
CFFI User Manual

Copyright c© 2005 James Bielman <jamesjb at jamesjb.com>

Copyright c© 2005-2015 Lúıs Oliveira <loliveira at common-lisp.net>
Copyright c© 2005-2006 Dan Knapp <danka at accela.net>
Copyright c© 2005-2006 Emily Backes <lucca at accela.net>
Copyright c© 2006 Stephen Compall <s11 at member.fsf.org>

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the “Software”), to deal in the
Software without restriction, including without limitation the rights to use, copy,
modify, merge, publish, distribute, sublicense, and/or sell copies of the Software,
and to permit persons to whom the Software is furnished to do so, subject to the
following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

The software is provided “as is”, without warranty of any kind, ex-
press or implied, including but not limited to the warranties of mer-
chantability, fitness for a particular purpose and noninfringement.
In no event shall the authors or copyright holders be liable for any
claim, damages or other liability, whether in an action of contract,
tort or otherwise, arising from, out of or in connection with the
software or the use or other dealings in the software.

i

Table of Contents

1 Introduction . 1

2 Installation . 2

3 Implementation Support . 3
3.1 Limitations . 3

4 An Introduction to Foreign Interfaces and
CFFI . 4

4.1 What makes Lisp different . 4
4.2 Getting a URL . 5
4.3 Loading foreign libraries . 5
4.4 Initializing libcurl . 6
4.5 Setting download options . 7
4.6 Breaking the abstraction . 9
4.7 Option functions in Lisp . 10
4.8 Memory management . 12
4.9 Calling Lisp from C . 15
4.10 A complete FFI? . 17
4.11 Defining new types . 18
4.12 What’s next? . 20

5 Wrapper generators . 21

6 Foreign Types . 22
6.1 Built-In Types . 22
6.2 Other Types . 23
6.3 Defining Foreign Types . 24
6.4 Foreign Type Translators . 25
6.5 Optimizing Type Translators . 26
6.6 Foreign Structure Types . 28
6.7 Allocating Foreign Objects . 28

7 Pointers . 57
7.1 Basic Pointer Operations . 57
7.2 Allocating Foreign Memory . 57
7.3 Accessing Foreign Memory . 57

8 Strings . 76

ii

9 Variables . 84

10 Functions . 88

11 Libraries . 98
11.1 Defining a library . 98
11.2 Library definition style . 98

12 Callbacks . 109

13 The Groveller . 114
13.1 Building FFIs with CFFI-Grovel . 114
13.2 Specification File Syntax . 114
13.3 ASDF Integration . 116
13.4 Implementation Notes . 117

14 Limitations . 118

Appendix A Platform-specific features 119

Appendix B Glossary . 120

Index . 121

Chapter 1: Introduction 1

1 Introduction

CFFI is the Common Foreign Function Interface for ANSI Common Lisp systems. By foreign
function we mean a function written in another programming language and having different
data and calling conventions than Common Lisp, namely, C. CFFI allows you to call foreign
functions and access foreign variables, all without leaving the Lisp image.

We consider this manual ever a work in progress. If you have difficulty with anything
CFFI-specific presented in the manual, please contact the developers with details.

Motivation

See Section 4.1 [What makes Lisp different], page 4, for an argument in favor of FFI in
general.

CFFI’s primary role in any image is to mediate between Lisp developers and the widely
varying FFIs present in the various Lisp implementations it supports. With CFFI, you can
define foreign function interfaces while still maintaining portability between implementa-
tions. It is not the first Common Lisp package with this objective; however, it is meant to
be a more malleable framework than similar packages.

Design Philosophy

• Pointers do not carry around type information. Instead, type information is supplied
when pointers are dereferenced.

• A type safe pointer interface can be developed on top of an untyped one. It is difficult
to do the opposite.

• Functions are better than macros. When a macro could be used for performance, use
a compiler-macro instead.

mailto:cffi-devel@common-lisp.net

Chapter 2: Installation 2

2 Installation

CFFI can be obtained through one of the following means available through its website:

• official release tarballs

• git repository

In addition, you will need to obtain and install the following dependencies:

• Babel, a charset encoding/decoding library.

• Alexandria, a collection of portable public-domain utilities.

• trivial-features, a portability layer that ensures consistent *features* across multiple
Common Lisp implementations.

Furthermore, if you wish to run the testsuite, RT is required.

You may find mechanisms such as clbuild (recommended) or ASDF-Install (not as rec-
ommendable) helpful in getting and managing CFFI and its dependencies.

http://common-lisp.net/project/cffi/
http://common-lisp.net/project/cffi/releases/?M=D
http://common-lisp.net/gitweb?p=projects/cffi/cffi.git
http://common-lisp.net/project/babel/
http://common-lisp.net/project/alexandria/
http://www.cliki.net/trivial-features
http://www.cliki.net/rt
http://common-lisp.net/project/clbuild/
http://www.cliki.net/ASDF-Install

Chapter 3: Implementation Support 3

3 Implementation Support

CFFI supports various free and commercial Lisp implementations: Allegro CL, Corman CL,
clisp, CMUCL, ECL, LispWorks, Clozure CL, SBCL and the Scieneer CL.

In general, you should work with the latest versions of each implementation since those
will usually be tested against recent versions of CFFI more often and might include necessary
features or bug fixes. Reasonable patches for compatibility with earlier versions are welcome
nevertheless.

3.1 Limitations

Some features are not supported in all implementations.

Allegro CL

• Does not support the :long-long type natively.

• Unicode support is limited to the Basic Multilingual Plane (16-bit code points).

CMUCL

• No Unicode support. (8-bit code points)

Corman CL

• Does not support foreign-funcall.

ECL

• On platforms where ECL’s dynamic FFI is not supported (ie. when :dffi is not present
in *features*), cffi:load-foreign-library does not work and you must use ECL’s
own ffi:load-foreign-library with a constant string argument.

• Does not support the :long-long type natively.

• Unicode support is not enabled by default.

Lispworks

• Does not completely support the :long-long type natively in 32-bit platforms.

• Unicode support is limited to the Basic Multilingual Plane (16-bit code points).

SBCL

• Not all platforms support callbacks.

Chapter 4: An Introduction to Foreign Interfaces and CFFI 4

4 An Introduction to Foreign Interfaces and CFFI

Users of many popular languages bearing semantic similarity to Lisp, such as Perl and
Python, are accustomed to having access to popular C libraries, such as GTK, by way of
“bindings”. In Lisp, we do something similar, but take a fundamentally different approach.
This tutorial first explains this difference, then explains how you can use CFFI, a pow-
erful system for calling out to C and C++ and access C data from many Common Lisp
implementations.

The concept can be generalized to other languages; at the time of writing, only CFFI’s C
support is fairly complete. Therefore, we will interchangeably refer to foreign functions and
foreign data, and “C functions” and “C data”. At no time will the word “foreign” carry its
usual, non-programming meaning.

This tutorial expects you to have a working understanding of both Common Lisp and
C, including the Common Lisp macro system.

4.1 What makes Lisp different

The following sums up how bindings to foreign libraries are usually implemented in other
languages, then in Common Lisp:

Perl, Python, Java, other one-implementation languages
Bindings are implemented as shared objects written in C. In some cases, the
C code is generated by a tool, such as SWIG, but the result is the same: a
new C library that manually translates between the language implementation’s
objects, such as PyObject in Python, and whatever C object is called for, often
using C functions provided by the implementation. It also translates between
the calling conventions of the language and C.

Common Lisp
Bindings are written in Lisp. They can be created at-will by Lisp programs.
Lisp programmers can write new bindings and add them to the image, using
a listener such as SLIME, as easily as with regular Lisp definitions. The only
foreign library to load is the one being wrapped—the one with the pure C
interface; no C or other non-Lisp compilation is required.

We believe the advantages of the Common Lisp approach far outweigh any disadvantages.
Incremental development with a listener can be as productive for C binding development
as it is with other Lisp development. Keeping it “in the [Lisp] family”, as it were, makes
it much easier for you and other Lisp programmers to load and use the bindings. Common
Lisp implementations such as CMUCL, freed from having to provide a C interface to their
own objects, are thus freed to be implemented in another language (as CMUCL is) while
still allowing programmers to call foreign functions.

Perhaps the greatest advantage is that using an FFI doesn’t obligate you to become
a professional binding developer. Writers of bindings for other languages usually end up
maintaining or failing to maintain complete bindings to the foreign library. Using an FFI,
however, means if you only need one or two functions, you can write bindings for only those
functions, and be assured that you can just as easily add to the bindings if need be.

Chapter 4: An Introduction to Foreign Interfaces and CFFI 5

The removal of the C compiler, or C interpretation of any kind, creates the main disad-
vantage: some of C’s “abstractions” are not available, violating information encapsulation.
For example, structs that must be passed on the stack, or used as return values, without
corresponding functional abstractions to create and manage the structs, must be declared
explicitly in Lisp. This is fine for structs whose contents are “public”, but is not so pleasant
when a struct is supposed to be “opaque” by convention, even though it is not so defined.1

Without an abstraction to create the struct, Lisp needs to be able to lay out the struct
in memory, so must know its internal details.

In these cases, you can create a minimal C library to provide the missing abstractions,
without destroying all the advantages of the Common Lisp approach discussed above. In
the case of structs, you can write simple, pure C functions that tell you how many bytes
a struct requires or allocate new structs, read and write fields of the struct, or whatever
operations are supposed to be public.2 Chapter 13 [The Groveller], page 114 automates this
and other processes.

Another disadvantage appears when you would rather use the foreign language than
Lisp. However, someone who prefers C to Lisp is not a likely candidate for developing a
Lisp interface to a C library.

4.2 Getting a URL

The widely available libcurl is a library for downloading files over protocols like HTTP.
We will use libcurl with CFFI to download a web page.

Please note that there are many other ways to download files from the web, not least
the cl-curl project to provide bindings to libcurl via a similar FFI.3

libcurl-tutorial(3) is a tutorial for libcurl programming in C. We will follow that to
develop a binding to download a file. We will also use ‘curl.h’, ‘easy.h’, and the man

pages for the libcurl function, all available in the ‘curl-dev’ package or equivalent for
your system, or in the cURL source code package. If you have the development package, the
headers should be installed in ‘/usr/include/curl/’, and the man pages may be accessed
through your favorite man facility.

4.3 Loading foreign libraries

First of all, we will create a package to work in. You can save these forms in a file, or just
send them to the listener as they are. If creating bindings for an ASDF package of yours,
you will want to add :cffi to the :depends-on list in your ‘.asd’ file. Otherwise, just use
the asdf:oos function to load CFFI.

1 Admittedly, this is an advanced issue, and we encourage you to leave this text until you are more familiar
with how CFFI works.

2 This does not apply to structs whose contents are intended to be part of the public library interface. In
those cases, a pure Lisp struct definition is always preferred. In fact, many prefer to stay in Lisp and
break the encapsulation anyway, placing the burden of correct library interface definition on the library.

3 Specifically, UFFI, an older FFI that takes a somewhat different approach compared to CFFI. I believe
that these days (December 2005) CFFI is more portable and actively developed, though not as mature
yet. Consensus in the free unix Common Lisp community seems to be that CFFI is preferred for new
development, though UFFI will likely go on for quite some time as many projects already use it. CFFI

includes the UFFI-COMPAT package for complete compatibility with UFFI.

http://curl.haxx.se/libcurl/c/libcurl-tutorial.html

Chapter 4: An Introduction to Foreign Interfaces and CFFI 6

(asdf:oos ’asdf:load-op :cffi)

;;; Nothing special about the "CFFI-USER" package. We’re just
;;; using it as a substitute for your own CL package.
(defpackage :cffi-user

(:use :common-lisp :cffi))

(in-package :cffi-user)

(define-foreign-library libcurl

(:darwin (:or "libcurl.3.dylib" "libcurl.dylib"))

(:unix (:or "libcurl.so.3" "libcurl.so"))

(t (:default "libcurl")))

(use-foreign-library libcurl)

Using define-foreign-library and use-foreign-library, we have loaded libcurl

into Lisp, much as the linker does when you start a C program, or common-lisp:load does
with a Lisp source file or FASL file. We special-cased for unix machines to always load
a particular version, the one this tutorial was tested with; for those who don’t care, the
define-foreign-library clause (t (:default "libcurl")) should be satisfactory, and
will adapt to various operating systems.

4.4 Initializing libcurl

After the introductory matter, the tutorial goes on to present the first function you should
use.

CURLcode curl_global_init(long flags);

Let’s pick this apart into appropriate Lisp code:

;;; A CURLcode is the universal error code. curl/curl.h says
;;; no return code will ever be removed, and new ones will be
;;; added to the end.
(defctype curl-code :int)

;;; Initialize libcurl with FLAGS.
(defcfun "curl_global_init" curl-code

(flags :long))

Implementor’s note: By default, CFFI assumes the UNIX viewpoint that there is
one C symbol namespace, containing all symbols in all loaded objects. This is not
so on Windows and Darwin, but we emulate UNIX’s behaviour there. [defcfun],
page 89 for more details.

Note the parallels with the original C declaration. We’ve defined curl-code as a wrap-
ping type for :int; right now, it only marks it as special, but later we will do something
more interesting with it. The point is that we don’t have to do it yet.

Looking at ‘curl.h’, CURL_GLOBAL_NOTHING, a possible value for flags above, is defined
as ‘0’. So we can now call the function:

Chapter 4: An Introduction to Foreign Interfaces and CFFI 7

cffi-user> (curl-global-init 0)

⇒ 0

Looking at ‘curl.h’ again, 0 means CURLE_OK, so it looks like the call succeeded. Note
that CFFI converted the function name to a Lisp-friendly name. You can specify your own
name if you want; use ("curl_global_init" your-name-here) as the name argument to
defcfun.

The tutorial goes on to have us allocate a handle. For good measure, we should also
include the deallocator. Let’s look at these functions:

CURL *curl_easy_init();

void curl_easy_cleanup(CURL *handle);

Advanced users may want to define special pointer types; we will explore this possibility
later. For now, just treat every pointer as the same:

(defcfun "curl_easy_init" :pointer)

(defcfun "curl_easy_cleanup" :void

(easy-handle :pointer))

Now we can continue with the tutorial:

cffi-user> (defparameter *easy-handle* (curl-easy-init))

⇒ *EASY-HANDLE*

cffi-user> *easy-handle*

⇒ #<FOREIGN-ADDRESS #x09844EE0>

Note the print representation of a pointer. It changes depending on what Lisp you are
using, but that doesn’t make any difference to CFFI.

