
JAGS Version 4.3.0 installation manual

Martyn Plummer Bill Northcott Matt Denwood

10 July 2017

JAGS is distributed in binary format for Microsoft Windows, macOS, and most Linux
distributions. The following instructions are for those who wish to build JAGS from source.
The manual is divided into three sections with instructions for Linux/Unix, macOS, and
Windows.

1 Linux and UNIX

JAGS follows the usual GNU convention of

./configure

make

make install

which is described in more detail in the file INSTALL in the top-level source directory. On
some UNIX platforms, you may be required to use GNU make (gmake) instead of the native
make command. On systems with multiple processors, you may use the option ‘-j’ to speed
up compilation, e.g. for a quad-core PC you may use:

make -j4

If you have the cppunit library installed then you can test the build with

make check

WARNING. If you already have a copy of the jags library installed on your system then the
test program created by make check will link against the installed library and not the one
in your build directory. So if the test suite includes a regression test for a bug that was fixed
in the version you are building but a previous version of JAGS is already installed then the
unit tests will fail. Best practice is to run the tests after make install so the build and
installed versions are the same.

1.1 Configure options

At configure time you also have the option of defining options such as:

• The names of the C, C++, and Fortran compilers.

• Optimization flags for the compilers. JAGS is optimized by default if the GNU compiler
(gcc) is used. If you are using another compiler then you may need to explicitly supply
optimization flags.

• Installation directories. JAGS conforms to the GNU standards for where files are in-
stalled. You can control the installation directories in more detail using the flags that
are listed when you type ./configure --help.

1.1.1 Configuration for a 64-bit build

By default, JAGS will install all libraries into ‘/usr/local/lib’. If you are building a 64-
bit version of JAGS, this may not be appropriate for your system. On Fedora and other
RPM-based distributions, for example, 64-bit libraries should be installed in ‘lib64’, and on

1

Solaris, 64-bit libraries are in a subdirectory of ‘lib’ (e.g. ‘lib/amd64’ if you are using a x86-64
processor), whereas on Debian, and other Linux distributions that conform to the FHS, the
correct installation directory is ‘lib’.

To ensure that JAGS libraries are installed in the correct directory, you should supply the
‘--libdir’ argument to the configure script, e.g.:

./configure --libdir=/usr/local/lib64

It is important to get the installation directory right when using the rjags interface
between R and JAGS, otherwise the rjags package will not be able to find the JAGS library.

1.1.2 Configuration for a private installation

If you do not have administrative privileges, you may wish to install JAGS in your home
directory. This can be done with the following configuration options

export JAGS_HOME=$HOME/jags #or wherever you want it

./configure --prefix=$JAGS_HOME

For more detailed control over the installation directories type

./configure --help

and read the section “Fine-tuning of the installation directories.”
With a private installation, you need to modify your PATH environment variable to include

‘$JAGS HOME/bin’. You may also need to set LD LIBRARY PATH to include ‘$JAGS HOME/lib’
(On Linux this is not necessary as the location of libjags and libjrmath is hard-coded into
the JAGS binary).

1.2 BLAS and LAPACK

BLAS (Basic Linear Algebra System) and LAPACK (Linear Algebra Pack) are two libraries
of routines for linear algebra. They are used by the multivariate functions and distributions
in the bugs module. Most unix-like operating system vendors supply shared libraries that
provide the BLAS and LAPACK functions, although the libraries may not literally be called
“blas” and “lapack”. During configuration, a default list of these libraries will be checked. If
configure cannot find a suitable library, it will stop with an error message.

You may use alternative BLAS and LAPACK libraries using the configure options --with-blas
and --with-lapack

./configure --with-blas="-lmyblas" --with-lapack="-lmylapack"

If the BLAS and LAPACK libraries are in a directory that is not on the default linker
path, you must set the LDFLAGS environment variable to point to this directory at configure
time:

LDFLAGS="-L/path/to/my/libs" ./configure ...

At runtime, if you have linked JAGS against BLAS or LAPACK in a non-standard location,
you must supply this location with the environment variable LD LIBRARY PATH, e.g.

