dnl AMD64 mpn_mullo_basecase optimised for Intel Haswell. dnl Contributed to the GNU project by Torbjörn Granlund. dnl Copyright 2008, 2009, 2011-2013 Free Software Foundation, Inc. dnl This file is part of the GNU MP Library. dnl dnl The GNU MP Library is free software; you can redistribute it and/or modify dnl it under the terms of either: dnl dnl * the GNU Lesser General Public License as published by the Free dnl Software Foundation; either version 3 of the License, or (at your dnl option) any later version. dnl dnl or dnl dnl * the GNU General Public License as published by the Free Software dnl Foundation; either version 2 of the License, or (at your option) any dnl later version. dnl dnl or both in parallel, as here. dnl dnl The GNU MP Library is distributed in the hope that it will be useful, but dnl WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY dnl or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License dnl for more details. dnl dnl You should have received copies of the GNU General Public License and the dnl GNU Lesser General Public License along with the GNU MP Library. If not, dnl see https://www.gnu.org/licenses/. include(`../config.m4') C cycles/limb mul_2 addmul_2 C AMD K8,K9 n/a n/a C AMD K10 n/a n/a C AMD bull n/a n/a C AMD pile n/a n/a C AMD steam ? ? C AMD bobcat n/a n/a C AMD jaguar ? ? C Intel P4 n/a n/a C Intel core n/a n/a C Intel NHM n/a n/a C Intel SBR n/a n/a C Intel IBR n/a n/a C Intel HWL 1.86 2.15 C Intel BWL ? ? C Intel atom n/a n/a C VIA nano n/a n/a C The inner loops of this code are the result of running a code generation and C optimisation tool suite written by David Harvey and Torbjörn Granlund. C TODO C * Implement proper cor2, replacing current cor0. C * Micro-optimise. define(`rp', `%rdi') define(`up', `%rsi') define(`vp_param', `%rdx') define(`n', `%rcx') define(`vp', `%r8') define(`X0', `%r14') define(`X1', `%r15') define(`w0', `%r10') define(`w1', `%r11') define(`w2', `%r12') define(`w3', `%r13') define(`i', `%rbp') define(`v0', `%r9') define(`v1', `%rbx') C rax rbx rcx rdx rdi rsi rbp r8 r9 r10 r11 r12 r13 r14 r15 ABI_SUPPORT(DOS64) ABI_SUPPORT(STD64) ASM_START() TEXT ALIGN(32) PROLOGUE(mpn_mullo_basecase) FUNC_ENTRY(4) mov vp_param, vp mov (up), %rdx cmp $4, n jb L(small) push %rbx push %rbp push %r12 push %r13 mov (vp), v0 mov 8(vp), v1 lea 2(n), i shr $2, i neg n add $2, n push up C put entry `up' on stack test $1, R8(n) jnz L(m2x1) L(m2x0):mulx( v0, w0, w3) xor R32(w2), R32(w2) test $2, R8(n) jz L(m2b2) L(m2b0):lea -8(rp), rp lea -8(up), up jmp L(m2e0) L(m2b2):lea -24(rp), rp lea 8(up), up jmp L(m2e2) L(m2x1):mulx( v0, w2, w1) xor R32(w0), R32(w0) test $2, R8(n) jnz L(m2b3) L(m2b1):jmp L(m2e1) L(m2b3):lea -16(rp), rp lea -16(up), up jmp L(m2e3) ALIGN(16) L(m2tp):mulx( v1, %rax, w0) add %rax, w2 mov (up), %rdx mulx( v0, %rax, w1) adc $0, w0 add %rax, w2 adc $0, w1 add w3, w2 L(m2e1):mov w2, (rp) adc $0, w1 mulx( v1, %rax, w2) add %rax, w0 mov 8(up), %rdx adc $0, w2 mulx( v0, %rax, w3) add %rax, w0 adc $0, w3 add w1, w0 L(m2e0):mov w0, 8(rp) adc $0, w3 mulx( v1, %rax, w0) add %rax, w2 mov 16(up), %rdx mulx( v0, %rax, w1) adc $0, w0 add %rax, w2 adc $0, w1 add w3, w2 L(m2e3):mov w2, 16(rp) adc $0, w1 mulx( v1, %rax, w2) add %rax, w0 mov 24(up), %rdx adc $0, w2 mulx( v0, %rax, w3) add %rax, w0 adc $0, w3 add w1, w0 lea 32(up), up L(m2e2):mov w0, 24(rp) adc $0, w3 dec i lea 32(rp), rp jnz