4.5 Setting download options

The libcurl tutorial says we’ll want to set many options before performing any download
actions. This is done through curl_easy_setopt:

CURLcode curl_easy_setopt(CURL *curl, CURLoption option, ...);

We’ve introduced a new twist: variable arguments. There is no obvious translation to
the defcfun form, particularly as there are four possible argument types. Because of the
way C works, we could define four wrappers around curl_easy_setopt, one for each type;
in this case, however, we’ll use the general-purpose macro foreign-funcall to call this
function.

To make things easier on ourselves, we’ll create an enumeration of the kinds of options we
want to set. The enum CURLoption isn’t the most straightforward, but reading the CINIT

C macro definition should be enlightening.

(defmacro define-curl-options (name type-offsets &rest enum-args)

"As with CFFI:DEFCENUM, except each of ENUM-ARGS is as follows:

(NAME TYPE NUMBER)

Where the arguments are as they are with the CINIT macro defined

in curl.h, except NAME is a keyword.

Chapter 4: An Introduction to Foreign Interfaces and CFFI 8

TYPE-OFFSETS is a plist of TYPEs to their integer offsets, as

defined by the CURLOPTTYPE_LONG et al constants in curl.h."

(flet ((enumerated-value (type offset)

(+ (getf type-offsets type) offset)))

‘(progn

(defcenum ,name

,@(loop for (name type number) in enum-args

collect (list name (enumerated-value type number))))

’,name))) ;for REPL users’ sanity

(define-curl-options curl-option

(long 0 objectpoint 10000 functionpoint 20000 off-t 30000)

(:noprogress long 43)

(:nosignal long 99)

(:errorbuffer objectpoint 10)

(:url objectpoint 2))

With some well-placed Emacs query-replace-regexps, you could probably similarly
define the entire CURLoption enumeration. I have selected to transcribe a few that we will
use in this tutorial.

If you’re having trouble following the macrology, just macroexpand the curl-option

definition, or see the following macroexpansion, conveniently downcased and reformatted:

(progn

(defcenum curl-option

(:noprogress 43)

(:nosignal 99)

(:errorbuffer 10010)

(:url 10002))

’curl-option)

That seems more than reasonable. You may notice that we only use the type to compute
the real enumeration offset; we will also need the type information later.

First, however, let’s make sure a simple call to the foreign function works:

cffi-user> (foreign-funcall "curl_easy_setopt"

:pointer *easy-handle*

curl-option :nosignal :long 1 curl-code)

⇒ 0

foreign-funcall, despite its surface simplicity, can be used to call any C function. Its
first argument is a string, naming the function to be called. Next, for each argument, we
pass the name of the C type, which is the same as in defcfun, followed by a Lisp object
representing the data to be passed as the argument. The final argument is the return type,
for which we use the curl-code type defined earlier.

defcfun just puts a convenient façade on foreign-funcall.4 Our earlier call to curl-

global-init could have been written as follows:

4 This isn’t entirely true; some Lisps don’t support foreign-funcall, so defcfun is implemented without
it. defcfun may also perform optimizations that foreign-funcall cannot.

Chapter 4: An Introduction to Foreign Interfaces and CFFI 9

cffi-user> (foreign-funcall "curl_global_init" :long 0

curl-code)

⇒ 0

Before we continue, we will take a look at what CFFI can and can’t do, and why this is
so.

4.6 Breaking the abstraction

In Section 4.1 [What makes Lisp different], page 4, we mentioned that writing an FFI

sometimes requires depending on information not provided as part of the interface. The
easy option CURLOPT_WRITEDATA, which we will not provide as part of the Lisp interface,
illustrates this issue.

Strictly speaking, the curl-option enumeration is not necessary; we could have used
:int 99 instead of curl-option :nosignal in our call to curl_easy_setopt above. We
defined it anyway, in part to hide the fact that we are breaking the abstraction that the
C enum provides. If the cURL developers decide to change those numbers later, we must
change the Lisp enumeration, because enumeration values are not provided in the compiled
C library, libcurl.so.3.

CFFI works because the most useful things in C libraries — non-static functions and non-
static variables — are included accessibly in libcurl.so.3. A C compiler that violated
this would be considered a worthless compiler.

The other thing define-curl-options does is give the “type” of the third argument
passed to curl_easy_setopt. Using this information, we can tell that the :nosignal

option should accept a long integer argument. We can implicitly assume t ≡ 1 and nil ≡
0, as it is in C, which takes care of the fact that CURLOPT_NOSIGNAL is really asking for a
boolean.

The “type” of CURLOPT_WRITEDATA is objectpoint. However, it is really looking for a
FILE*. CURLOPT_ERRORBUFFER is looking for a char*, so there is no obvious CFFI type but
:pointer.

The first thing to note is that nowhere in the C interface includes this information; it
can only be found in the manual. We could disjoin these clearly different types ourselves,
by splitting objectpoint into filepoint and charpoint, but we are still breaking the
abstraction, because we have to augment the entire enumeration form with this additional
information.5

The second is that the CURLOPT_WRITEDATA argument is completely incompatible with
the desired Lisp data, a stream.6 It is probably acceptable if we are controlling every file
we might want to use as this argument, in which case we can just call the foreign function
fopen. Regardless, though, we can’t write to arbitrary streams, which is exactly what we
want to do for this application.

Finally, note that the curl_easy_setopt interface itself is a hack, intended to work
around some of the drawbacks of C. The definition of Curl_setopt, while long, is far less

5 Another possibility is to allow the caller to specify the desired C type of the third argument. This is
essentially what happens in a call to the function written in C.

6 See Section “Other Kinds of Streams” in GNU C Library Reference, for a GNU-only way to extend the
FILE* type. You could use this to convert Lisp streams to the needed C data. This would be quite
involved and far outside the scope of this tutorial.

Chapter 4: An Introduction to Foreign Interfaces and CFFI 10

cluttered than the equivalent disjoint-function set would be; in addition, setting a new option
in an old libcurl can generate a run-time error rather than breaking the compile. Lisp can
just as concisely generate functions as compare values, and the “undefined function” error
is just as useful as any explicit error we could define here might be.

4.7 Option functions in Lisp

We could use foreign-funcall directly every time we wanted to call curl_easy_setopt.
However, we can encapsulate some of the necessary information with the following.

;;; We will use this type later in a more creative way. For
;;; now, just consider it a marker that this isn’t just any
;;; pointer.
(defctype easy-handle :pointer)

(defmacro curl-easy-setopt (easy-handle enumerated-name

value-type new-value)

"Call ‘curl_easy_setopt’ on EASY-HANDLE, using ENUMERATED-NAME

as the OPTION. VALUE-TYPE is the CFFI foreign type of the third

argument, and NEW-VALUE is the Lisp data to be translated to the

third argument. VALUE-TYPE is not evaluated."

‘(foreign-funcall "curl_easy_setopt" easy-handle ,easy-handle

curl-option ,enumerated-name

,value-type ,new-value curl-code))

Now we define a function for each kind of argument that encodes the correct value-type
in the above. This can be done reasonably in the define-curl-options macroexpansion;
after all, that is where the different options are listed!

We could make cl:defun forms in the expansion that simply call curl-easy-setopt;
however, it is probably easier and clearer to use defcfun. define-curl-options was
becoming unwieldy, so I defined some helpers in this new definition.

(defun curry-curl-option-setter (function-name option-keyword)

"Wrap the function named by FUNCTION-NAME with a version that

curries the second argument as OPTION-KEYWORD.

This function is intended for use in DEFINE-CURL-OPTION-SETTER."

(setf (symbol-function function-name)

(let ((c-function (symbol-function function-name)))

(lambda (easy-handle new-value)

(funcall c-function easy-handle option-keyword

new-value)))))

(defmacro define-curl-option-setter (name option-type

option-value foreign-type)

"Define (with DEFCFUN) a function NAME that calls

curl_easy_setopt. OPTION-TYPE and OPTION-VALUE are the CFFI

foreign type and value to be passed as the second argument to

easy_setopt, and FOREIGN-TYPE is the CFFI foreign type to be used

for the resultant function’s third argument.

This macro is intended for use in DEFINE-CURL-OPTIONS."

‘(progn

(defcfun ("curl_easy_setopt" ,name) curl-code

Chapter 4: An Introduction to Foreign Interfaces and CFFI 11

(easy-handle easy-handle)

(option ,option-type)

(new-value ,foreign-type))

(curry-curl-option-setter ’,name ’,option-value)))

(defmacro define-curl-options (type-name type-offsets &rest enum-args)

"As with CFFI:DEFCENUM, except each of ENUM-ARGS is as follows:

(NAME TYPE NUMBER)

Where the arguments are as they are with the CINIT macro defined

in curl.h, except NAME is a keyword.

TYPE-OFFSETS is a plist of TYPEs to their integer offsets, as

defined by the CURLOPTTYPE_LONG et al constants in curl.h.

Also, define functions for each option named

set-‘TYPE-NAME’-‘OPTION-NAME’, where OPTION-NAME is the NAME from

the above destructuring."

(flet ((enumerated-value (type offset)

(+ (getf type-offsets type) offset))

;; map PROCEDURE, destructuring each of ENUM-ARGS
(map-enum-args (procedure)

(mapcar (lambda (arg) (apply procedure arg)) enum-args))

;; build a name like SET-CURL-OPTION-NOSIGNAL
(make-setter-name (option-name)

(intern (concatenate

’string "SET-" (symbol-name type-name)

"-" (symbol-name option-name)))))

‘(progn

(defcenum ,type-name

,@(map-enum-args

(lambda (name type number)

(list name (enumerated-value type number)))))

,@(map-enum-args

(lambda (name type number)

(declare (ignore number))

‘(define-curl-option-setter ,(make-setter-name name)

,type-name ,name ,(ecase type

(long :long)

(objectpoint :pointer)

(functionpoint :pointer)

(off-t :long)))))

’,type-name)))

Macroexpanding our define-curl-options form once more, we see something different:

(progn

(defcenum curl-option

(:noprogress 43)

(:nosignal 99)

(:errorbuffer 10010)

(:url 10002))

(define-curl-option-setter set-curl-option-noprogress

curl-option :noprogress :long)

(define-curl-option-setter set-curl-option-nosignal

curl-option :nosignal :long)

Chapter 4: An Introduction to Foreign Interfaces and CFFI 12

(define-curl-option-setter set-curl-option-errorbuffer

curl-option :errorbuffer :pointer)

(define-curl-option-setter set-curl-option-url

curl-option :url :pointer)

’curl-option)

Macroexpanding one of the new define-curl-option-setter forms yields the following:

(progn

(defcfun ("curl_easy_setopt" set-curl-option-nosignal) curl-code

(easy-handle easy-handle)

(option curl-option)

(new-value :long))

(curry-curl-option-setter ’set-curl-option-nosignal ’:nosignal))

Finally, let’s try this out:

cffi-user> (set-curl-option-nosignal *easy-handle* 1)

⇒ 0

Looks like it works just as well. This interface is now reasonably high-level to wash out
some of the ugliness of the thinnest possible curl_easy_setopt FFI, without obscuring the
remaining C bookkeeping details we will explore.

4.8 Memory management

According to the documentation for curl_easy_setopt, the type of the third argument
when option is CURLOPT_ERRORBUFFER is char*. Above, we’ve defined set-curl-option-

errorbuffer to accept a :pointer as the new option value. However, there is a CFFI type
:string, which translates Lisp strings to C strings when passed as arguments to foreign
function calls. Why not, then, use :string as the CFFI type of the third argument? There
are two reasons, both related to the necessity of breaking abstraction described in Section 4.6
[Breaking the abstraction], page 9.

The first reason also applies to CURLOPT_URL, which we will use to illustrate the point.
Assuming we have changed the type of the third argument underlying set-curl-option-

url to :string, look at these two equivalent forms.

(set-curl-option-url *easy-handle* "http://www.cliki.net/CFFI")

≡ (with-foreign-string (url "http://www.cliki.net/CFFI")

(foreign-funcall "curl_easy_setopt" easy-handle *easy-handle*

curl-option :url :pointer url curl-code))

The latter, in fact, is mostly equivalent to what a foreign function call’s macroexpansion
actually does. As you can see, the Lisp string "http://www.cliki.net/CFFI" is copied
into a char array and null-terminated; the pointer to beginning of this array, now a C
string, is passed as a CFFI :pointer to the foreign function.

Unfortunately, the C abstraction has failed us, and we must break it. While :string

works well for many char* arguments, it does not for cases like this. As the curl_easy_

setopt documentation explains, “The string must remain present until curl no longer needs
it, as it doesn’t copy the string.” The C string created by with-foreign-string, however,
only has dynamic extent: it is “deallocated” when the body (above containing the foreign-
funcall form) exits.

Chapter 4: An Introduction to Foreign Interfaces and CFFI 13

If we are supposed to keep the C string around, but it goes away, what happens when
some libcurl function tries to access the URL string? We have reentered the dreaded world
of C “undefined behavior”. In some Lisps, it will probably get a chunk of the Lisp/C stack.
You may segfault. You may get some random piece of other data from the heap. Maybe,
in a world where “dynamic extent” is defined to be “infinite extent”, everything will turn
out fine. Regardless, results are likely to be almost universally unpleasant.7

Returning to the current set-curl-option-url interface, here is what we must do:

(let (easy-handle)

(unwind-protect

(with-foreign-string (url "http://www.cliki.net/CFFI")

(setf easy-handle (curl-easy-init))

(set-curl-option-url easy-handle url)

#|do more with the easy-handle, like actually get the URL|#)
(when easy-handle

(curl-easy-cleanup easy-handle))))

That is fine for the single string defined here, but for every string option we want to pass, we
have to surround the body of with-foreign-string with another with-foreign-string
wrapper, or else do some extremely error-prone pointer manipulation and size calculation
in advance. We could alleviate some of the pain with a recursively expanding macro, but
this would not remove the need to modify the block every time we want to add an option,
anathema as it is to a modular interface.

