dnl X86-64 mpn_redc_1 optimised for Intel Conroe and Wolfdale. dnl Contributed to the GNU project by Torbjörn Granlund. dnl Copyright 2003-2005, 2007, 2008, 2011-2013 Free Software Foundation, Inc. dnl This file is part of the GNU MP Library. dnl dnl The GNU MP Library is free software; you can redistribute it and/or modify dnl it under the terms of either: dnl dnl * the GNU Lesser General Public License as published by the Free dnl Software Foundation; either version 3 of the License, or (at your dnl option) any later version. dnl dnl or dnl dnl * the GNU General Public License as published by the Free Software dnl Foundation; either version 2 of the License, or (at your option) any dnl later version. dnl dnl or both in parallel, as here. dnl dnl The GNU MP Library is distributed in the hope that it will be useful, but dnl WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY dnl or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License dnl for more details. dnl dnl You should have received copies of the GNU General Public License and the dnl GNU Lesser General Public License along with the GNU MP Library. If not, dnl see https://www.gnu.org/licenses/. include(`../config.m4') C cycles/limb C AMD K8,K9 ? C AMD K10 ? C AMD bull ? C AMD pile ? C AMD steam ? C AMD bobcat ? C AMD jaguar ? C Intel P4 ? C Intel core 4.5 (fluctuating) C Intel NHM ? C Intel SBR ? C Intel IBR ? C Intel HWL ? C Intel BWL ? C Intel atom ? C VIA nano ? C The inner loops of this code are the result of running a code generation and C optimisation tool suite written by David Harvey and Torbjörn Granlund. C TODO C * Micro-optimise, none performed thus far. C * Consider inlining mpn_add_n. C * Single basecases out before the pushes. C * Keep up[i] in registers for basecases (might require pushes). C When playing with pointers, set this to $2 to fall back to conservative C indexing in wind-down code. define(`I',`$1') define(`rp', `%rdi') C rcx define(`up', `%rsi') C rdx define(`mp_param', `%rdx') C r8 define(`n', `%rcx') C r9 define(`u0inv', `%r8') C stack define(`i', `%r14') define(`j', `%r15') define(`mp', `%r12') define(`q0', `%r13') C rax rbx rcx rdx rdi rsi rbp r8 r9 r10 r11 r12 r13 r14 r15 C X q0' n X rp up u0i mp q0 i j ABI_SUPPORT(DOS64) ABI_SUPPORT(STD64) define(`ALIGNx', `ALIGN(16)') ASM_START() TEXT ALIGN(32) PROLOGUE(mpn_redc_1) FUNC_ENTRY(4) IFDOS(` mov 56(%rsp), %r8 ') push %rbx push %rbp push %r12 push %r13 push %r14 push %r15 mov (up), q0 mov n, j C outer loop induction var lea (mp_param,n,8), mp lea -16(up,n,8), up neg n imul u0inv, q0 C first iteration q0 test $1, R8(n) jz L(b0) L(b1): cmp $-1, R32(n) jz L(n1) cmp $-3, R32(n) jz L(n3) push rp L(otp1):lea 3(n), i mov (mp,n,8), %rax mul q0 lea (%rax), %rbp mov 8(mp,n,8), %rax lea (%rdx), %r9 mul q0 lea (%rax), %r11 mov 16(mp,n,8), %rax mov 16(up,n,8), %r10 lea (%rdx), %rdi mul q0 add %rbp, %r10 lea (%rax), %rbp mov 24(mp,n,8), %rax adc %r9, %r11 mov 24(up,n,8), %rbx lea (%rdx), %r9 adc $0, %rdi mul q0 add %r11, %rbx lea (%rax), %r11 mov 32(mp,n,8), %rax adc %rdi, %rbp mov %rbx, 24(up,n,8) mov 32(up,n,8), %r10 lea (%rdx), %rdi adc $0, %r9 imul u0inv, %rbx C next q limb add $2, i jns L(ed1) ALIGNx L(tp1): mul q0 add %rbp, %r10 lea (%rax), %rbp mov (mp,i,8), %rax adc %r9, %r11 mov %r10, -8(up,i,8) mov (up,i,8), %r10 lea (%rdx), %r9 adc $0, %rdi mul q0 add %r11, %r10 lea (%rax), %r11 mov 8(mp,i,8), %rax adc %rdi, %rbp mov %r10, (up,i,8) mov 8(up,i,8), %r10 lea (%rdx), %rdi adc $0, %r9 add $2, i js L(tp1) L(ed1): mul q0 add %rbp, %r10 adc %r9, %r11 mov %r10, I(-8(up),-8(up,i,8)) mov I((up),(up,i,8)), %r10 adc $0, %rdi add %r11, %r10 adc %rdi, %rax mov %r10, I((up),(up,i,8)) mov I(8(up),8(up,i,8)), %r10 adc $0, %rdx add %rax, %r10 mov %r10, I(8(up),8(up,i,8)) adc $0, %rdx mov %rdx, 16(up,n,8) C up[0] mov %rbx, q0 C previously