LD_LIBRARY_PATH="/path/to/my/libs:${LD_LIBRARY_PATH}"

2

Alternatively, you may hard-code the paths to the blas and lapack libraries at compile time.
This is compiler and platform-specific, but is typically achieved with

LDFLAGS="-L/path/to/my/libs -R/path/to/my/libs

JAGS can also be linked to static BLAS and LAPACK if they have both been compiled
with the -fPIC flag. You will probably need to do a custom build of BLAS and LAPACK if
you require this. The configure options for JAGS are then:

./configure --with-blas="-L/path/to/my/libs -lmyblas -lgfortran -lquadmath" \

--with-lapack="-L/path/to/my/libs -lmylapack"

Note that with static linking you must add the dependencies of the BLAS library manually.
The LAPACK library will pick up the same dependencies. Note also that libtool does not
like linking directly to archive files. If you attempt a configuration of the form

--with-blas="/path/to/my/libs/myblas.a"

then this will pass at configure time but “make” will not correctly build the JAGS modules.

1.2.1 Multithreaded BLAS and LAPACK

Some high-performance computing libraries offer multi-threaded versions of the BLAS and
LAPACK libraries. Although instructions for linking against some of these libraries are given
below, this should not be taken as encouragement to use multithreaded BLAS. Testing shows
that using multiple threads in BLAS can lead to significantly worse performance while using
up substantially more computing resources.

1.3 GNU/Linux

GNU/Linux is the development platform for JAGS, and a variety of different build options
have been explored, including the use of third-party compilers and linear algebra libraries.

1.3.1 Fortran compiler

The GNU FORTRAN compiler changed between gcc 3.x and gcc 4.x from g77 to gfortran.
Code produced by the two compilers is binary incompatible. If your BLAS and LAPACK
libraries are linked against libgfortran, then they were built with gfortran and you must
also use this to compile JAGS.

Most recent GNU/Linux distributions have moved completely to gcc 4.x. However, some
older systems may have both compilers installed. Unfortunately, if g77 is on your path then
the configure script will find it first, and will attempt to use it to build JAGS. This results in
a failure to recognize the installed BLAS and LAPACK libraries. In this event, set the F77

variable at configure time.

F77=gfortran ./configure

3

1.3.2 BLAS and LAPACK

The BLAS and LAPACK libraries from Netlib (http://www.netlib.org) should be pro-
vided as part of your Linux distribution. If your Linux distribution splits packages into “user”
and “developer” versions, then you must install the developer package (e.g. blas-devel and
lapack-devel).

On Red Hat Enterprise Linux (RHEL) you need to activate an optional repos-
itory in order to have access to BLAS and LAPACK. The repository is called is called
rhel-<v>-<type>-optional-rpms, where <v> is the RHEL release version and <type> is
the type of installation (server or workstation). Find the corresponding entry in the file
‘/etc/yum.repos.d/redhat.repo’ and change the line enabled = 0 to enabled = 1.

Suse Linux Enterprise Server (SLES) does not include BLAS and LAPACK in the
main distribution. They are included in the SLES SDK, on a set of CD/DVD images which
can be downloaded from https://download.suse.com/index.jsp (subscription and login
required).

1.3.3 ATLAS

On Fedora Linux, pre-compiled atlas libraries are available via the atlas and atlas-devel

RPMs. These RPMs install the atlas libraries in the non-standard directory /usr/lib/atlas

(or /usr/lib64/atlas for 64-bit builds) to avoid conflicts with the standard blas and lapack

RPMs. To use the atlas libraries, you must supply their location using the LDFLAGS variable
(see section 1.2)

./configure LDFLAGS="-L/usr/lib/atlas"

Runtime linking to the correct libraries is ensured by the automatic addition of /usr/lib/atlas
to the linker path (see the directory /etc/ld.so.conf.d), so you do not need to set the en-
vironment variable LD LIBRARY PATH at run time.