Before modifying the code to account for this case, consider the other reason we can’t
simply use :string as the foreign type. In C, a char * is a char *, not necessarily a string.
The option CURLOPT_ERRORBUFFER accepts a char *, but does not expect anything about
the data there. However, it does expect that some libcurl function we call later can write
a C string of up to 255 characters there. We, the callers of the function, are expected to
read the C string at a later time, exactly the opposite of what :string implies.

With the semantics for an input string in mind — namely, that the string should be
kept around until we curl_easy_cleanup the easy handle — we are ready to extend the
Lisp interface:

(defvar *easy-handle-cstrings* (make-hash-table)

"Hashtable of easy handles to lists of C strings that may be

safely freed after the handle is freed.")

(defun make-easy-handle ()

"Answer a new CURL easy interface handle, to which the lifetime

of C strings may be tied. See ‘add-curl-handle-cstring’."

(let ((easy-handle (curl-easy-init)))

(setf (gethash easy-handle *easy-handle-cstrings*) ’())

easy-handle))

(defun free-easy-handle (handle)

7 “But I thought Lisp was supposed to protect me from all that buggy C crap!” Before asking a question
like that, remember that you are a stranger in a foreign land, whose residents have a completely different
set of values.

Chapter 4: An Introduction to Foreign Interfaces and CFFI 14

"Free CURL easy interface HANDLE and any C strings created to

be its options."

(curl-easy-cleanup handle)

(mapc #’foreign-string-free

(gethash handle *easy-handle-cstrings*))

(remhash handle *easy-handle-cstrings*))

(defun add-curl-handle-cstring (handle cstring)

"Add CSTRING to be freed when HANDLE is, answering CSTRING."

(car (push cstring (gethash handle *easy-handle-cstrings*))))

Here we have redefined the interface to create and free handles, to associate a list of allocated
C strings with each handle while it exists. The strategy of using different function names to
wrap around simple foreign functions is more common than the solution implemented earlier
with curry-curl-option-setter, which was to modify the function name’s function slot.8

Incidentally, the next step is to redefine curry-curl-option-setter to allocate C
strings for the appropriate length of time, given a Lisp string as the new-value argument:

(defun curry-curl-option-setter (function-name option-keyword)

"Wrap the function named by FUNCTION-NAME with a version that

curries the second argument as OPTION-KEYWORD.

This function is intended for use in DEFINE-CURL-OPTION-SETTER."

(setf (symbol-function function-name)

(let ((c-function (symbol-function function-name)))

(lambda (easy-handle new-value)

(funcall c-function easy-handle option-keyword

(if (stringp new-value)

(add-curl-handle-cstring

easy-handle

(foreign-string-alloc new-value))

new-value))))))

A quick analysis of the code shows that you need only reevaluate the curl-option enu-
meration definition to take advantage of these new semantics. Now, for good measure, let’s
reallocate the handle with the new functions we just defined, and set its URL:

cffi-user> (curl-easy-cleanup *easy-handle*)

⇒ NIL

cffi-user> (setf *easy-handle* (make-easy-handle))

⇒ #<FOREIGN-ADDRESS #x09844EE0>

cffi-user> (set-curl-option-nosignal *easy-handle* 1)

⇒ 0

cffi-user> (set-curl-option-url *easy-handle*

"http://www.cliki.net/CFFI")

⇒ 0

8 There are advantages and disadvantages to each approach; I chose to (setf symbol-function) earlier
because it entailed generating fewer magic function names.

Chapter 4: An Introduction to Foreign Interfaces and CFFI 15

For fun, let’s inspect the Lisp value of the C string that was created to hold
"http://www.cliki.net/CFFI". By virtue of the implementation of add-curl-handle-
cstring, it should be accessible through the hash table defined:

cffi-user> (foreign-string-to-lisp

(car (gethash *easy-handle* *easy-handle-cstrings*)))

⇒ "http://www.cliki.net/CFFI"

Looks like that worked, and libcurl now knows what URL we want to retrieve.

Finally, we turn back to the :errorbuffer option mentioned at the beginning of this
section. Whereas the abstraction added to support string inputs works fine for cases like
CURLOPT_URL, it hides the detail of keeping the C string; for :errorbuffer, however, we
need that C string.

In a moment, we’ll define something slightly cleaner, but for now, remember that you
can always hack around anything. We’re modifying handle creation, so make sure you free
the old handle before redefining free-easy-handle.

(defvar *easy-handle-errorbuffers* (make-hash-table)

"Hashtable of easy handles to C strings serving as error

writeback buffers.")

;;; An extra byte is very little to pay for peace of mind.
(defparameter *curl-error-size* 257

"Minimum char[] size used by cURL to report errors.")

(defun make-easy-handle ()

"Answer a new CURL easy interface handle, to which the lifetime

of C strings may be tied. See ‘add-curl-handle-cstring’."

(let ((easy-handle (curl-easy-init)))

(setf (gethash easy-handle *easy-handle-cstrings*) ’())

(setf (gethash easy-handle *easy-handle-errorbuffers*)

(foreign-alloc :char :count *curl-error-size*

:initial-element 0))

easy-handle))

(defun free-easy-handle (handle)

"Free CURL easy interface HANDLE and any C strings created to

be its options."

(curl-easy-cleanup handle)

(foreign-free (gethash handle *easy-handle-errorbuffers*))

(remhash handle *easy-handle-errorbuffers*)

(mapc #’foreign-string-free

(gethash handle *easy-handle-cstrings*))

(remhash handle *easy-handle-cstrings*))

(defun get-easy-handle-error (handle)

"Answer a string containing HANDLE’s current error message."

(foreign-string-to-lisp

(gethash handle *easy-handle-errorbuffers*)))

Be sure to once again set the options we’ve set thus far. You may wish to define yet
another wrapper function to do this.

4.9 Calling Lisp from C

If you have been reading curl_easy_setopt(3), you should have noticed that some options
accept a function pointer. In particular, we need one function pointer to set as CURLOPT_

http://curl.haxx.se/libcurl/c/curl_easy_setopt.html

Chapter 4: An Introduction to Foreign Interfaces and CFFI 16

WRITEFUNCTION, to be called by libcurl rather than the reverse, in order to receive data
as it is downloaded.

A binding writer without the aid of FFI usually approaches this problem by writing a
C function that accepts C data, converts to the language’s internal objects, and calls the
callback provided by the user, again in a reverse of usual practices.

The CFFI approach to callbacks precisely mirrors its differences with the non-FFI ap-
proach on the “calling C from Lisp” side, which we have dealt with exclusively up to now.
That is, you define a callback function in Lisp using defcallback, and CFFI effectively
creates a C function to be passed as a function pointer.

Implementor’s note: This is much trickier than calling C functions from Lisp, as
it literally involves somehow generating a new C function that is as good as any
created by the compiler. Therefore, not all Lisps support them. See Chapter 3
[Implementation Support], page 3, for information about CFFI support issues in
this and other areas. You may want to consider changing to a Lisp that supports
callbacks in order to continue with this tutorial.

Defining a callback is very similar to defining a callout; the main difference is that we
must provide some Lisp forms to be evaluated as part of the callback. Here is the signature
for the function the :writefunction option takes:

size_t

function(void *ptr, size_t size, size_t nmemb, void *stream);

Implementor’s note: size t is almost always an unsigned int. You can get this and
many other types using feature tests for your system by using cffi-grovel.

The above signature trivially translates into a CFFI defcallback form, as follows.

;;; Alias in case size t changes.
(defctype size :unsigned-int)

;;; To be set as the CURLOPT WRITEFUNCTION of every easy handle.
(defcallback easy-write size ((ptr :pointer) (size size)

(nmemb size) (stream :pointer))

(let ((data-size (* size nmemb)))

(handler-case

;; We use the dynamically-bound *easy-write-procedure* to
;; call a closure with useful lexical context.
(progn (funcall (symbol-value ’*easy-write-procedure*)

(foreign-string-to-lisp ptr :count data-size))

data-size) ;indicates success
;; The WRITEFUNCTION should return something other than the
;; #bytes available to signal an error.
(error () (if (zerop data-size) 1 0)))))

First, note the correlation of the first few forms, used to declare the C function’s signa-
ture, with the signature in C syntax. We provide a Lisp name for the function, its return
type, and a name and type for each argument.

In the body, we call the dynamically-bound *easy-write-procedure* with a “finished”
translation, of pulling together the raw data and size into a Lisp string, rather than deal

Chapter 4: An Introduction to Foreign Interfaces and CFFI 17

with the data directly. As part of calling curl_easy_perform later, we’ll bind that variable
to a closure with more useful lexical bindings than the top-level defcallback form.

Finally, we make a halfhearted effort to prevent non-local exits from unwinding the
C stack, covering the most likely case with an error handler, which is usually triggered
unexpectedly.9 The reason is that most C code is written to understand its own idiosyncratic
error condition, implemented above in the case of curl_easy_perform, and more “undefined
behavior” can result if we just wipe C stack frames without allowing them to execute
whatever cleanup actions as they like.

Using the CURLoption enumeration in ‘curl.h’ once more, we can describe the new
option by modifying and reevaluating define-curl-options.

(define-curl-options curl-option

(long 0 objectpoint 10000 functionpoint 20000 off-t 30000)

(:noprogress long 43)

(:nosignal long 99)

(:errorbuffer objectpoint 10)

(:url objectpoint 2)

(:writefunction functionpoint 11)) ;new item here

Finally, we can use the defined callback and the new set-curl-option-writefunction

to finish configuring the easy handle, using the callbackmacro to retrieve a CFFI :pointer,
which works like a function pointer in C code.

cffi-user> (set-curl-option-writefunction

easy-handle (callback easy-write))

⇒ 0

4.10 A complete FFI?

With all options finally set and a medium-level interface developed, we can finish the defi-
nition and retrieve http://www.cliki.net/CFFI, as is done in the tutorial.

(defcfun "curl_easy_perform" curl-code

(handle easy-handle))

cffi-user> (with-output-to-string (contents)

(let ((*easy-write-procedure*

(lambda (string)

(write-string string contents))))

(declare (special *easy-write-procedure*))

(curl-easy-perform *easy-handle*)))

⇒ "<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.01//EN\"

...

Now fear, comprehensively</P>

"

9 Unfortunately, we can’t protect against all non-local exits, such as returns and throws, because unwind-
protect cannot be used to “short-circuit” a non-local exit in Common Lisp, due to proposal minimal in
ANSI issue Exit-Extent. Furthermore, binding an error handler prevents higher-up code from invoking
restarts that may be provided under the callback’s dynamic context. Such is the way of compromise.

http://www.cliki.net/CFFI
http://www.lisp.org/HyperSpec/Issues/iss152-writeup.html

Chapter 4: An Introduction to Foreign Interfaces and CFFI 18

Of course, that itself is slightly unwieldy, so you may want to define a function around it
that simply retrieves a URL. I will leave synthesis of all the relevant REPL forms presented
thus far into a single function as an exercise for the reader.

The remaining sections of this tutorial explore some advanced features of CFFI; the
definition of new types will receive special attention. Some of these features are essential
for particular foreign function calls; some are very helpful when trying to develop a Lispy
interface to C.

4.11 Defining new types

We’ve occasionally used the defctype macro in previous sections as a kind of documen-
tation, much what you’d use typedef for in C. We also tried one special kind of type
definition, the defcenum type. See [defcstruct], page 33, for a definition macro that may
come in handy if you need to use C structs as data.

However, all of these are mostly sugar for the powerful underlying foreign type interface
called type translators. You can easily define new translators for any simple named foreign
type. Since we’ve defined the new type curl-code to use as the return type for various
libcurl functions, we can use that to directly convert cURL errors to Lisp errors.

defctype’s purpose is to define simple typedef-like aliases. In order to use type trans-
lators we must use the define-foreign-type macro. So let’s redefine curl-code using
it.

(define-foreign-type curl-code-type ()

()

(:actual-type :int)

(:simple-parser curl-code))

define-foreign-type is a thin wrapper around defclass. For now, all you need to
know in the context of this example is that it does what (defctype curl-code :int) would
do and, additionally, defines a new class curl-code-type which we will take advantage of
shortly.

The CURLcode enumeration seems to follow the typical error code convention of ‘0’
meaning all is well, and each non-zero integer indicating a different kind of error. We can
apply that trivially to differentiate between normal exits and error exits.

(define-condition curl-code-error (error)

(($code :initarg :curl-code :reader curl-error-code))

(:report (lambda (c stream)

(format stream "libcurl function returned error ~A"

(curl-error-code c))))

(:documentation "Signalled when a libcurl function answers

a code other than CURLE_OK."))

(defmethod translate-from-foreign (value (type curl-code-type))

"Raise a CURL-CODE-ERROR if VALUE, a curl-code, is non-zero."

(if (zerop value)

:curle-ok

(error ’curl-code-error :curl-code value)))

Chapter 4: An Introduction to Foreign Interfaces and CFFI 19

The heart of this translator is new method translate-from-foreign. By specializing the
type parameter on curl-code-type, we immediately modify the behavior of every function
that returns a curl-code to pass the result through this new method.

To see the translator in action, try invoking a function that returns a curl-code. You
need to reevaluate the respective defcfun form so that it picks up the new curl-code

definition.

cffi-user> (set-curl-option-nosignal *easy-handle* 1)

⇒ :CURLE-OK

As the result was ‘0’, the new method returned :curle-ok, just as specified.10 I will leave
disjoining the separate CURLcodes into condition types and improving the :report function
as an exercise for you.

The creation of *easy-handle-cstrings* and *easy-handle-errorbuffers* as prop-
erties of easy-handles is a kluge. What we really want is a Lisp structure that stores these
properties along with the C pointer. Unfortunately, easy-handle is currently just a fancy
name for the foreign type :pointer; the actual pointer object varies from Common Lisp
implementation to implementation, needing only to satisfy pointerp and be returned from
make-pointer and friends.

One solution that would allow us to define a new Lisp structure to represent easy-

handles would be to write a wrapper around every function that currently takes an easy-

handle; the wrapper would extract the pointer and pass it to the foreign function. However,
we can use type translators to more elegantly integrate this “translation” into the foreign
function calling framework, using translate-to-foreign.

(defclass easy-handle ()

((pointer :initform (curl-easy-init)

:documentation "Foreign pointer from curl_easy_init")

(error-buffer

:initform (foreign-alloc :char :count *curl-error-size*

:initial-element 0)

:documentation "C string describing last error")

(c-strings :initform ’()

:documentation "C strings set as options"))

(:documentation "I am a parameterization you may pass to

curl-easy-perform to perform a cURL network protocol request."))