L(m2tp) L(m2ed):mulx( v1, %rax, w0) add %rax, w2 mov (up), %rdx mulx( v0, %rax, w1) add w2, %rax add w3, %rax mov %rax, (rp) mov (%rsp), up C restore `up' to beginning lea 16(vp), vp lea 8(rp,n,8), rp C put back rp to old rp + 2 add $2, n jge L(cor1) push %r14 push %r15 L(outer): mov (vp), v0 mov 8(vp), v1 lea (n), i sar $2, i mov (up), %rdx test $1, R8(n) jnz L(bx1) L(bx0): mov (rp), X1 mov 8(rp), X0 mulx( v0, %rax, w3) add %rax, X1 adc $0, w3 mulx( v1, %rax, w0) add %rax, X0 adc $0, w0 mov 8(up), %rdx mov X1, (rp) mulx( v0, %rax, w1) test $2, R8(n) jz L(b2) L(b0): lea 8(rp), rp lea 8(up), up jmp L(lo0) L(b2): mov 16(rp), X1 lea 24(rp), rp lea 24(up), up jmp L(lo2) L(bx1): mov (rp), X0 mov 8(rp), X1 mulx( v0, %rax, w1) add %rax, X0 mulx( v1, %rax, w2) adc $0, w1 mov X0, (rp) add %rax, X1 adc $0, w2 mov 8(up), %rdx test $2, R8(n) jnz L(b3) L(b1): lea 16(up), up lea 16(rp), rp jmp L(lo1) L(b3): mov 16(rp), X0 lea 32(up), up mulx( v0, %rax, w3) inc i jz L(cj3) jmp L(lo3) ALIGN(16) L(top): mulx( v0, %rax, w3) add w0, X1 adc $0, w2 L(lo3): add %rax, X1 adc $0, w3 mulx( v1, %rax, w0) add %rax, X0 adc $0, w0 lea 32(rp), rp add w1, X1 mov -16(up), %rdx mov X1, -24(rp) adc $0, w3 add w2, X0 mov -8(rp), X1 mulx( v0, %rax, w1) adc $0, w0 L(lo2): add %rax, X0 mulx( v1, %rax, w2) adc $0, w1 add w3, X0 mov X0, -16(rp) adc $0, w1 add %rax, X1 adc $0, w2 add w0, X1 mov -8(up), %rdx adc $0, w2 L(lo1): mulx( v0, %rax, w3) add %rax, X1 adc $0, w3 mov (rp), X0 mulx( v1, %rax, w0) add %rax, X0 adc $0, w0 add w1, X1 mov X1, -8(rp) adc $0, w3 mov (up), %rdx add w2, X0 mulx( v0, %rax, w1) adc $0, w0 L(lo0): add %rax, X0 adc $0, w1 mulx( v1, %rax, w2) add w3, X0 mov 8(rp), X1 mov X0, (rp) mov 16(rp), X0 adc $0, w1 add %rax, X1 adc $0, w2 mov 8(up), %rdx lea 32(up), up inc i jnz L(top) L(end): mulx( v0, %rax, w3) add w0, X1 adc $0, w2 L(cj3): add %rax, X1 adc $0, w3 mulx( v1, %rax, w0) add %rax, X0 add w1, X1 mov -16(up), %rdx mov X1, 8(rp) adc $0, w3 add w2, X0 mulx( v0, %rax, w1) add X0, %rax add w3, %rax mov %rax, 16(rp) mov 16(%rsp), up C restore `up' to beginning lea 16(vp), vp lea 24(rp,n,8), rp C put back rp to old rp + 2 add $2, n jl L(outer) pop %r15 pop %r14 jnz L(cor0) L(cor1):mov (vp), v0 mov 8(vp), v1 mov (up), %rdx mulx( v0, %r12, %rbp) C u0 x v2 add (rp), %r12 C FIXME: rp[0] still available in reg? adc %rax, %rbp mov 8(up), %r10 imul v0, %r10 imul v1, %rdx mov %r12, (rp) add %r10, %rdx add %rbp, %rdx mov %rdx, 8(rp) pop %rax C deallocate `up' copy pop %r13 pop %r12 pop %rbp pop %rbx FUNC_EXIT() ret L(cor0):mov (vp), %r11 imul (up), %r11 add %rax, %r11 mov %r11, (rp) pop %rax C deallocate `up' copy pop %r13 pop %r12 pop %rbp pop %rbx FUNC_EXIT() ret ALIGN(16) L(small): cmp $2, n jae L(gt1) L(n1): imul (vp), %rdx mov %rdx, (rp) FUNC_EXIT() ret L(gt1): ja L(gt2) L(n2): mov (vp), %r9 mulx( %r9, %rax, %rdx) mov %rax, (rp) mov 8(up), %rax imul %r9, %rax add %rax, %rdx mov 8(vp), %r9 mov (up), %rcx imul %r9, %rcx add %rcx, %rdx mov %rdx, 8(rp) FUNC_EXIT() ret L(gt2): L(n3): mov (vp), %r9 mulx( %r9, %rax, %r10) C u0 x v0 mov %rax, (rp) mov 8(up), %rdx mulx( %r9, %rax, %rdx) C u1 x v0 imul 16(up), %r9 C u2 x v0 add %rax, %r10 adc %rdx, %r9 mov 8(vp), %r11 mov (up), %rdx mulx( %r11, %rax, %rdx) C u0 x v1 add %rax, %r10 adc %rdx, %r9 imul 8(up), %r11 C u1 x v1 add %r11, %r9 mov %r10, 8(rp) mov 16(vp), %r10 mov (up), %rax imul %rax, %r10 C u0 x v2 add %r10, %r9 mov %r9, 16(rp) FUNC_EXIT() ret EPILOGUE()