 mov %rdx, %rcx C r1 mul %r9 C u0 x v1 -> imul 8(up), %r9 C u1 x v1 -> r2 mov 16(up), %r10 imul %r8, %r10 C u2 x v0 -> r2 add %rax, %rcx adc %rdx, %r9 add %r10, %r9 mov 8(up), %rax C u1 mul %r8 C u1 x v0 -> add %rax, %rcx adc %rdx, %r9 mov %r11, %rax imul (up), %rax C u0 x v2 -> r2 add %rax, %r9 mov %rcx, 8(rp) mov %r9, 16(rp) FUNC_EXIT() ret L(0m4): L(1m4): L(2m4): L(3m4): L(gen): push %rbx push %rbp push %r13 push %r14 push %r15 mov (up), %rax mov (vp_param), v0 mov vp_param, vp lea (rp,n,8), rp lea (up,n,8), up neg n mul v0 test $1, R8(n) jz L(mul_2) L(mul_1): lea -8(rp), rp lea -8(up), up test $2, R8(n) jnz L(mul_1_prologue_3) L(mul_1_prologue_2): C n = 7, 11, 15, ... lea -1(n), j lea L(addmul_outer_1)(%rip), outer_addr mov %rax, w0 mov %rdx, w1 xor R32(w2), R32(w2) xor R32(w3), R32(w3) mov 16(up,n,8), %rax jmp L(mul_1_entry_2) L(mul_1_prologue_3): C n = 5, 9, 13, ... lea 1(n), j lea L(addmul_outer_3)(%rip), outer_addr mov %rax, w2 mov %rdx, w3 xor R32(w0), R32(w0) jmp L(mul_1_entry_0) ALIGN(16) L(mul_1_top): mov w0, -16(rp,j,8) add %rax, w1 mov (up,j,8), %rax adc %rdx, w2 xor R32(w0), R32(w0) mul v0 mov w1, -8(rp,j,8) add %rax, w2 adc %rdx, w3 L(mul_1_entry_0): mov 8(up,j,8), %rax mul v0 mov w2, (rp,j,8) add %rax, w3 adc %rdx, w0 mov 16(up,j,8), %rax mul v0 mov w3, 8(rp,j,8) xor R32(w2), R32(w2) C zero mov w2, w3 C zero add %rax, w0 mov 24(up,j,8), %rax mov w2, w1 C zero adc %rdx, w1 L(mul_1_entry_2): mul v0 add $4, j js L(mul_1_top) mov w0, -16(rp) add %rax, w1 mov w1, -8(rp) adc %rdx, w2 imul (up), v0 add v0, w2 mov w2, (rp) add $1, n jz L(ret) mov 8(vp), v0 mov 16(vp), v1 lea 16(up), up lea 8(vp), vp lea 24(rp), rp jmp *outer_addr L(mul_2): mov 8(vp), v1 test $2, R8(n) jz L(mul_2_prologue_3) ALIGN(16) L(mul_2_prologue_1): lea 0(n), j mov %rax, w3 mov %rdx, w0 xor R32(w1), R32(w1) mov (up,n,8), %rax lea L(addmul_outer_3)(%rip), outer_addr jmp L(mul_2_entry_1) ALIGN(16) L(mul_2_prologue_3): lea 2(n), j mov $0, R32(w3) mov %rax, w1 mov (up,n,8), %rax mov %rdx, w2 lea L(addmul_outer_1)(%rip), outer_addr jmp L(mul_2_entry_3) ALIGN(16) L(mul_2_top): mov -32(up,j,8), %rax mul v1 add %rax, w0 adc %rdx, w1 mov -24(up,j,8), %rax xor R32(w2), R32(w2) mul v0 add %rax, w0 mov -24(up,j,8), %rax adc %rdx, w1 adc $0, R32(w2) mul v1 add %rax, w1 mov w0, -24(rp,j,8) adc %rdx, w2 mov -16(up,j,8), %rax mul v0 mov $0, R32(w3) add %rax, w1 adc %rdx, w2 mov -16(up,j,8), %rax adc $0, R32(w3) L(mul_2_entry_3): mov $0, R32(w0) mov w1, -16(rp,j,8) mul v1 add %rax, w2 mov -8(up,j,8), %rax adc %rdx, w3 mov $0, R32(w1) mul v0 add %rax, w2 mov -8(up,j,8), %rax adc %rdx, w3 adc R32(w1), R32(w0) mul v1 add %rax, w3 mov w2, -8(rp,j,8) adc %rdx, w0 mov (up,j,8), %rax mul v0 add %rax, w3 adc %rdx, w0 adc $0, R32(w1) L(mul_2_entry_1): add $4, j mov w3, -32(rp,j,8) js L(mul_2_top) imul -16(up), v1 add v1, w0 imul -8(up), v0 add v0, w0 mov w0, -8(rp) add $2, n jz L(ret) mov 16(vp), v0 mov 24(vp), v1 lea 16(vp), vp lea 16(rp), rp jmp *outer_addr L(addmul_outer_1): lea -2(n), j mov -16(up,n,8), %rax mul v0 mov %rax, w3 mov -16(up,n,8), %rax mov %rdx, w0 xor R32(w1), R32(w1) lea L(addmul_outer_3)(%rip), outer_addr jmp L(addmul_entry_1) L(addmul_outer_3): lea 0(n), j mov -16(up,n,8), %rax xor R32(w3), R32(w3) mul v0 mov %rax, w1 mov -16(up,n,8), %rax mov %rdx, w2 lea L(addmul_outer_1)(%rip), outer_addr jmp L(addmul_entry_3) ALIGN(16) L(addmul_top): add w3, -32(rp,j,8) adc %rax, w0 mov -24(up,j,8), %rax adc %rdx, w1 xor R32(w2), R32(w2) mul v0 add %rax, w0 mov -24(up,j,8), %rax adc %rdx, w1 adc R32(w2), R32(w2) mul v1 xor R32(w3), R32(w3) add w0, -24(rp,j,8) adc %rax, w1 mov -16(up,j,8), %rax adc %rdx, w2 mul v0 add %rax, w1 mov -16(up,j,8), %rax adc %rdx, w2 adc $0, R32(w3) L(addmul_entry_3): mul v1 add w1, -16(rp,j,8) adc %rax, w2 mov -8(up,j,8), %rax adc %rdx, w3 mul v0 xor R32(w0), R32(w0) add %rax, w2 adc %rdx, w3 mov $0, R32(w1) mov -8(up,j,8), %rax adc R32(w1), R32(w0) mul v1 add w2, -8(rp,j,8) adc %rax, w3 adc %rdx, w0 mov (up,j,8), %rax mul v0 add %rax, w3 mov (up,j,8), %rax adc %rdx, w0 adc $0, R32(w1) L(addmul_entry_1): mul v1 add $4, j js L(addmul_top) add w3, -32(rp) adc %rax, w0 imul -24(up), v0 add v0, w0 add w0, -24(rp) add $2, n jns L(ret) lea 16(vp), vp mov (vp), v0 mov 8(vp), v1 lea -16(up), up jmp *outer_addr L(ret): pop %r15 pop %r14 pop %r13 pop %rbp pop %rbx FUNC_EXIT() ret EPILOGUE()