(defmethod initialize-instance :after ((self easy-handle) &key)

(set-curl-option-errorbuffer self (slot-value self ’error-buffer)))

(defun add-curl-handle-cstring (handle cstring)

"Add CSTRING to be freed when HANDLE is, answering CSTRING."

(car (push cstring (slot-value handle ’c-strings))))

(defun get-easy-handle-error (handle)

"Answer a string containing HANDLE’s current error message."

(foreign-string-to-lisp

(slot-value handle ’error-buffer)))

(defun free-easy-handle (handle)

"Free CURL easy interface HANDLE and any C strings created to

be its options."

10 It might be better to return (values) than :curle-ok in real code, but this is good for illustration.

Chapter 4: An Introduction to Foreign Interfaces and CFFI 20

(with-slots (pointer error-buffer c-strings) handle

(curl-easy-cleanup pointer)

(foreign-free error-buffer)

(mapc #’foreign-string-free c-strings)))

(define-foreign-type easy-handle-type ()

()

(:actual-type :pointer)

(:simple-parser easy-handle))

(defmethod translate-to-foreign (handle (type easy-handle-type))

"Extract the pointer from an easy-HANDLE."

(slot-value handle ’pointer))

While we changed some of the Lisp functions defined earlier to use CLOS slots rather
than hash tables, the foreign functions work just as well as they did before.

The greatest strength, and the greatest limitation, of the type translator comes from its
generalized interface. As stated previously, we could define all foreign function calls in terms
of the primitive foreign types provided by CFFI. The type translator interface allows us to
cleanly specify the relationship between Lisp and C data, independent of where it appears
in a function call. This independence comes at a price; for example, it cannot be used to
modify translation semantics based on other arguments to a function call. In these cases,
you should rely on other features of Lisp, rather than the powerful, yet domain-specific,
type translator interface.

4.12 What’s next?

CFFI provides a rich and powerful foundation for communicating with foreign libraries; as
we have seen, it is up to you to make that experience a pleasantly Lispy one. This tutorial
does not cover all the features of CFFI; please see the rest of the manual for details. In
particular, if something seems obviously missing, it is likely that either code or a good
reason for lack of code is already present.

Implementor’s note: There are some other things in CFFI that might deserve
tutorial sections, such as free-translated-object, or structs. Let us know which ones
you care about.

Chapter 5: Wrapper generators 21

5 Wrapper generators

CFFI’s interface is designed for human programmers, being aimed at aesthetic as well as
technical sophistication. However, there are a few programs aimed at translating C and C++
header files, or approximations thereof, into CFFI forms constituting a foreign interface to
the symbols in those files.

These wrapper generators are known to support output of CFFI forms.

Verrazano Designed specifically for Common Lisp. Uses GCC’s parser output in XML

format to discover functions, variables, and other header file data. This means
you need GCC to generate forms; on the other hand, the parser employed is
mostly compliant with ANSI C.

SWIG A foreign interface generator originally designed to generate Python bindings,
it has been ported to many other systems, including CFFI in version 1.3.28.
Includes its own C declaration munger, not intended to be fully-compliant with
ANSI C.

First, this manual does not describe use of these other programs; they have documen-
tation of their own. If you have problems using a generated interface, please look at the
output CFFI forms and verify that they are a correct CFFI interface to the library in ques-
tion; if they are correct, contact CFFI developers with details, keeping in mind that they
communicate in terms of those forms rather than any particular wrapper generator. Oth-
erwise, contact the maintainers of the wrapper generator you are using, provided you can
reasonably expect more accuracy from the generator.

When is more accuracy an unreasonable expectation? As described in the tutorial (see
Section 4.6 [Breaking the abstraction], page 9), the information in C declarations is in-
sufficient to completely describe every interface. In fact, it is quite common to run into
an interface that cannot be handled automatically, and generators should be excused from
generating a complete interface in these cases.

As further described in the tutorial, the thinnest Lisp interface to a C function is not
always the most pleasant one. In many cases, you will want to manually write a Lispier
interface to the C functions that interest you.

Wrapper generators should be treated as time-savers, not complete automation of the
full foreign interface writing job. Reports of the amount of work done by generators vary
from 30% to 90%. The incremental development style enabled by CFFI generally reduces
this proportion below that for languages like Python.

http://www.cliki.net/Verrazano
http://www.cliki.net/SWIG

Chapter 6: Foreign Types 22

6 Foreign Types

Foreign types describe how data is translated back and forth between C and Lisp. CFFI

provides various built-in types and allows the user to define new types.

6.1 Built-In Types

[Foreign Type]:char

[Foreign Type]:unsigned-char

[Foreign Type]:short

[Foreign Type]:unsigned-short

[Foreign Type]:int

[Foreign Type]:unsigned-int

[Foreign Type]:long

[Foreign Type]:unsigned-long

[Foreign Type]:long-long

[Foreign Type]:unsigned-long-long
These types correspond to the native C integer types according to the ABI of the Lisp

implementation’s host system.

:long-long and :unsigned-long-long are not supported natively on all implementa-
tions. However, they are emulated by mem-ref and mem-set.

When those types are not available, the symbol cffi-sys::no-long-long is pushed
into *features*.

[Foreign Type]:uchar

[Foreign Type]:ushort

[Foreign Type]:uint

[Foreign Type]:ulong

[Foreign Type]:llong

[Foreign Type]:ullong

For convenience, the above types are provided as shortcuts for unsigned-char,
unsigned-short, unsigned-int, unsigned-long, long-long and unsigned-long-long,
respectively.

[Foreign Type]:int8

[Foreign Type]:uint8

[Foreign Type]:int16

[Foreign Type]:uint16

[Foreign Type]:int32

[Foreign Type]:uint32

Chapter 6: Foreign Types 23

[Foreign Type]:int64

[Foreign Type]:uint64
Foreign integer types of specific sizes, corresponding to the C types defined in stdint.h.

[Foreign Type]:float

[Foreign Type]:double
On all systems, the :float and :double types represent a C float and double, respec-

tively. On most but not all systems, :float and :double represent a Lisp single-float

and double-float, respectively. It is not so useful to consider the relationship between
Lisp types and C types as isomorphic, as simply to recognize the relationship, and relative
precision, among each respective category.

[Foreign Type]:long-double
This type is only supported on SCL.

[Foreign Type]:pointer &optional type
A foreign pointer to an object of any type, corresponding to void *. You can optionally

specify type of pointer (e.g. (:pointer :char)). Although CFFI won’t do anything with
that information yet, it is useful for documentation purposes.

[Foreign Type]:void
No type at all. Only valid as the return type of a function.

6.2 Other Types

CFFI also provides a few useful types that aren’t built-in C types.

[Foreign Type]:string
The :string type performs automatic conversion between Lisp and C strings. Note

that, in the case of functions the converted C string will have dynamic extent (i.e. it will
be automatically freed after the foreign function returns).

In addition to Lisp strings, this type will accept foreign pointers and pass them unmod-
ified.

A method for [free-translated-object], page 51 is specialized for this type. So, for exam-
ple, foreign strings allocated by this type and passed to a foreign function will be freed after
the function returns.

CFFI> (foreign-funcall "getenv" :string "SHELL" :string)

⇒ "/bin/bash"

CFFI> (with-foreign-string (str "abcdef")

(foreign-funcall "strlen" :string str :int))

⇒ 6

[Foreign Type]:string+ptr
Like :string but returns a list with two values when convert from C to Lisp: a Lisp

string and the C string’s foreign pointer.

CFFI> (foreign-funcall "getenv" :string "SHELL" :string+ptr)

⇒ ("/bin/bash" #.(SB-SYS:INT-SAP #XBFFFFC6F))

Chapter 6: Foreign Types 24

[Foreign Type]:boolean &optional (base-type :int)
The :boolean type converts between a Lisp boolean and a C boolean. It canonicalizes

to base-type which is :int by default.

(convert-to-foreign nil :boolean) ⇒ 0

(convert-to-foreign t :boolean) ⇒ 1

(convert-from-foreign 0 :boolean) ⇒ nil

(convert-from-foreign 1 :boolean) ⇒ t

[Foreign Type]:bool
The :bool type represents the C99 _Bool or C++ bool. Its size is usually 1 byte except

on OSX where it’s an int.

[Foreign Type]:wrapper base-type &key to-c from-c
The :wrapper type stores two symbols passed to the to-c and from-c arguments. When

a value is being translated to or from C, this type funcalls the respective symbol.

:wrapper types will be typedefs for base-type and will inherit its translators, if any.

Here’s an example of how the :boolean type could be defined in terms of :wrapper.

(defun bool-c-to-lisp (value)

(not (zerop value)))

(defun bool-lisp-to-c (value)

(if value 1 0))

(defctype my-bool (:wrapper :int :from-c bool-c-to-lisp

:to-c bool-lisp-to-c))

(convert-to-foreign nil ’my-bool) ⇒ 0

(convert-from-foreign 1 ’my-bool) ⇒ t

6.3 Defining Foreign Types

You can define simple C-like typedefs through the defctype macro. Defining a typedef is
as simple as giving defctype a new name and the name of the type to be wrapped.

;;; Define MY-INT as an alias for the built-in type :INT.
(defctype my-int :int)

With this type definition, one can, for instance, declare arguments to foreign functions
as having the type my-int, and they will be passed as integers.

More complex types

CFFI offers another way to define types through define-foreign-type, a thin wrapper
macro around defclass. As an example, let’s go through the steps needed to define a
(my-string &key encoding) type. First, we need to define our type class:

(define-foreign-type my-string-type ()

((encoding :reader string-type-encoding :initarg :encoding))

(:actual-type :pointer))

Chapter 6: Foreign Types 25

The :actual-type class option tells CFFI that this type will ultimately be passed to and
received from foreign code as a :pointer. Now you need to tell CFFI how to parse a type
specification such as (my-string :encoding :utf8) into an instance of my-string-type.
We do that with define-parse-method:

(define-parse-method my-string (&key (encoding :utf-8))

(make-instance ’my-string-type :encoding encoding))

The next section describes how make this type actually translate between C and Lisp
strings.

6.4 Foreign Type Translators

Type translators are used to automatically convert Lisp values to or from foreign values. For
example, using type translators, one can take the my-string type defined in the previous
section and specify that it should:

• convert C strings to Lisp strings;

• convert Lisp strings to newly allocated C strings;

• free said C strings when they are no longer needed.

In order to tell CFFI how to automatically convert Lisp values to foreign values, define
a specialized method for the translate-to-foreign generic function:

;;; Define a method that converts Lisp strings to C strings.
(defmethod translate-to-foreign (string (type my-string-type))

(foreign-string-alloc string :encoding (string-type-encoding type)))

From now on, whenever an object is passed as a my-string to a foreign function, this
method will be invoked to convert the Lisp value. To perform the inverse operation, which
is needed for functions that return a my-string, specialize the translate-from-foreign

generic function in the same manner:

;;; Define a method that converts C strings to Lisp strings.
(defmethod translate-from-foreign (pointer (type my-string-type))

(foreign-string-to-lisp pointer :encoding (string-type-encoding type)))

When a translate-to-foreign method requires allocation of foreign memory, you must
also define a free-translated-object method to free the memory once the foreign object
is no longer needed, otherwise you’ll be faced with memory leaks. This generic function is
called automatically by CFFI when passing objects to foreign functions. Let’s do that:

;;; Free strings allocated by translate-to-foreign.
(defmethod free-translated-object (pointer (type my-string-type) param)

(declare (ignore param))

(foreign-string-free pointer))

In this specific example, we don’t need the param argument, so we ignore it. See [free-
translated-object], page 51, for an explanation of its purpose and how you can use it.

A type translator does not necessarily need to convert the value. For example, one could
define a typedef for :pointer that ensures, in the translate-to-foreign method, that
the value is not a null pointer, signalling an error if a null pointer is passed. This would
prevent some pointer errors when calling foreign functions that cannot handle null pointers.

Chapter 6: Foreign Types 26

Please note: these methods are meant as extensible hooks only, and you should not call
them directly. Use convert-to-foreign, convert-from-foreign and free-converted-

object instead.

See Section 4.11 [Defining new types], page 18, for another example of type translators.

6.5 Optimizing Type Translators

Being based on generic functions, the type translation mechanism described above can add
a bit of overhead. This is usually not significant, but we nevertheless provide a way of
getting rid of the overhead for the cases where it matters.

A good way to understand this issue is to look at the code generated by defcfun.
Consider the following example using the previously defined my-string type:

CFFI> (macroexpand-1 ’(defcfun foo my-string (x my-string)))

;; (simplified, downcased, etc...)
(defun foo (x)

(multiple-value-bind (#:G2019 #:PARAM3149)

(translate-to-foreign x #<MY-STRING-TYPE {11ED5A79}>)

(unwind-protect

(translate-from-foreign

(foreign-funcall "foo" :pointer #:G2019 :pointer)

#<MY-STRING-TYPE {11ED5659}>)

(free-translated-object #:G2019 #<MY-STRING-TYPE {11ED51A79}>

#:PARAM3149))))

In order to get rid of those generic function calls, CFFI has another set of extensible generic
functions that provide functionality similar to CL’s compiler macros: expand-to-foreign-
dyn, expand-to-foreign and expand-from-foreign. Here’s how one could define a my-

boolean with them:

(define-foreign-type my-boolean-type ()

()

(:actual-type :int)

(:simple-parser my-boolean))

(defmethod expand-to-foreign (value (type my-boolean-type))

‘(if ,value 1 0))

(defmethod expand-from-foreign (value (type my-boolean-type))

‘(not (zerop ,value)))

And here’s what the macroexpansion of a function using this type would look like:

CFFI> (macroexpand-1 ’(defcfun bar my-boolean (x my-boolean)))

;; (simplified, downcased, etc...)
(defun bar (x)

(let ((#:g3182 (if x 1 0)))

(not (zerop (foreign-funcall "bar" :int #:g3182 :int)))))

No generic function overhead.

Let’s go back to our my-string type. The expansion interface has no equivalent of free-
translated-object; you must instead define a method on expand-to-foreign-dyn, the

Chapter 6: Foreign Types 27

third generic function in this interface. This is especially useful when you can allocate
something much more efficiently if you know the object has dynamic extent, as is the case
with function calls that don’t save the relevant allocated arguments.