1.3.4 AMD Core Math Library

The AMD Core Math Library (acml) provides optimized BLAS and LAPACK routines for
AMD processors. To link JAGS with acml, you must supply the acml library as the argument
to --with-blas. It is not necessary to set the --with-lapack argument as acml provides
both sets of functions. See also section 1.2 for run-time instructions.

For example, to link to the 64-bit acml using gcc 4.0+:

LDFLAGS="-L/opt/acml4.3.0/gfortran64/lib" \

./configure --with-blas="-lacml -lacml_mv"

The acmv mv library is a vectorized math library that exists only for the 64-bit version and
is omitted when linking against 32-bit acml.

On multi-core systems, you may wish to use the threaded acml library (See the warning
in section 1.2.1 however). To do this, link to acml mp and add the compiler flag ‘-fopenmp’:

LDFLAGS="-L/opt/acml4.3.0/gfortran64_mp/lib" \

CXXFLAGS="-O2 -g -fopenmp" ./configure --with-blas="-lacml_mp -lacml_mv"

The number of threads used by multi-threaded acml may be controlled with the environment
variable OMP NUM THREADS.

4

1.3.5 Intel Math Kernel Library

The Intel Math Kernel library (MKL) provides optimized BLAS and LAPACK routines for
Intel processors. MKL is designed to be linked to executables, not shared libraries. This
means that it can only be linked to a static version of JAGS, in which the JAGS library and
modules are linked into the main executable. To build a static version of JAGS, use the
configure option ‘--disable-shared’.

MKL version 10.0 and above uses a “pure layered” model for linking. The layered model
gives the user fine-grained control over four different library layers: interface, threading,
computation, and run-time. Some examples of linking to MKL using this layered model are
given below. These examples are for GCC compilers on x86 64. The choice of interface layer
is important on x86 64 since the Intel Fortran compiler returns complex values differently
from the GNU Fortran compiler. You must therefore use the interface layer that matches
your compiler (mkl intel* or mkl gf*).

For further guidance, consult the MKL Link Line advisor at http://software.intel.

com/en-us/articles/intel-mkl-link-line-advisor.
Recent versions of MKL include a shell script that sets up the environment variables

necessary to build an application with MKL.

source /opt/intel/composerxe-2011/mkl/bin/mklvars.sh intel64

After calling this script, you can link JAGS with a sequential version of MKL as follows:

./configure --disable-shared \

--with-blas="-lmkl_gf_lp64 -lmkl_sequential -lmkl_core -lpthread"

Note that libpthread is still required, even when linking to sequential MKL.
Threaded MKL may be used with:

./configure --disable-shared \

--with-blas="-lmkl_gf_lp64 -lmkl_gnu_thread -lmkl_core -liomp5 -lpthread"

The default number of threads will be chosen by the OpenMP software, but can be controlled
by setting OMP NUM THREADS or MKL NUM THREADS. (See the warning in section 1.2.1 however).

1.3.6 Using Intel Compilers

JAGS has been successfully built with the Intel Composer XE compilers. To set up the
environment for using these compilers call the ‘compilervars.sh’ shell script, e.g.

source /opt/intel/composerxe-2011/bin/compilervars.sh intel64

Then call the configure script with the Intel compilers:

CC=icc CXX=icpc F77=ifort ./configure

1.3.7 Using Clang

JAGS has been built with the clang compiler for C and C++ (version 3.1). The configuration
was

LD="llvm-ld" CC="clang" CXX="clang++" ./configure

In this configuration, the gfortran compiler was used for Fortran and the C++ code was
linked to the GNU standard C++ library (libstdc++) rather than the version supplied by
the LLVM project (libc++).

5

1.4 Solaris

JAGS has been successfully built and tested on the Intel x86 platform under Solaris 11.3 using
the Oracle Developer Studio 12.6 compilers.