computed q limb -> q0 lea 8(up), up C up++ dec j jnz L(otp1) jmp L(cj) L(b0): cmp $-2, R32(n) jz L(n2) cmp $-4, R32(n) jz L(n4) push rp L(otp0):lea 4(n), i mov (mp,n,8), %rax mul q0 lea (%rax), %r11 mov 8(mp,n,8), %rax lea (%rdx), %rdi mul q0 lea (%rax), %rbp mov 16(mp,n,8), %rax mov 16(up,n,8), %r10 lea (%rdx), %r9 mul q0 add %r11, %r10 lea (%rax), %r11 mov 24(mp,n,8), %rax adc %rdi, %rbp mov 24(up,n,8), %rbx lea (%rdx), %rdi adc $0, %r9 mul q0 add %rbp, %rbx lea (%rax), %rbp mov 32(mp,n,8), %rax adc %r9, %r11 mov %rbx, 24(up,n,8) mov 32(up,n,8), %r10 lea (%rdx), %r9 adc $0, %rdi imul u0inv, %rbx C next q limb jmp L(e0) ALIGNx L(tp0): mul q0 add %rbp, %r10 lea (%rax), %rbp mov (mp,i,8), %rax adc %r9, %r11 mov %r10, -8(up,i,8) mov (up,i,8), %r10 lea (%rdx), %r9 adc $0, %rdi L(e0): mul q0 add %r11, %r10 lea (%rax), %r11 mov 8(mp,i,8), %rax adc %rdi, %rbp mov %r10, (up,i,8) mov 8(up,i,8), %r10 lea (%rdx), %rdi adc $0, %r9 add $2, i js L(tp0) L(ed0): mul q0 add %rbp, %r10 adc %r9, %r11 mov %r10, I(-8(up),-8(up,i,8)) mov I((up),(up,i,8)), %r10 adc $0, %rdi add %r11, %r10 adc %rdi, %rax mov %r10, I((up),(up,i,8)) mov I(8(up),8(up,i,8)), %r10 adc $0, %rdx add %rax, %r10 mov %r10, I(8(up),8(up,i,8)) adc $0, %rdx mov %rdx, 16(up,n,8) C up[0] mov %rbx, q0 C previously computed q limb -> q0 lea 8(up), up C up++ dec j jnz L(otp0) L(cj): lea 16(up), up C FIXME pop rp L(add_n): IFSTD(` lea (up,n,8), up C param 2: up lea (up,n,8), %rdx C param 3: up - n neg R32(n) ') C param 4: n IFDOS(` lea (up,n,8), %rdx C param 2: up lea (%rdx,n,8), %r8 C param 3: up - n neg R32(n) mov n, %r9 C param 4: n mov rp, %rcx ') C param 1: rp IFSTD(` sub $8, %rsp ') IFDOS(` sub $40, %rsp ') ASSERT(nz, `test $15, %rsp') CALL( mpn_add_n) IFSTD(` add $8, %rsp ') IFDOS(` add $40, %rsp ') L(ret): pop %r15 pop %r14 pop %r13 pop %r12 pop %rbp pop %rbx FUNC_EXIT() ret L(n1): mov (mp_param), %rax mul q0 add 8(up), %rax adc 16(up), %rdx mov %rdx, (rp) mov $0, R32(%rax) adc R32(%rax), R32(%rax) jmp L(ret) L(n2): mov (mp_param), %rax mov (up), %rbp mul q0 add %rax, %rbp mov %rdx, %r9 adc $0, %r9 mov -8(mp), %rax mov 8(up), %r10 mul q0 add %rax, %r10 mov %rdx, %r11 adc $0, %r11 add %r9, %r10 adc $0, %r11 mov %r10, q0 imul u0inv, q0 C next q0 mov -16(mp), %rax mul q0 add %rax, %r10 mov %rdx, %r9 adc $0, %r9 mov -8(mp), %rax mov 16(up), %r14 mul q0 add %rax, %r14 adc $0, %rdx add %r9, %r14 adc $0, %rdx xor R32(%rax), R32(%rax) add %r11, %r14 adc 24(up), %rdx mov %r14, (rp) mov %rdx, 8(rp) adc R32(%rax), R32(%rax) jmp L(ret) ALIGNx L(n3): mov -24(mp), %rax mov -8(up), %r10 mul q0 add %rax, %r10 mov -16(mp), %rax mov %rdx, %r11 adc $0, %r11 mov (up), %rbp mul q0 add %rax, %rbp mov %rdx, %r9 adc $0, %r9 mov -8(mp), %rax add %r11, %rbp mov 8(up), %r10 adc $0, %r9 mul q0 mov %rbp, q0 imul u0inv, q0 C next q0 add %rax, %r10 mov %rdx, %r11 adc $0, %r11 mov %rbp, (up) add %r9, %r10 adc $0, %r11 mov %r10, 8(up) mov %r11, -8(up) C up[0] lea 8(up), up C up++ dec j jnz L(n3) mov -32(up), %rdx mov -24(up), %rbx xor R32(%rax), R32(%rax) add %rbp, %rdx adc %r10, %rbx adc 8(up), %r11 mov %rdx, (rp) mov %rbx, 8(rp) mov %r11, 16(rp) adc R32(%rax), R32(%rax) jmp L(ret) ALIGNx L(n4): mov -32(mp), %rax mul q0 lea (%rax), %r11 mov -24(mp), %rax lea (%rdx), %r14 mul q0 lea (%rax), %rbp mov -16(mp), %rax mov -16(up), %r10 lea (%rdx), %r9 mul q0 add %r11, %r10 lea (%rax), %r11 mov -8(mp), %rax adc %r14, %rbp mov -8(up), %rbx lea (%rdx), %r14 adc $0, %r9 mul q0 add %rbp, %rbx adc %r9, %r11 mov %rbx, -8(up) mov (up), %r10 adc $0, %r14 imul u0inv, %rbx C next q limb add %r11, %r10 adc %r14, %rax mov %r10, (up) mov 8(up), %r10 adc $0, %rdx add %rax, %r10 mov %r10, 8(up) adc $0, %rdx mov %rdx, -16(up) C up[0] mov %rbx, q0 C previously computed q limb -> q0 lea 8(up), up C up++ dec j jnz L(n4) lea 16(up), up jmp L(add_n) EPILOGUE() ASM_END()