This exactly what we need for the my-string type:

(defmethod expand-from-foreign (form (type my-string-type))

‘(foreign-string-to-lisp ,form))

(defmethod expand-to-foreign-dyn (value var body (type my-string-type))

(let ((encoding (string-type-encoding type)))

‘(with-foreign-string (,var ,value :encoding ’,encoding)

,@body)))

So let’s look at the macro expansion:

CFFI> (macroexpand-1 ’(defcfun foo my-string (x my-string)))

;; (simplified, downcased, etc...)
(defun foo (x)

(with-foreign-string (#:G2021 X :encoding ’:utf-8)

(foreign-string-to-lisp

(foreign-funcall "foo" :pointer #:g2021 :pointer))))

Again, no generic function overhead.

Other details

To short-circuit expansion and use the translate-* functions instead, simply call the
next method. Return its result in cases where your method cannot generate an appropriate
replacement for it. This analogous to the &whole form mechanism compiler macros provide.

The expand-* methods have precedence over their translate-* counterparts and are
guaranteed to be used in defcfun, foreign-funcall, defcvar and defcallback. If you
define a method on each of the expand-* generic functions, you are guaranteed to have full
control over the expressions generated for type translation in these macros.

They may or may not be used in other CFFI operators that need to translate between
Lisp and C data; you may only assume that expand-* methods will probably only be called
during Lisp compilation.

expand-to-foreign-dyn has precedence over expand-to-foreign and is only used in
defcfun and foreign-funcall, only making sense in those contexts.

Important note: this set of generic functions is called at macroexpansion time. Methods
are defined when loaded or evaluated, not compiled. You are responsible for ensuring that
your expand-* methods are defined when the foreign-funcall or other forms that use
them are compiled. One way to do this is to put the method definitions earlier in the file
and inside an appropriate eval-when form; another way is to always load a separate Lisp or
FASL file containing your expand-* definitions before compiling files with forms that ought
to use them. Otherwise, they will not be found and the runtime translators will be used
instead.

Chapter 6: Foreign Types 28

6.6 Foreign Structure Types

For more involved C types than simple aliases to built-in types, such as you can make
with defctype, CFFI allows declaration of structures and unions with defcstruct and
defcunion.

For example, consider this fictional C structure declaration holding some personal infor-
mation:

struct person {

int number;

char* reason;

};

The equivalent defcstruct form follows:

(defcstruct person

(number :int)

(reason :string))

By default, [convert-from-foreign], page 29 (and also [mem-ref], page 68) will make a
plist with slot names as keys, and [convert-to-foreign], page 30 will translate such a plist
to a foreign structure. A user wishing to define other translations should use the :class

argument to [defcstruct], page 33, and then define methods for [translate-from-foreign],
page 52 and [translate-into-foreign-memory], page 54 that specialize on this class, possibly
calling call-next-method to translate from and to the plists rather than provide a direct
interface to the foreign object. The macro translation-forms-for-class will generate
the forms necessary to translate a Lisp class into a foreign structure and vice versa.

Please note that this interface is only for those that must know about the values contained
in a relevant struct. If the library you are interfacing returns an opaque pointer that needs
only be passed to other C library functions, by all means just use :pointer or a type-
safe definition munged together with defctype and type translation. To pass or return
a structure by value to a function, load the cffi-libffi system and specify the structure as
(:struct structure-name). To pass or return the pointer, you can use either :pointer
or (:pointer (:struct structure-name)).

Compatibility note: Previous versions of CFFI accepted the “bare” structure-name as a
type specification, which was interpreted as a pointer to the structure. This is deprecated
and produces a style warning. Using this deprecated form means that [mem-aref], page 67
retains its prior meaning and returns a pointer. Using the (:struct structure-name)

form for the type, [mem-aref], page 67 provides a Lisp object translated from the structure
(by default a plist). Thus the semantics are consistent with all types in returning the
object as represented in Lisp, and not a pointer, with the exception of the “bare” structure
compatibility retained. In order to obtain the pointer, you should use the function [mem-
aptr], page 66.

See [defcstruct], page 33 for more details.

6.7 Allocating Foreign Objects

See Section 7.2 [Allocating Foreign Memory], page 57.

Chapter 6: Foreign Types 29

convert-from-foreign

Syntax

[Function]convert-from-foreign foreign-value type ⇒ value

Arguments and Values

foreign-value
The primitive C value as returned from a primitive foreign function or from
convert-to-foreign.

type A CFFI type specifier.

value The Lisp value translated from foreign-value.

Description

This is an external interface to the type translation facility. In the implementation, all for-
eign functions are ultimately defined as type translation wrappers around primitive foreign
function invocations.

This function is available mostly for inspection of the type translation process, and
possibly optimization of special cases of your foreign function calls.

Its behavior is better described under translate-from-foreign’s documentation.

Examples

CFFI-USER> (convert-to-foreign "a boat" :string)

⇒ #<FOREIGN-ADDRESS #x097ACDC0>

⇒ T

CFFI-USER> (convert-from-foreign * :string)

⇒ "a boat"

See Also

[convert-to-foreign], page 30
[free-converted-object], page 50
[translate-from-foreign], page 52

Chapter 6: Foreign Types 30

convert-to-foreign

Syntax

[Function]convert-to-foreign value type ⇒ foreign-value,
alloc-params

Arguments and Values

value The Lisp object to be translated to a foreign object.

type A CFFI type specifier.

foreign-value
The primitive C value, ready to be passed to a primitive foreign function.

alloc-params
Something of a translation state; you must pass it to free-converted-object

along with the foreign value for that to work.

Description

This is an external interface to the type translation facility. In the implementation, all for-
eign functions are ultimately defined as type translation wrappers around primitive foreign
function invocations.

This function is available mostly for inspection of the type translation process, and
possibly optimization of special cases of your foreign function calls.

Its behavior is better described under translate-to-foreign’s documentation.

Examples

CFFI-USER> (convert-to-foreign t :boolean)

⇒ 1

⇒ NIL

CFFI-USER> (convert-to-foreign "hello, world" :string)

⇒ #<FOREIGN-ADDRESS #x097C5F80>

⇒ T

CFFI-USER> (code-char (mem-aref * :char 5))

⇒ #\,

See Also

[convert-from-foreign], page 29
[free-converted-object], page 50
[translate-to-foreign], page 53

Chapter 6: Foreign Types 31

defbitfield

Syntax

[Macro]defbitfield name-and-options &body masks
masks ::= [docstring] { (symbol value) }*

name-and-options ::= name | (name &optional (base-type :int))

Arguments and Values

name The name of the new bitfield type.

docstring A documentation string, ignored.

base-type A symbol denoting a foreign type.

symbol A Lisp symbol.

value An integer representing a bitmask.

Description

The defbitfield macro is used to define foreign types that map lists of symbols to integer
values.

If value is omitted, it will be computed as follows: find the greatest value previously used,
including those so computed, with only a single 1-bit in its binary representation (that is,
powers of two), and left-shift it by one. This rule guarantees that a computed value cannot
clash with previous values, but may clash with future explicitly specified values.

Symbol lists will be automatically converted to values and vice versa when being passed
as arguments to or returned from foreign functions, respectively. The same applies to any
other situations where an object of a bitfield type is expected.

Types defined with defbitfield canonicalize to base-type which is :int by default.

Examples

(defbitfield open-flags

(:rdonly #x0000)

:wronly ;#x0001
:rdwr ;. . .
:nonblock

:append

(:creat #x0200))

;; etc. . .

CFFI> (foreign-bitfield-symbols ’open-flags #b1101)

⇒ (:RDONLY :WRONLY :NONBLOCK :APPEND)

CFFI> (foreign-bitfield-value ’open-flags ’(:rdwr :creat))

⇒ 514 ; #x0202

(defcfun ("open" unix-open) :int

Chapter 6: Foreign Types 32

(path :string)

(flags open-flags)

(mode :uint16)) ; unportable

CFFI> (unix-open "/tmp/foo" ’(:wronly :creat) #o644)

⇒ #<an fd>

;;; Consider also the following lispier wrapper around open()
(defun lispier-open (path mode &rest flags)

(unix-open path flags mode))

See Also

[foreign-bitfield-value], page 41
[foreign-bitfield-symbols], page 40

Chapter 6: Foreign Types 33

defcstruct

Syntax

[Macro]defcstruct name-and-options &body doc-and-slots ⇒ name
name-and-options ::= structure-name | (structure-name &key size)

doc-and-slots ::= [docstring] { (slot-name slot-type &key count offset) }*

Arguments and Values

structure-name
The name of new structure type.

docstring A documentation string, ignored.

slot-name A symbol naming the slot. It must be unique among slot names in this structure.

size Use this option to override the size (in bytes) of the struct.

slot-type The type specifier for the slot.

count Used to declare an array of size count inside the structure. Defaults to 1 as
such an array and a single element are semantically equivalent.

offset Overrides the slot’s offset. The next slot’s offset is calculated based on this one.

Description

This defines a new CFFI aggregate type akin to C structs. In other words, it specifies
that foreign objects of the type structure-name are groups of different pieces of data, or
“slots”, of the slot-types, distinguished from each other by the slot-names. Each structure
is located in memory at a position, and the slots are allocated sequentially beginning at that
point in memory (with some padding allowances as defined by the C ABI, unless otherwise
requested by specifying an offset from the beginning of the structure (offset 0).

In other words, it is isomorphic to the C struct, giving several extra features.

There are two kinds of slots, for the two kinds of CFFI types:

Simple Contain a single instance of a type that canonicalizes to a built-in type, such
as :long or :pointer. Used for simple CFFI types.

Aggregate Contain an embedded structure or union, or an array of objects. Used for
aggregate CFFI types.

The use of CLOS terminology for the structure-related features is intentional; structure
definitions are very much like classes with (far) fewer features.

Examples

(defcstruct point

"Point structure."

(x :int)

(y :int))

CFFI> (with-foreign-object (ptr ’point)

Chapter 6: Foreign Types 34

;; Initialize the slots
(setf (foreign-slot-value ptr ’point ’x) 42

(foreign-slot-value ptr ’point ’y) 42)

;; Return a list with the coordinates
(with-foreign-slots ((x y) ptr point)

(list x y)))

⇒ (42 42)

;; Using the :size and :offset options to define a partial structure.
;; (this is useful when you are interested in only a few slots
;; of a big foreign structure)

(defcstruct (foo :size 32)

"Some struct with 32 bytes."

; <16 bytes we don’t care about>
(x :int :offset 16) ; an int at offset 16
(y :int) ; another int at offset 16+sizeof(int)

; <a couple more bytes we don’t care about>
(z :char :offset 24)) ; a char at offset 24

; <7 more bytes ignored (since size is 32)>

CFFI> (foreign-type-size ’foo)

⇒ 32

;;; Using :count to define arrays inside of a struct.
(defcstruct video_tuner

(name :char :count 32))

See Also

[foreign-slot-pointer], page 46
[foreign-slot-value], page 47
[with-foreign-slots], page 55

Chapter 6: Foreign Types 35

defcunion

Syntax

[Macro]defcunion name &body doc-and-slots ⇒ name
doc-and-slots ::= [docstring] { (slot-name slot-type &key count) }*

Arguments and Values

name The name of new union type.

docstring A documentation string, ignored.

slot-name A symbol naming the slot.

slot-type The type specifier for the slot.

count Used to declare an array of size count inside the structure.

Description

A union is a structure in which all slots have an offset of zero. It is isomorphic to the
C union. Therefore, you should use the usual foreign structure operations for accessing a
union’s slots.

Examples

(defcunion uint32-bytes

(int-value :unsigned-int)

(bytes :unsigned-char :count 4))

See Also

[foreign-slot-pointer], page 46
[foreign-slot-value], page 47

Chapter 6: Foreign Types 36

defctype

Syntax

[Macro]defctype name base-type &optional documentation

Arguments and Values

name The name of the new foreign type.

base-type A symbol or a list defining the new type.

documentation
A documentation string, currently ignored.

Description

The defctype macro provides a mechanism similar to C’s typedef to define new types.
The new type inherits base-type’s translators, if any. There is no way to define translations
for types defined with defctype. For that, you should use [define-foreign-type], page 38.

Examples

(defctype my-string :string

"My own string type.")

(defctype long-bools (:boolean :long)

"Booleans that map to C longs.")

See Also

[define-foreign-type], page 38

Chapter 6: Foreign Types 37

defcenum

Syntax

[Macro]defcenum name-and-options &body enum-list
enum-list ::= [docstring] { keyword | (keyword value) }* name-and-options ::= name |

(name &optional (base-type :int))

Arguments and Values

name The name of the new enum type.

docstring A documentation string, ignored.

base-type A symbol denoting a foreign type.

keyword A keyword symbol.

value An index value for a keyword.

Description

The defcenum macro is used to define foreign types that map keyword symbols to integer
values, similar to the C enum type.

If value is omitted its value will either be 0, if it’s the first entry, or it it will continue
the progression from the last specified value.

Keywords will be automatically converted to values and vice-versa when being passed
as arguments to or returned from foreign functions, respectively. The same applies to any
other situations where an object of an enum type is expected.

Types defined with defcenum canonicalize to base-type which is :int by default.

Examples

(defcenum boolean

:no

:yes)

CFFI> (foreign-enum-value ’boolean :no)

⇒ 0

(defcenum numbers

(:one 1)

:two

(:four 4))

CFFI> (foreign-enum-keyword ’numbers 2)

⇒ :TWO

See Also

[foreign-enum-value], page 43
[foreign-enum-keyword], page 42

Chapter 6: Foreign Types 38

define-foreign-type

Syntax

[Macro]define-foreign-type class-name supers slots &rest options ⇒
class-name

options ::= (:actual-type type) | (:simple-parser symbol) | regular defclass option

Arguments and Values

class-name
A symbol naming the new foreign type class.

supers A list of symbols naming the super classes.

slots A list of slot definitions, passed to defclass.

Description

The macro define-foreign-type defines a new class class-name. It is a thin wrapper
around defclass. Among other things, it ensures that class-name becomes a subclass of
foreign-type, what you need to know about that is that there’s an initarg :actual-type

which serves the same purpose as defctype’s base-type argument.

Examples

Taken from CFFI’s :boolean type definition:

(define-foreign-type :boolean (&optional (base-type :int))

"Boolean type. Maps to an :int by default. Only accepts integer types."