I experienced some difficulty with the libtool dynamic linker ltdl on Solaris. This is due
to the fact that output from the solaris utility nm does not match what libtool expects. This
can be overcome by exporting the environment variable NM:

export NM=gnm

to use the GNU version of nm.
The C++ library ‘libCstd’ is not supported. You must therefore add the option ‘-library=stlport4’

to ‘CXXFLAGS’ to use the alternative STLPort4 library,

export LEX=flex

CC=cc CXX="CC -std=sun03" F77=f95 ./configure \

CFLAGS="-O3 -xarch=sse2" \

CXXFLAGS="+w -O3 -xarch=sse2 -library=stlport4 -lCrun"

or ‘-library=-stdcpp’ for the libstdc++ library.

./configure CC=cc CXX="CC -std=c++03" F77=f95 \

CFLAGS="-O3 -xarch=sse2" \

CXXFLAGS="+w -O3 -xarch=sse2 -library=stdcpp"

The Sun Studio compiler is not optimized by default. Use the option ‘-xO3’ for optimiza-
tion (NB This is the letter “O” not the number 0) In order to use the optimization flag ‘-xO3’
you must specify the architecture with the ‘-xarch’ flag. The options above are for an Intel
processor with SSE2 instructions. This must be adapted to your own platform.

To compile a 64-bit version of JAGS, add the option ‘-m64’ to all the compiler flags. On So-
laris, 64-bit files are generally installed in an architecture-specific sub-directory (e.g. ‘amd64’
on the x86 platform). If you wish to conform to this convention for 64-bit JAGS then you
should set the configure options ‘--libdir’, ‘--libexecdir’, and ‘--bindir’ appropriately.

The configure script automatically detects the Sun Performance library, which implements
the BLAS/LAPACK functions.

6

2 macOS

A binary distribution of JAGS is provided for Mac OS X versions 10.9 to 10.11 and macOS
10.12 onwards, which is compatible with the current binary distribution of R and the corre-
sponding rjags and runjags packages that are provided on CRAN. These instructions are
only for those users that want to install JAGS from source.

The recommended procedure is to build JAGS using clang and the libc++ standard
library, which have been the default since OS 10.9. This provides compatibility with all
builds of R available on CRAN from version 3.3.0 onwards, as well as “Mavericks builds”
of earlier versions of R. Users needing to build against the libstdc++ library and/or with a
version of Mac OS X predating 10.9 (Mavericks) should refer to the installation instructions
given in older versions of the JAGS manual.

2.1 Required tools

If you wish to build from a released source package i.e. ‘JAGS-4.3.0.tar.gz’, you will need to
install command line compilers. The easiest way to do this is using the Terminal application
from ‘/Applications/Utilities’ - opening the application gives you a terminal with a UNIX shell.
Run the following command on the terminal and follow the instructions:

xcode-select --install

You will also need to install the gfortran package, which you can download from:
https://gcc.gnu.org/wiki/GFortranBinaries#MacOS

This setup should be sufficient to build the JAGS sources and also source packages in R. All
the necessary libraries such as BLAS and LAPACK are included within macOS. Additional
tools are required to run the optional test suite (see section 2.3).

2.2 Basic installation

2.2.1 Prepare the source code

Move the downloaded ‘JAGS-4.3.0.tar.gz’ package to some suitable working space on your disk
and double click the file. This will decompress the package to give a folder called ‘JAGS-4.3.0’.
You now need to re-open the Terminal and change the working directory to the JAGS source
code. In the Terminal window after the $ prompt type cd followed by a space. In the Finder
drag the ‘JAGS-4.3.0’ folder into the Terminal window and hit return. If this worked for you,
typing ls followed by a return will list the contents of the JAGS folder.

2.2.2 Set up the environment

Before configuring JAGS it is first necessary to set a linker flag to include the Accelerate
framework (https://developer.apple.com/documentation/accelerate). This allows the
JAGS installation to use Apple’s implementation of BLAS.

Copy and paste the following command into the Terminal window:

export LDFLAGS="-framework Accelerate"

Other compiler options such as optimisation flags can also be set at this stage if desired,
for example:

7

export CFLAGS="-Os"

export CXXFLAGS="-Os"

export FFLAGS="-Os"

Note that JAGS is usually compiled using -O2 by default, but it may be necessary to
specify this explicitly depending on the version of the compiler being used.

2.2.3 Configuration

To configure the package type:

./configure

This instruction should complete without reporting an error.

2.2.4 Compile

To compile the code type:

make -j 8

The number ‘8’ indicates the number of parallel build threads that should be used (this
will speed up the build process). In general this is best as twice the number of CPU cores in
the computer - you may want to change the number in the instruction to match your machine.
Again, this instruction should complete without errors.

2.2.5 Install

Finally to install JAGS you need to be using an account with administrator privileges. Type:

sudo make install

This will ask for your account password and install the code ready to run as described in
the User Manual. You need to ensure that /usr/local/bin is in your PATH in order for the
command jags to work from a shell prompt.

2.3 Running the test suite

2.3.1 Installing CppUnit

As of JAGS version 4, a test suite is included with the source code that can be run to ensure
that the compiled code produces the expected results. To run this code on your installation,
you will need to download the CppUnit framework either using Homebrew (see section 2.4.1)
or from:

http://freedesktop.org/wiki/Software/cppunit/

For the latter, download the source code under “Release Versions” corresponding to the
latest release (currently Cppunit 1.14.0), unarchive the file, and then navigate a terminal
window to the working directory inside the resulting folder. Then follow the usual terminal
commands (as given on the website) to install CppUnit.

8

2.3.2 Running the tests

The test suite is run following the instructions given in section 2.2.5, using the following
additional command:

make check

If successful, a summary of the checks will be given. If compiler errors are encountered,
you may need to add the following compiler flag (and subsequent reconfiguration) in order to
force the compiler to build with C++11, as required by CppUnit 1.14.0 and later:

export CXXFLAGS="-std=c++11 $CXXFLAGS"

./configure

make check

Note that the configuration step may also need to be repeated if CppUnit was not installed
the first time this was run. In this case, you may also need to clean the existing compiled
code before running make check using:

make clean

2.4 Tips for developers and advanced users

2.4.1 Additional tools

Some additional tools are required to work with code from the JAGS repository. The easiest
way of obtaining the necessary utilities is using Homebrew, which can be installed by following
the instructions at http://brew.sh

The following instructions have been verified to work with both Mac OS X 10.9 (Mavericks)
and macOS 10.12 (Sierra), and should also work with other supported versions of OS X /
macOS. If problems are encountered with these instructions on OS X 10.8 or earlier, then an
alternative method of installing the required tools using e.g. MacPorts (as given in version
4.1.0 of the JAGS manual) may be more successful.

2.4.2 Working with the development code

If you want to work on code from the JAGS repository, you will need to build and install the
auxillary GNU tools (autoconf, automake and libtool), as well as mercurial, bison, and flex
as follows:

brew install mercurial

brew install autoconf

brew install automake

brew install libtool

brew install pkg-config

brew install bison

brew install flex

Note that CppUnit can also be installed using the same method:

9

brew install cppunit

The following sequence should then retrieve a clone of the current development branch of
JAGS, and prepare the source code:

hg clone -r release-4_patched http://hg.code.sf.net/p/mcmc-jags/code-0

cd code-0

autoreconf -fis

The following modification to the PATH is also currently required to find the Homebrew
versions of bison and flex:

export PATH="/usr/local/opt/bison/bin:/usr/local/opt/flex/bin:$PATH"

For more information see brew info bison and brew info flex

Once these commands have been run successfully, you should be able to follow the con-
figuration and installation instructions from section 2.2.2 onwards.

2.4.3 Using ATLAS

Rather than using the versions of BLAS and LAPACK provided within OS X, it is possible
to use ATLAS, which is available from http://math-atlas.sourceforge.net This can be
either be installed by following the instructions given at http://math-atlas.sourceforge.
net/atlas_install/, or by using MacPorts (https://www.macports.org/) with the follow-
ing Terminal command:

sudo port install atlas

Once ATLAS is successfully installed, the -framework Accelerate flag can be omitted
from the instructions given in section 2.2.2.