(ecase base-type

((:char

:unsigned-char

:int

:unsigned-int

:long

:unsigned-long) base-type)))

CFFI> (canonicalize-foreign-type :boolean)

⇒ :INT

CFFI> (canonicalize-foreign-type ’(:boolean :long))

⇒ :LONG

CFFI> (canonicalize-foreign-type ’(:boolean :float))

;; error signalled by ECASE.

See Also

[defctype], page 36
[define-parse-method], page 39

Chapter 6: Foreign Types 39

define-parse-method

Syntax

[Macro]define-parse-method name lambda-list &body body ⇒ name

Arguments and Values

type-name
A symbol naming the new foreign type.

lambda-list
A lambda list which is the argument list of the new foreign type.

body One or more forms that provide a definition of the new foreign type.

Description

Examples

Taken from CFFI’s :boolean type definition:

(define-foreign-type :boolean (&optional (base-type :int))

"Boolean type. Maps to an :int by default. Only accepts integer types."

(ecase base-type

((:char

:unsigned-char

:int

:unsigned-int

:long

:unsigned-long) base-type)))

CFFI> (canonicalize-foreign-type :boolean)

⇒ :INT

CFFI> (canonicalize-foreign-type ’(:boolean :long))

⇒ :LONG

CFFI> (canonicalize-foreign-type ’(:boolean :float))

;; error signalled by ECASE.

See Also

[define-foreign-type], page 38

Chapter 6: Foreign Types 40

foreign-bitfield-symbols

Syntax

[Function]foreign-bitfield-symbols type value ⇒ symbols

Arguments and Values

type A bitfield type.

value An integer.

symbols A potentially shared list of symbols. nil.

Description

The function foreign-bitfield-symbols returns a possibly shared list of symbols that
correspond to value in type.

Examples

(defbitfield flags

(flag-a 1)

(flag-b 2)

(flag-c 4))

CFFI> (foreign-bitfield-symbols ’boolean #b101)

⇒ (FLAG-A FLAG-C)

See Also

[defbitfield], page 31
[foreign-bitfield-value], page 41

Chapter 6: Foreign Types 41

foreign-bitfield-value

Syntax

[Function]foreign-bitfield-value type symbols ⇒ value

Arguments and Values

type A bitfield type.

symbol A Lisp symbol.

value An integer.

Description

The function foreign-bitfield-value returns the value that corresponds to the symbols
in the symbols list.

Examples

(defbitfield flags

(flag-a 1)

(flag-b 2)

(flag-c 4))

CFFI> (foreign-bitfield-value ’flags ’(flag-a flag-c))

⇒ 5 ; #b101

See Also

[defbitfield], page 31
[foreign-bitfield-symbols], page 40

Chapter 6: Foreign Types 42

foreign-enum-keyword

Syntax

[Function]foreign-enum-keyword type value &key errorp ⇒ keyword

Arguments and Values

type An enum type.

value An integer.

errorp If true (the default), signal an error if value is not defined in type. If false,
foreign-enum-keyword returns nil.

keyword A keyword symbol.

Description

The function foreign-enum-keyword returns the keyword symbol that corresponds to value
in type.

An error is signaled if type doesn’t contain such value and errorp is true.

Examples

(defcenum boolean

:no

:yes)

CFFI> (foreign-enum-keyword ’boolean 1)

⇒ :YES

See Also

[defcenum], page 37
[foreign-enum-value], page 43

Chapter 6: Foreign Types 43

foreign-enum-value

Syntax

[Function]foreign-enum-value type keyword &key errorp ⇒ value

Arguments and Values

type An enum type.

keyword A keyword symbol.

errorp If true (the default), signal an error if keyword is not defined in type. If false,
foreign-enum-value returns nil.

value An integer.

Description

The function foreign-enum-value returns the value that corresponds to keyword in type.

An error is signaled if type doesn’t contain such keyword, and errorp is true.

Examples

(defcenum boolean

:no

:yes)

CFFI> (foreign-enum-value ’boolean :yes)

⇒ 1

See Also

[defcenum], page 37
[foreign-enum-keyword], page 42

Chapter 6: Foreign Types 44

foreign-slot-names

Syntax

[Function]foreign-slot-names type ⇒ names

Arguments and Values

type A foreign struct type.

names A list.

Description

The function foreign-slot-names returns a potentially shared list of slot names for the
given structure type. This list has no particular order.

Examples

(defcstruct timeval

(tv-secs :long)

(tv-usecs :long))

CFFI> (foreign-slot-names ’(:struct timeval))

⇒ (TV-SECS TV-USECS)

See Also

[defcstruct], page 33
[foreign-slot-offset], page 45
[foreign-slot-value], page 47
[foreign-slot-pointer], page 46

Chapter 6: Foreign Types 45

foreign-slot-offset

Syntax

[Function]foreign-slot-offset type slot-name ⇒ offset

Arguments and Values

type A foreign struct type.

slot-name A symbol.

offset An integer.

Description

The function foreign-slot-offset returns the offset in bytes of a slot in a foreign struct
type.

Examples

(defcstruct timeval

(tv-secs :long)

(tv-usecs :long))

CFFI> (foreign-slot-offset ’(:struct timeval) ’tv-secs)

⇒ 0

CFFI> (foreign-slot-offset ’(:struct timeval) ’tv-usecs)

⇒ 4

See Also

[defcstruct], page 33
[foreign-slot-names], page 44
[foreign-slot-pointer], page 46
[foreign-slot-value], page 47

Chapter 6: Foreign Types 46

foreign-slot-pointer

Syntax

[Function]foreign-slot-pointer ptr type slot-name ⇒ pointer

Arguments and Values

ptr A pointer to a structure.

type A foreign structure type.

slot-names
A slot name in the type.

pointer A pointer to the slot slot-name.

Description

Returns a pointer to the location of the slot slot-name in a foreign object of type type at
ptr. The returned pointer points inside the structure. Both the pointer and the memory it
points to have the same extent as ptr.

For aggregate slots, this is the same value returned by foreign-slot-value.

Examples

(defcstruct point

"Pointer structure."

(x :int)

(y :int))

CFFI> (with-foreign-object (ptr ’(:struct point))

(foreign-slot-pointer ptr ’(:struct point) ’x))

⇒ #<FOREIGN-ADDRESS #xBFFF6E60>

;; Note: the exact pointer representation varies from lisp to lisp.

See Also

[defcstruct], page 33
[foreign-slot-value], page 47
[foreign-slot-names], page 44
[foreign-slot-offset], page 45

Chapter 6: Foreign Types 47

foreign-slot-value

Syntax

[Accessor]foreign-slot-value ptr type slot-name ⇒ object

Arguments and Values

ptr A pointer to a structure.

type A foreign structure type.

slot-name A symbol naming a slot in the structure type.

object The object contained in the slot specified by slot-name.

Description

For simple slots, foreign-slot-value returns the value of the object, such as a Lisp integer
or pointer. In C, this would be expressed as ptr->slot.

For aggregate slots, a pointer inside the structure to the beginning of the slot’s data is
returned. In C, this would be expressed as &ptr->slot. This pointer and the memory it
points to have the same extent as ptr.

There are compiler macros for foreign-slot-value and its setf expansion that open
code the memory access when type and slot-names are constant at compile-time.

Examples

(defcstruct point

"Pointer structure."

(x :int)

(y :int))

CFFI> (with-foreign-object (ptr ’(:struct point))

;; Initialize the slots
(setf (foreign-slot-value ptr ’(:struct point) ’x) 42

(foreign-slot-value ptr ’(:struct point) ’y) 42)

;; Return a list with the coordinates
(with-foreign-slots ((x y) ptr (:struct point))

(list x y)))

⇒ (42 42)

See Also

[defcstruct], page 33
[foreign-slot-names], page 44
[foreign-slot-offset], page 45
[foreign-slot-pointer], page 46
[with-foreign-slots], page 55

Chapter 6: Foreign Types 48

foreign-type-alignment

Syntax

[Function]foreign-type-alignment type ⇒ alignment

Arguments and Values

type A foreign type.

alignment An integer.

Description

The function foreign-type-alignment returns the alignment of type in bytes.

Examples

CFFI> (foreign-type-alignment :char)

⇒ 1

CFFI> (foreign-type-alignment :short)

⇒ 2

CFFI> (foreign-type-alignment :int)

⇒ 4

(defcstruct foo

(a :char))

CFFI> (foreign-type-alignment ’(:struct foo))

⇒ 1

See Also

[foreign-type-size], page 49

Chapter 6: Foreign Types 49

foreign-type-size

Syntax

[Function]foreign-type-size type ⇒ size

Arguments and Values

type A foreign type.

size An integer.

Description

The function foreign-type-size return the size of type in bytes. This includes any
padding within and following the in-memory representation as needed to create an array of
type objects.

Examples

(defcstruct foo

(a :double)

(c :char))

CFFI> (foreign-type-size :double)

⇒ 8

CFFI> (foreign-type-size :char)

⇒ 1

CFFI> (foreign-type-size ’(:struct foo))

⇒ 16

See Also

[foreign-type-alignment], page 48

Chapter 6: Foreign Types 50

free-converted-object

Syntax

[Function]free-converted-object foreign-value type params

Arguments and Values

foreign-value
The C object to be freed.

type A CFFI type specifier.

params The state returned as the second value from convert-to-foreign; used to
implement the third argument to free-translated-object.

Description

The return value is unspecified.

This is an external interface to the type translation facility. In the implementation,
all foreign functions are ultimately defined as type translation wrappers around primitive
foreign function invocations.

This function is available mostly for inspection of the type translation process, and
possibly optimization of special cases of your foreign function calls.

Its behavior is better described under free-translated-object’s documentation.

Examples

CFFI-USER> (convert-to-foreign "a boat" :string)

⇒ #<FOREIGN-ADDRESS #x097ACDC0>

⇒ T

CFFI-USER> (free-converted-object * :string t)

⇒ NIL

See Also

[convert-from-foreign], page 29
[convert-to-foreign], page 30
[free-translated-object], page 51

Chapter 6: Foreign Types 51

free-translated-object

Syntax

[Generic Function]free-translated-object value type-name param

Arguments and Values

pointer The foreign value returned by translate-to-foreign.

type-name
A symbol naming a foreign type defined by defctype.

param The second value, if any, returned by translate-to-foreign.

Description

This generic function may be specialized by user code to perform automatic deallocation of
foreign objects as they are passed to C functions.

Any methods defined on this generic function must EQL-specialize the type-name pa-
rameter on a symbol defined as a foreign type by the defctype macro.

See Also

Section 6.4 [Foreign Type Translators], page 25
[translate-to-foreign], page 53

Chapter 6: Foreign Types 52

translate-from-foreign

Syntax

[Generic Function]translate-from-foreign foreign-value type-name ⇒
lisp-value

Arguments and Values

foreign-value
The foreign value to convert to a Lisp object.

type-name
A symbol naming a foreign type defined by defctype.

lisp-value The lisp value to pass in place of foreign-value to Lisp code.

Description

This generic function is invoked by CFFI to convert a foreign value to a Lisp value, such
as when returning from a foreign function, passing arguments to a callback function, or
accessing a foreign variable.

To extend the CFFI type system by performing custom translations, this method may
be specialized by eql-specializing type-name on a symbol naming a foreign type defined
with defctype. This method should return the appropriate Lisp value to use in place of
the foreign value.

The results are undefined if the type-name parameter is specialized in any way except
an eql specializer on a foreign type defined with defctype. Specifically, translations may
not be defined for built-in types.

See Also

Section 6.4 [Foreign Type Translators], page 25
[translate-to-foreign], page 53
[free-translated-object], page 51

Chapter 6: Foreign Types 53

translate-to-foreign

Syntax

[Generic Function]translate-to-foreign lisp-value type-name ⇒
foreign-value, alloc-param

Arguments and Values

lisp-value The Lisp value to convert to foreign representation.

type-name
A symbol naming a foreign type defined by defctype.

foreign-value
The foreign value to pass in place of lisp-value to foreign code.

alloc-param
If present, this value will be passed to free-translated-object.

Description

This generic function is invoked by CFFI to convert a Lisp value to a foreign value, such
as when passing arguments to a foreign function, returning a value from a callback, or
setting a foreign variable. A “foreign value” is one appropriate for passing to the next-
lowest translator, including the low-level translators that are ultimately invoked invisibly
with CFFI.

To extend the CFFI type system by performing custom translations, this method may
be specialized by eql-specializing type-name on a symbol naming a foreign type defined
with defctype. This method should return the appropriate foreign value to use in place of
the Lisp value.

In cases where CFFI can determine the lifetime of the foreign object returned by this
method, it will invoke free-translated-object on the foreign object at the appropriate
time. If translate-to-foreign returns a second value, it will be passed as the param argu-
ment to free-translated-object. This can be used to establish communication between
the allocation and deallocation methods.

The results are undefined if the type-name parameter is specialized in any way except
an eql specializer on a foreign type defined with defctype. Specifically, translations may
not be defined for built-in types.

See Also

Section 6.4 [Foreign Type Translators], page 25
[translate-from-foreign], page 52
[free-translated-object], page 51

Chapter 6: Foreign Types 54

translate-into-foreign-memory

Syntax

[Generic Function]translate-into-foreign-memory lisp-value type-name
pointer

Arguments and Values

lisp-value The Lisp value to convert to foreign representation.

type-name
A symbol or list (:struct structure-name) naming a foreign type defined by
defctype.

pointer The foreign pointer where the translated object should be stored.

Description

Translate the Lisp value into the foreign memory location given by pointer. The return
value is not used.

Chapter 6: Foreign Types 55

with-foreign-slots

Syntax

[Macro]with-foreign-slots (vars ptr type) &body body

Arguments and Values

vars A list with each element a symbol, or list of length two with the first element
:pointer and the second a symbol.

ptr A foreign pointer to a structure.

type A structure type.

body A list of forms to be executed.

Description

The with-foreign-slots macro creates local symbol macros for each var in vars to ref-
erence foreign slots in ptr of type. If the var is a list starting with :pointer, it will bind
the pointer to the slot (rather than the value). It is similar to Common Lisp’s with-slots
macro.