10

3 Windows

These instructions use MinGW, the Minimalist GNU system for Windows. You need some
familiarity with Unix in order to follow the build instructions but, once built, JAGS can be
installed on any PC running windows, where it can be run from the Windows command
prompt.

3.1 Preparing the build environment

You need to install the following packages

• The Rtools compiler suite for Windows

• MSYS

• NSIS, including the AccessControl plug-in

3.1.1 Rtools

Rtools is a set of compilers and utilities used for compiling R on Windows. Rtools can be
downloaded from your nearest CRAN mirror (https://cran.r-project.org/bin/windows/
Rtools/). We only need the compilers, as we use the utilities provided by MSYS (See below).
For this reason, we choose not to add Rtools to the Windows environment variable PATH when
asked by the installer.

The JAGS binaries for Windows 4.0.0 and above are built with Rtools 3.3, which is
based on gcc 4.6.3. We also successfully built JAGS with the TDM-GCC compilers (http:
//tdm-gcc.tdragon.net) based on gcc 5.1.0. However, the resulting JAGS binary is not
compatible with R. The rjags package can be successfully compiled and linked against JAGS
built with TDM-GCC 5.1.0, and runs correctly on 64-bit R, but the package spontaneously
crashes in 32-bit R.

3.1.2 MSYS

MSYS (the Minimal SYStem) is part of the MinGW project (Minimal GNU for Windows). It
provides a bash shell for you to build Unix software. Download the MinGW installer ‘mingw-
get-setup.exe’ from http://www.mingw.org. Run the installer and select msys-base (“A
Basic MSYS Installation (meta)”) for installation and then select Apply Changes from the
Installation menu. There is no need to install the developer toolkit (mingw-developer-toolkit)
if you are working with a release tarball of JAGS. You should not install any of the compilers
that come with MinGW as we shall be using the Rtools versions.

To make MSYS use the TDM compilers edit the file ‘c:/mingw/msys/1.0/etc/fstab’ to read

c:\Rtools\gcc-4.6.3\bin /mingw

This adds the Rtools compilers to your PATH inside the MSYS shell.
MSYS creates a home directory for you in ‘c:/mingw/msys/1.0/home/username’, where

username is your user name under Windows. You will need to copy and paste the source files
for LAPACK and JAGS into this directory.

At the time of writing, the MinGW installer does not create a shortcut for MSYS on
either the desktop or the start menu, even when these options are requested. Create your

11

own shortcut to ‘c:/MingGW/msys/1.0/msys.bat’ which launches the MSYS shell. For com-
pleteness, you may wish to use the icon ‘c:/MinGW/msys/1.0/msys.ico’ for your shortcut.

3.1.3 NSIS

The Nullsoft Scriptable Install System (http://nsis.sourceforge.net) allows you to create
a self-extracting executable that installs JAGS on the target PC. These instructions were tested
with NSIS 2.46. You must also install the AccessControl plug-in for NSIS, which is available
from http://nsis.sourceforge.net/AccessControl_plug-in. The plug-in is distributed
as a zip file which is unpacked into the installation directory of NSIS.

3.2 Building LAPACK

Download the LAPACK source file from http://www.netlib.org/lapack to your MSYS
home directory. We used version 3.5.0.

You need to build LAPACK twice: once for 32-bit JAGS and once for 64-bit JAGS. The
instructions below are for 32-bit JAGS. To build 64-bit versions, repeat the instructions with
the flag ‘-m32’ replaced by ‘-m64’ and start in a clean build directory. Note that you cannot
cross-build 64-bit BLAS and LAPACK on a 32-bit Windows system. This is because the
build process must run some 64-bit test programs.

Launch MSYS (‘c:/MingW/msys/1.0/msys.bat’) and unpack the tarball.

tar xfvz lapack-3.5.0.tgz

cd lapack-3.5.0

Copy the file ‘INSTALL/make.inc.gfortran’ to ‘make.inc’ in the top level source directory. Then
edit ‘make.inc’ replacing the following lines:

FORTRAN = gfortran -m32

LOADER = gfortran -m32

Type

make blaslib

make lapacklib

This will create two static libraries ‘librefblas.a’ and ‘liblapack.a’. These are insufficient for
building JAGS: you need to create dynamic link library (DLL) for each one.