Examples

(defcstruct tm

(sec :int)

(min :int)

(hour :int)

(mday :int)

(mon :int)

(year :int)

(wday :int)

(yday :int)

(isdst :boolean)

(zone :string)

(gmtoff :long))

CFFI> (with-foreign-object (time :int)

(setf (mem-ref time :int)

(foreign-funcall "time" :pointer (null-pointer) :int))

(foreign-funcall "gmtime" :pointer time (:pointer (:struct tm))))

⇒ #<A Mac Pointer #x102A30>

CFFI> (with-foreign-slots ((sec min hour mday mon year) * (:struct tm))

(format nil "~A:~A:~A, ~A/~A/~A"

hour min sec (+ 1900 year) mon mday))

⇒ "7:22:47, 2005/8/2"

Chapter 6: Foreign Types 56

See Also

[defcstruct], page 33
[defcunion], page 35
[foreign-slot-value], page 47

Chapter 7: Pointers 57

7 Pointers

All C data in CFFI is referenced through pointers. This includes defined C variables that
hold immediate values, and integers.

To see why this is, consider the case of the C integer. It is not only an arbitrary
representation for an integer, congruent to Lisp’s fixnums; the C integer has a specific bit
pattern in memory defined by the C ABI. Lisp has no such constraint on its fixnums;
therefore, it only makes sense to think of fixnums as C integers if you assume that CFFI

converts them when necessary, such as when storing one for use in a C function call, or as
the value of a C variable. This requires defining an area of memory1, represented through
an effective address, and storing it there.

Due to this compartmentalization, it only makes sense to manipulate raw C data in
Lisp through pointers to it. For example, while there may be a Lisp representation of a
struct that is converted to C at store time, you may only manipulate its raw data through
a pointer. The C compiler does this also, albeit informally.

7.1 Basic Pointer Operations

Manipulating pointers proper can be accomplished through most of the other operations
defined in the Pointers dictionary, such as make-pointer, pointer-address, and pointer-

eq. When using them, keep in mind that they merely manipulate the Lisp representation
of pointers, not the values they point to.

[Lisp Type]foreign-pointer
The pointers’ representations differ from implementation to implementation and have
different types. foreign-pointer provides a portable type alias to each of these
types.

7.2 Allocating Foreign Memory

CFFI provides support for stack and heap C memory allocation. Stack allocation, done with
with-foreign-object, is sometimes called “dynamic” allocation in Lisp, because memory
allocated as such has dynamic extent, much as with let bindings of special variables.

This should not be confused with what C calls “dynamic” allocation, or that done with
malloc and friends. This sort of heap allocation is done with foreign-alloc, creating
objects that exist until freed with foreign-free.

7.3 Accessing Foreign Memory

When manipulating raw C data, consider that all pointers are pointing to an array. When
you only want one C value, such as a single struct, this array only has one such value.
It is worthwhile to remember that everything is an array, though, because this is also the
semantic that C imposes natively.

C values are accessed as the setf-able places defined by mem-aref and mem-ref. Given
a pointer and a CFFI type (see Chapter 6 [Foreign Types], page 22), either of these will
dereference the pointer, translate the C data there back to Lisp, and return the result of

1 The definition of memory includes the CPU registers.

Chapter 7: Pointers 58

said translation, performing the reverse operation when setf-ing. To decide which one to
use, consider whether you would use the array index operator [n] or the pointer dereference
* in C; use mem-aref for array indexing and mem-ref for pointer dereferencing.

Chapter 7: Pointers 59

foreign-free

Syntax

[Function]foreign-free ptr ⇒ undefined

Arguments and Values

ptr A foreign pointer.

Description

The foreign-free function frees a ptr previously allocated by foreign-alloc. The con-
sequences of freeing a given pointer twice are undefined.

Examples

CFFI> (foreign-alloc :int)

⇒ #<A Mac Pointer #x1022E0>

CFFI> (foreign-free *)

⇒ NIL

See Also

[foreign-alloc], page 60
[with-foreign-pointer], page 75

Chapter 7: Pointers 60

foreign-alloc

Syntax

[Function]foreign-alloc type &key initial-element initial-contents
(count 1) null-terminated-p ⇒ pointer

Arguments and Values

type A foreign type.

initial-element
A Lisp object.

initial-contents
A sequence.

count An integer. Defaults to 1 or the length of initial-contents if supplied.

null-terminated-p
A boolean, false by default.

pointer A foreign pointer to the newly allocated memory.

Description

The foreign-alloc function allocates enough memory to hold count objects of type type
and returns a pointer. This memory must be explicitly freed using foreign-free once it
is no longer needed.

If initial-element is supplied, it is used to initialize the count objects the newly allocated
memory holds.

If an initial-contents sequence is supplied, it must have a length less than or equal to
count and each of its elements will be used to initialize the contents of the newly allocated
memory.

If count is omitted and initial-contents is specified, it will default to (length initial-

contents).

initial-element and initial-contents are mutually exclusive.

When null-terminated-p is true, (1+ (max count (length initial-contents))) ele-
ments are allocated and the last one is set to NULL. Note that in this case type must be a
pointer type (ie. a type that canonicalizes to :pointer), otherwise an error is signaled.

Examples

CFFI> (foreign-alloc :char)

⇒ #<A Mac Pointer #x102D80> ; A pointer to 1 byte of memory.

CFFI> (foreign-alloc :char :count 20)

⇒ #<A Mac Pointer #x1024A0> ; A pointer to 20 bytes of memory.

CFFI> (foreign-alloc :int :initial-element 12)

⇒ #<A Mac Pointer #x1028B0>

Chapter 7: Pointers 61

CFFI> (mem-ref * :int)

⇒ 12

CFFI> (foreign-alloc :int :initial-contents ’(1 2 3))

⇒ #<A Mac Pointer #x102950>

CFFI> (loop for i from 0 below 3

collect (mem-aref * :int i))

⇒ (1 2 3)

CFFI> (foreign-alloc :int :initial-contents #(1 2 3))

⇒ #<A Mac Pointer #x102960>

CFFI> (loop for i from 0 below 3

collect (mem-aref * :int i))

⇒ (1 2 3)

;;; Allocate a char** pointer that points to newly allocated memory
;;; by the :string type translator for the string "foo".
CFFI> (foreign-alloc :string :initial-element "foo")

⇒ #<A Mac Pointer #x102C40>

;;; Allocate a null-terminated array of strings.
;;; (Note: FOREIGN-STRING-TO-LISP returns NIL when passed a null pointer)
CFFI> (foreign-alloc :string

:initial-contents ’("foo" "bar" "baz")

:null-terminated-p t)

⇒ #<A Mac Pointer #x102D20>

CFFI> (loop for i from 0 below 4

collect (mem-aref * :string i))

⇒ ("foo" "bar" "baz" NIL)

CFFI> (progn

(dotimes (i 3)

(foreign-free (mem-aref ** :pointer i)))

(foreign-free **))

⇒ nil

See Also

[foreign-free], page 59
[with-foreign-object], page 74
[with-foreign-pointer], page 75

Chapter 7: Pointers 62

foreign-symbol-pointer

Syntax

[Function]foreign-symbol-pointer foreign-name &key library ⇒
pointer

Arguments and Values

foreign-name
A string.

pointer A foreign pointer, or nil.

library A Lisp symbol or an instance of foreign-library.

Description

The function foreign-symbol-pointer will return a foreign pointer corresponding to the
foreign symbol denoted by the string foreign-name. If a foreign symbol named foreign-name
doesn’t exist, nil is returned.

ABI name manglings will be performed on foreign-name by foreign-symbol-pointer

if necessary. (eg: adding a leading underscore on darwin/ppc)

library should name a foreign library as defined by define-foreign-library, :default
(which is the default) or an instance of foreign-library as returned by load-foreign-

library.

Important note: do not keep these pointers across saved Lisp cores as the foreign-library
may move across sessions.

Examples

CFFI> (foreign-symbol-pointer "errno")

⇒ #<A Mac Pointer #xA0008130>

CFFI> (foreign-symbol-pointer "strerror")

⇒ #<A Mac Pointer #x9002D0F8>

CFFI> (foreign-funcall-pointer * () :int (mem-ref ** :int) :string)

⇒ "No such file or directory"

CFFI> (foreign-symbol-pointer "inexistent symbol")

⇒ NIL

See Also

[defcvar], page 85

Chapter 7: Pointers 63

inc-pointer

Syntax

[Function]inc-pointer pointer offset ⇒ new-pointer

Arguments and Values

pointer
new-pointer

A foreign pointer.

offset An integer.

Description

The function inc-pointer will return a new-pointer pointing offset bytes past pointer.

Examples

CFFI> (foreign-string-alloc "Common Lisp")

⇒ #<A Mac Pointer #x102EA0>

CFFI> (inc-pointer * 7)

⇒ #<A Mac Pointer #x102EA7>

CFFI> (foreign-string-to-lisp *)

⇒ "Lisp"

See Also

[incf-pointer], page 64
[make-pointer], page 65
[pointerp], page 71
[null-pointer], page 69
[null-pointer-p], page 70

Chapter 7: Pointers 64

incf-pointer

Syntax

[Macro]incf-pointer place &optional (offset 1) ⇒ new-pointer

Arguments and Values

place A setf place.

new-pointer
A foreign pointer.

offset An integer.

Description

The incf-pointer macro takes the foreign pointer from place and creates a new-pointer
incremented by offset bytes and which is stored in place.

Examples

CFFI> (defparameter *two-words* (foreign-string-alloc "Common Lisp"))

⇒ *TWO-WORDS*

CFFI> (defparameter *one-word* *two-words*)

⇒ *ONE-WORD*

CFFI> (incf-pointer *one-word* 7)

⇒ #.(SB-SYS:INT-SAP #X00600457)

CFFI> (foreign-string-to-lisp *one-word*)

⇒ "Lisp"

CFFI> (foreign-string-to-lisp *two-words*)

⇒ "Common Lisp"

See Also

[inc-pointer], page 63
[make-pointer], page 65
[pointerp], page 71
[null-pointer], page 69
[null-pointer-p], page 70

Chapter 7: Pointers 65

make-pointer

Syntax

[Function]make-pointer address ⇒ ptr

Arguments and Values

address An integer.

ptr A foreign pointer.

Description

The function make-pointer will return a foreign pointer pointing to address.

Examples

CFFI> (make-pointer 42)

⇒ #<FOREIGN-ADDRESS #x0000002A>

CFFI> (pointerp *)

⇒ T

CFFI> (pointer-address **)

⇒ 42

CFFI> (inc-pointer *** -42)

⇒ #<FOREIGN-ADDRESS #x00000000>

CFFI> (null-pointer-p *)

⇒ T

CFFI> (typep ** ’foreign-pointer)

⇒ T

See Also

[inc-pointer], page 63
[null-pointer], page 69
[null-pointer-p], page 70
[pointerp], page 71
[pointer-address], page 72
[pointer-eq], page 73
[mem-ref], page 68

Chapter 7: Pointers 66

mem-aptr

Syntax

[Accessor]mem-aptr ptr type &optional (index 0)

Arguments and Values

ptr A foreign pointer.

type A foreign type.

index An integer.

new-value A Lisp value compatible with type.

Description

The mem-aptr function finds the pointer to an element of the array.

(mem-aptr ptr type n)

;; is identical to:

(inc-pointer ptr (* n (foreign-type-size type)))

Examples

CFFI> (with-foreign-string (str "Hello, foreign world!")

(mem-aptr str :char 6))

⇒ #.(SB-SYS:INT-SAP #X0063D4B6)

Chapter 7: Pointers 67

mem-aref

Syntax

[Accessor]mem-aref ptr type &optional (index 0)
(setf (mem-aref ptr type &optional (index 0)) new-value)

Arguments and Values

ptr A foreign pointer.

type A foreign type.

index An integer.

new-value A Lisp value compatible with type.

Description

The mem-aref function is similar to mem-ref but will automatically calculate the offset
from an index.

(mem-aref ptr type n)

;; is identical to:

(mem-ref ptr type (* n (foreign-type-size type)))

Examples

CFFI> (with-foreign-string (str "Hello, foreign world!")

(mem-aref str :char 6))

⇒ 32

CFFI> (code-char *)

⇒ #\Space

CFFI> (with-foreign-object (array :int 10)

(loop for i below 10

do (setf (mem-aref array :int i) (random 100)))

(loop for i below 10 collect (mem-aref array :int i)))

⇒ (22 7 22 52 69 1 46 93 90 65)

Compatibility Note

For compatibility with older versions of CFFI, [mem-aref], page 67 will produce a pointer
for the deprecated bare structure specification, but it is consistent with other types for the
current specification form (:struct structure-name) and provides a Lisp object trans-
lated from the structure (by default a plist). In order to obtain the pointer, you should use
the new function [mem-aptr], page 66.

See Also

[mem-ref], page 68
[mem-aptr], page 66

Chapter 7: Pointers 68

mem-ref

Syntax

[Accessor]mem-ref ptr type &optional offset ⇒ object

Arguments and Values

ptr A pointer.

type A foreign type.

offset An integer (in byte units).

object The value ptr points to.

Description

Examples

CFFI> (with-foreign-string (ptr "Saluton")

(setf (mem-ref ptr :char 3) (char-code #\a))

(loop for i from 0 below 8

collect (code-char (mem-ref ptr :char i))))

⇒ (#\S #\a #\l #\a #\t #\o #\n #\Null)

CFFI> (setq ptr-to-int (foreign-alloc :int))

⇒ #<A Mac Pointer #x1047D0>

CFFI> (mem-ref ptr-to-int :int)

⇒ 1054619

CFFI> (setf (mem-ref ptr-to-int :int) 1984)

⇒ 1984

CFFI> (mem-ref ptr-to-int :int)

⇒ 1984

See Also

[mem-aref], page 67

Chapter 7: Pointers 69

null-pointer

Syntax

[Function]null-pointer ⇒ pointer

Arguments and Values

pointer A NULL pointer.

Description

The function null-pointer returns a null pointer.

Examples

CFFI> (null-pointer)

⇒ #<A Null Mac Pointer>

CFFI> (pointerp *)

⇒ T

See Also

[null-pointer-p], page 70
[make-pointer], page 65

Chapter 7: Pointers 70

null-pointer-p

Syntax

[Function]null-pointer-p ptr ⇒ boolean

Arguments and Values

ptr A foreign pointer that may be a null pointer.

boolean T or NIL.

Description

The function null-pointer-p returns true if ptr is a null pointer and false otherwise.