First create a definition file ‘libblas.def’ that exports all the symbols from the BLAS library

dlltool -z libblas.def --export-all-symbols librefblas.a

Then link this with the static library to create a DLL (‘libblas.dll’) and an import library
(‘libblas.dll.a’)

gcc -m32 -shared -o libblas.dll -Wl,--out-implib=libblas.dll.a \

libblas.def librefblas.a -lgfortran

Repeat the same steps for the LAPACK library, creating an import library (‘liblapack.dll.a’)
and DLL (‘liblapack.dll’)

dlltool -z liblapack.def --export-all-symbols liblapack.a

gcc -m32 -shared -o liblapack.dll -Wl,--out-implib=liblapack.dll.a \

liblapack.def liblapack.a -L./ -lblas -lgfortran

12

3.3 Compiling JAGS

Unpack the JAGS source

tar xfvz JAGS-4.0.0.tar.gz

cd JAGS-4.0.0

and configure JAGS for a 32-bit build

CC="gcc -m32" CXX="g++ -m32 -std=c++98" F77="gfortran -m32" \

LDFLAGS="-L/path/to/import/libs/ -Wl,--enable-auto-import" \

./configure

where ‘/path/to/import/libs’ is a directory that contains the 32-bit import libraries (‘libblas.dll.a’
and ‘liblapack.dll.a’). This must be an absolute path name, and not relative to the JAGS build
directory.

After the configure step, type

make win32-install

This will install JAGS into the subdirectory ‘win/inst32’. Note that you must go straight
from the configure step to make win32-install without the usual step of typing make on its
own. The win32-install target resets the installation prefix, and this will cause an error if
the source is already compiled.

To install the 64-bit version, clean the build directory

make clean

reconfigure JAGS for a 64-bit build:

CC="gcc -m64" CXX="g++ -m64" F77="gfortran -m64" \

LDFLAGS="-L/path/to/import/libs/ -Wl,--enable-auto-import" \

./configure

Then type

make win64-install

This will install JAGS into the subdirectory ‘win/inst64’.
With both 32-bit and 64-bit installations in place you can create the installer. Normally

you will want to distribute the blas and lapack libraries with JAGS. In this case, put the
32-bit DLLs and import libraries in the sub-directory ‘win/runtime32’ and the 64-bit DLLs
and import libraries in the sub-directory ‘win/runtime64’. They will be detected and included
with the distribution.

Make sure that the file ‘makensis.exe’, provided by NSIS, is in your PATH. For a typical
installation of NSIS, on 64-bit windows:

PATH=$PATH:/c/Program\ Files\ \(x86\)/NSIS

Then type

make installer

After the build process finishes, the self extracting archive will be in the subdirectory ‘win’.

13

3.4 Running the unit tests

In order to run the unit tests on Windows you must first install the cppunit library from
source. Download the file ‘cppunit-1.12.1.tar.gz’ from Sourceforge (http://sourceforge.
net/projects/cppunit/files/cppunit/1.12.1/) and unpack it:

tar xfvz cppunit-1.12.1.tar.gz

cd cppunit-1.12.1

Then compile and install as follows:

CXX="g++ -m32" ./configure --prefix=/opt32 --disable-shared

make

make install

The configure option --prefix=/opt32 installs the 32-bit library into ‘/opt32’ instead of
the default location /usr/local. Using this option allows you to do a parallel installation
of the 64-bit version of the library, by rebuilding with configure options CXX=g++ -m64 and
--prefix=/opt64. The two installations will not interfere with each other.

The configure option --disable-shared prevents the creation of the DLL ‘libccpunit.dll’
and builds only the static library ‘libcppunit.a’. Without this option, the unit tests will
fail. One of the major limitations of static linking to the C++ runtime is that you cannot
throw exceptions across a DLL boundary. Linking the test programs against ‘libcppunit.dll’
will result in uncaught exceptions and apparent failures for some of the tests, so it must be
disabled.1.

To run the unit tests, add the option --with-cppunit-prefix=/optXX when configuring
JAGS where XX is 32 or 64. Then run make check after make winXX-install.

3.5 Running the examples

The BUGS classic examples (file ‘classic-bugs.tar.gz’ from the JAGS Sourceforge site) can be
run from the Windows command prompt using the make command provided by Rtools. This
requires adding Rtools to the Windows search path if it is not currently there.

set PATH=c:\Rtools\bin;%PATH%

You must have R installed, along with the packages rjags and coda, both of which are
available from CRAN (cran.r-project.org).

It is necessary to add R to the search path and to set the variable R_LIBS. Note that here
we are using the 64-bit version of R. You may use the 32-bit version by substituting i386 for
x64.

set PATH=c:\Program Files\R\R-3.2.2\bin\x64;%PATH%

set R_LIBS=c:\Users\username\Documents\R\win-library\3.2

where ‘username’ is your Windows user name. Then

1One of the attractions of the TDM-GCC compilers is that they do allow exceptions across DLL boundaries
with static linking. However, we are not currently using TDM-GCC to build the JAGS binaries

14

tar xfvz classic-bugs.tar.gz

cd classic-bugs

cd vol1

make Rcheck

will check all examples in volume 1 using the rjags package. Repeat for ‘vol2’ to complete
the checks.

You can also run checks using the command line interface of JAGS. This requires adding
JAGS to the search path and overriding the default name of the JAGS executable.

set PATH=c:\Program Files\JAGS\JAGS-4.0.0\bin\x64;%PATH%

set JAGS=jags.bat

Then

make check

in directory ‘vol1’ or ‘vol2’ will run the checks using the command line interface.

3.6 Using TDM-GCC compilers

This section documents the use of TDM-GCC compilers to build JAGS. TDM-GCC was used
to build Windows binaries for JAGS 3.x.y, but has been dropped in favour of Rtools for
the 4.x.y release series. One reason for this is that the 32-bit version of JAGS built with
TDM-GCC 5.1.0 causes the rjags package to spontaneously crash. The 64-bit version runs
correctly.

TDM-GCC has a nice installer, available from Sourceforge (follow the links on the main
TDM-GCC web site (http://tdm-gcc.tdragon.net). Ensure that you download the TDM64
MinGW-w64 edition as this is capable of producing both 32-bit and 64-bit binaries. We tested
JAGS with ‘tdm64-gcc-5.1.0-2.exe’ based on gcc 5.1.0.

Select a “Recommended C/C++” installation and customize it by selecting the Fortran
compiler, which is not installed by default. The installer gives you the option of adding TDM-
GCC ‘bin’ folder to the windows PATH variable. We choose not to do this, but added the
‘bin’ to the PATH within the MSYS shell by editing ‘c:/mingw/msys/1.0/etc/fstab’ to read

c:\TDM-GCC-64 /mingw

After installation of TDM-GCC, to force the compiler to use static linking, delete any import
libraries (files ending in ‘.dll.a’ in the TDM-GCC tree. If you do not do this then you will
need to distribute runtime DLLs from TDM-GCC with JAGS. You can easily do this by
copying the DLLs to ‘runtime32’ and ‘runtime64’ before building the installer, as described
above. Nevertheless, it is often more convenient to use static linking.

Installation proceeds in the same way as for the Rtools build but with two differences.
Firstly, when building the DLLs for blas and lapack, you need to add the linker flag -lquadmath
after -lgfortran. Secondly, when configuring JAGS you should set the environment variable

CPPFLAGS=-D_GLIBCXX_USE_CXX11_ABI=0

This is necessary because gcc 5.1.0 introduced a new application binary interface (ABI) for the
C++ standard library (See https://gcc.gnu.org/onlinedocs/libstdc++/manual/using_

15

dual_abi.html. The old ABI is still supported and is used if you set the above flag. If you
want to link JAGS with any software compiled with an earlier version of gcc then you need
to use the old ABI. Failure to do so will result in error messages about undefined symbols
from the linker.

16