Examples

CFFI> (null-pointer-p (null-pointer))

⇒ T

(defun contains-str-p (big little)

(not (null-pointer-p

(foreign-funcall "strstr" :string big :string little :pointer))))

CFFI> (contains-str-p "Popcorns" "corn")

⇒ T

CFFI> (contains-str-p "Popcorns" "salt")

⇒ NIL

See Also

[null-pointer], page 69
[pointerp], page 71

Chapter 7: Pointers 71

pointerp

Syntax

[Function]pointerp ptr ⇒ boolean

Arguments and Values

ptr An object that may be a foreign pointer.

boolean T or NIL.

Description

The function pointerp returns true if ptr is a foreign pointer and false otherwise.

Implementation-specific Notes

In Allegro CL, foreign pointers are integers thus in this implementation pointerp will return
true for any ordinary integer.

Examples

CFFI> (foreign-alloc 32)

⇒ #<A Mac Pointer #x102D20>

CFFI> (pointerp *)

⇒ T

CFFI> (pointerp "this is not a pointer")

⇒ NIL

See Also

[make-pointer], page 65 [null-pointer-p], page 70

Chapter 7: Pointers 72

pointer-address

Syntax

[Function]pointer-address ptr ⇒ address

Arguments and Values

ptr A foreign pointer.

address An integer.

Description

The function pointer-address will return the address of a foreign pointer ptr.

Examples

CFFI> (pointer-address (null-pointer))

⇒ 0

CFFI> (pointer-address (make-pointer 123))

⇒ 123

See Also

[make-pointer], page 65
[inc-pointer], page 63
[null-pointer], page 69
[null-pointer-p], page 70
[pointerp], page 71
[pointer-eq], page 73
[mem-ref], page 68

Chapter 7: Pointers 73

pointer-eq

Syntax

[Function]pointer-eq ptr1 ptr2 ⇒ boolean

Arguments and Values

ptr1
ptr2 A foreign pointer.

boolean T or NIL.

Description

The function pointer-eq returns true if ptr1 and ptr2 point to the same memory address
and false otherwise.

Implementation-specific Notes

The representation of foreign pointers varies across the various Lisp implementations as does
the behaviour of the built-in Common Lisp equality predicates. Comparing two pointers
that point to the same address with EQ Lisps will return true on some Lisps, others require
more general predicates like EQL or EQUALP and finally some will return false using any of
these predicates. Therefore, for portability, you should use POINTER-EQ.

Examples

This is an example using SBCL, see the implementation-specific notes above.

CFFI> (eql (null-pointer) (null-pointer))

⇒ NIL

CFFI> (pointer-eq (null-pointer) (null-pointer))

⇒ T

See Also

[inc-pointer], page 63

Chapter 7: Pointers 74

with-foreign-object, with-foreign-objects

Syntax

[Macro]with-foreign-object (var type &optional count) &body body

[Macro]with-foreign-objects (bindings) &body body

bindings ::= {(var type &optional count)}*

Arguments and Values

var A symbol.

type A foreign type, evaluated.

count An integer.

Description

The macros with-foreign-object and with-foreign-objects bind var to a pointer to
count newly allocated objects of type type during body. The buffer has dynamic extent
and may be stack allocated if supported by the host Lisp.

Examples

CFFI> (with-foreign-object (array :int 10)

(dotimes (i 10)

(setf (mem-aref array :int i) (random 100)))

(loop for i below 10

collect (mem-aref array :int i)))

⇒ (22 7 22 52 69 1 46 93 90 65)

See Also

[foreign-alloc], page 60

Chapter 7: Pointers 75

with-foreign-pointer

Syntax

[Macro]with-foreign-pointer (var size &optional size-var) &body
body

Arguments and Values

var
size-var A symbol.

size An integer.

body A list of forms to be executed.

Description

The with-foreign-pointer macro, binds var to size bytes of foreign memory during body.
The pointer in var is invalid beyond the dynamic extend of body and may be stack-allocated
if supported by the implementation.

If size-var is supplied, it will be bound to size during body.

Examples

CFFI> (with-foreign-pointer (string 4 size)

(setf (mem-ref string :char (1- size)) 0)

(lisp-string-to-foreign "Popcorns" string size)

(loop for i from 0 below size

collect (code-char (mem-ref string :char i))))

⇒ (#\P #\o #\p #\Null)

See Also

[foreign-alloc], page 60
[foreign-free], page 59

Chapter 8: Strings 76

8 Strings

As with many languages, Lisp and C have special support for logical arrays of characters,
going so far as to give them a special name, “strings”. In that spirit, CFFI provides special
support for translating between Lisp and C strings.

The :string type and the symbols related below also serve as an example of what you
can do portably with CFFI; were it not included, you could write an equally functional
‘strings.lisp’ without referring to any implementation-specific symbols.

Chapter 8: Strings 77

default-foreign-encoding

Syntax

[Special Variable]*default-foreign-encoding*

Value type

A keyword.

Initial value

:utf-8

Description

This special variable holds the default foreign encoding.

Examples

CFFI> *default-foreign-encoding*

:utf-8

CFFI> (foreign-funcall "strdup" (:string :encoding :utf-16) "foo" :string)

"f"

CFFI> (let ((*default-foreign-encoding* :utf-16))

(foreign-funcall "strdup" (:string :encoding :utf-16) "foo" :string))

"foo"

See also

Section 6.2 [Other Types], page 23 (:string type)
[foreign-string-alloc], page 78
[foreign-string-to-lisp], page 80
[lisp-string-to-foreign], page 81
[with-foreign-string], page 82
[with-foreign-pointer-as-string], page 83

Chapter 8: Strings 78

foreign-string-alloc

Syntax

[Function]foreign-string-alloc string &key encoding
null-terminated-p start end ⇒ pointer

Arguments and Values

string A Lisp string.

encoding Foreign encoding. Defaults to *default-foreign-encoding*.

null-terminated-p
Boolean, defaults to true.

start, end Bounding index designators of string. 0 and nil, by default.

pointer A pointer to the newly allocated foreign string.

Description

The foreign-string-alloc function allocates foreign memory holding a copy of string
converted using the specified encoding. Start specifies an offset into string and end marks
the position following the last element of the foreign string.

This string must be freed with foreign-string-free.

If null-terminated-p is false, the string will not be null-terminated.

Examples

CFFI> (defparameter *str* (foreign-string-alloc "Hello, foreign world!"))

⇒ #<FOREIGN-ADDRESS #x00400560>

CFFI> (foreign-funcall "strlen" :pointer *str* :int)

⇒ 21

See Also

[foreign-string-free], page 79
[with-foreign-string], page 82

Chapter 8: Strings 79

foreign-string-free

Syntax

[Function]foreign-string-free pointer

Arguments and Values

pointer A pointer to a string allocated by foreign-string-alloc.

Description

The foreign-string-free function frees a foreign string allocated by foreign-string-

alloc.

Examples

See Also

[foreign-string-alloc], page 78

Chapter 8: Strings 80

foreign-string-to-lisp

Syntax

[Function]foreign-string-to-lisp ptr &key offset count max-chars
encoding ⇒ string

Arguments and Values

ptr A pointer.

offset An integer greater than or equal to 0. Defauls to 0.

count Either nil (the default), or an integer greater than or equal to 0.

max-chars An integer greater than or equal to 0. (1- array-total-size-limit), by
default.

encoding Foreign encoding. Defaults to *default-foreign-encoding*.

string A Lisp string.

Description

The foreign-string-to-lisp function converts at most count octets from ptr into a Lisp
string, using the defined encoding.

If count is nil (the default), characters are copied until max-chars is reached or a NULL

character is found.

If ptr is a null pointer, returns nil.

Note that the :string type will automatically convert between Lisp strings and foreign
strings.

Examples

CFFI> (foreign-funcall "getenv" :string "HOME" :pointer)

⇒ #<FOREIGN-ADDRESS #xBFFFFFD5>

CFFI> (foreign-string-to-lisp *)

⇒ "/Users/luis"

See Also

[lisp-string-to-foreign], page 81
[foreign-string-alloc], page 78

Chapter 8: Strings 81

lisp-string-to-foreign

Syntax

[Function]lisp-string-to-foreign string buffer bufsize &key start
end offset encoding ⇒ buffer

Arguments and Values

string A Lisp string.

buffer A foreign pointer.

bufsize An integer.

start, end Bounding index designators of string. 0 and nil, by default.

offset An integer greater than or equal to 0. Defauls to 0.

encoding Foreign encoding. Defaults to *default-foreign-encoding*.

Description

The lisp-string-to-foreign function copies at most bufsize-1 octets from a Lisp string
using the specified encoding into buffer+offset. The foreign string will be null-terminated.

Start specifies an offset into string and end marks the position following the last element
of the foreign string.

Examples

CFFI> (with-foreign-pointer-as-string (str 255)

(lisp-string-to-foreign "Hello, foreign world!" str 6))

⇒ "Hello"

See Also

[foreign-string-alloc], page 78
[foreign-string-to-lisp], page 80
[with-foreign-pointer-as-string], page 83

Chapter 8: Strings 82

with-foreign-string, with-foreign-strings

Syntax

[Macro]with-foreign-string (var-or-vars string &rest args) &body
body

[Macro]with-foreign-strings (bindings) &body body

var-or-vars ::= var | (var &optional octet-size-var) bindings ::= {(var-or-vars string &rest
args)}*

Arguments and Values

var, byte-size-var
A symbol.

string A Lisp string.

body A list of forms to be executed.

Description

The with-foreign-string macro will bind var to a newly allocated foreign string contain-
ing string. Args is passed to the underlying foreign-string-alloc call.

If octet-size-var is provided, it will be bound the length of foreign string in octets in-
cluding the null terminator.

Examples

CFFI> (with-foreign-string (foo "12345")

(foreign-funcall "strlen" :pointer foo :int))

⇒ 5

CFFI> (let ((array (coerce #(84 117 114 97 110 103 97)

’(array (unsigned-byte 8)))))

(with-foreign-string (foreign-string array)

(foreign-string-to-lisp foreign-string)))

⇒ "Turanga"

See Also

[foreign-string-alloc], page 78
[with-foreign-pointer-as-string], page 83

Chapter 8: Strings 83

with-foreign-pointer-as-string

Syntax

[Macro]with-foreign-pointer-as-string (var size &optional size-var
&rest args) &body body ⇒ string

Arguments and Values

var A symbol.

string A Lisp string.

body List of forms to be executed.

Description

The with-foreign-pointer-as-string macro is similar to with-foreign-pointer ex-
cept that var is used as the returned value of an implicit progn around body, after being
converted to a Lisp string using the provided args.

Examples

CFFI> (with-foreign-pointer-as-string (str 6 str-size :encoding :ascii)

(lisp-string-to-foreign "Hello, foreign world!" str str-size))

⇒ "Hello"

See Also

[foreign-string-alloc], page 78
[with-foreign-string], page 82

Chapter 9: Variables 84

9 Variables

Chapter 9: Variables 85

defcvar

Syntax

[Macro]defcvar name-and-options type &optional documentation ⇒
lisp-name

name-and-options ::= name | (name &key read-only (library :default))
name ::= lisp-name [foreign-name] | foreign-name [lisp-name]

Arguments and Values

foreign-name
A string denoting a foreign function.

lisp-name A symbol naming the Lisp function to be created.

type A foreign type.

read-only A boolean.

documentation
A Lisp string; not evaluated.

Description

The defcvar macro defines a symbol macro lisp-name that looks up foreign-name and
dereferences it acording to type. It can also be setfed, unless read-only is true, in which
case an error will be signaled.

When one of lisp-name or foreign-name is omitted, the other is automatically derived
using the following rules:

• Foreign names are converted to Lisp names by uppercasing, replacing underscores with
hyphens, and wrapping around asterisks.

• Lisp names are converted to foreign names by lowercasing, replacing hyphens with
underscores, and removing asterisks, if any.

Examples

CFFI> (defcvar "errno" :int)

⇒ *ERRNO*

CFFI> (foreign-funcall "strerror" :int *errno* :string)

⇒ "Inappropriate ioctl for device"

CFFI> (setf *errno* 1)

⇒ 1

CFFI> (foreign-funcall "strerror" :int *errno* :string)

⇒ "Operation not permitted"

Trying to modify a read-only foreign variable:

CFFI> (defcvar ("errno" +error-number+ :read-only t) :int)

⇒ +ERROR-NUMBER+

CFFI> (setf +error-number+ 12)

;; error Trying to modify read-only foreign var: +ERROR-NUMBER+.

Note that accessing errno this way won’t work with every implementation of the C stan-
dard library.

Chapter 9: Variables 86

See Also

[get-var-pointer], page 87

Chapter 9: Variables 87

get-var-pointer

Syntax

[Function]get-var-pointer symbol ⇒ pointer

Arguments and Values

symbol A symbol denoting a foreign variable defined with defcvar.

pointer A foreign pointer.

Description

The function get-var-pointer will return a pointer to the foreign global variable symbol
previously defined with defcvar.

Examples

CFFI> (defcvar "errno" :int :read-only t)

⇒ *ERRNO*

CFFI> *errno*

⇒ 25

CFFI> (get-var-pointer ’*errno*)

⇒ #<A Mac Pointer #xA0008130>

CFFI> (mem-ref * :int)

⇒ 25

See Also

[defcvar], page 85

Chapter 10: Functions 88

10 Functions

Chapter 10: Functions 89

defcfun

Syntax

[Macro]defcfun name-and-options return-type &body [docstring]
arguments [&rest] ⇒ lisp-name

name-and-options ::= name | (name &key library convention)
name ::= lisp-name [foreign-name] | foreign-name [lisp-name]
arguments ::= { (arg-name arg-type) }*

Arguments and Values

foreign-name
A string denoting a foreign function.

lisp-name A symbol naming the Lisp function to be created.

arg-name A symbol.

return-type
arg-type A foreign type.

convention
One of :cdecl (default) or :stdcall.

library A symbol designating a foreign library.

docstring A documentation string.

Description

The defcfun macro provides a declarative interface for defining Lisp functions that call
foreign functions.

When one of lisp-name or foreign-name is omitted, the other is automatically derived
using the following rules:

• Foreign names are converted to Lisp names by uppercasing and replacing underscores
with hyphens.

• Lisp names are converted to foreign names by lowercasing and replacing hyphens with
underscores.

If you place the symbol &rest in the end of the argument list after the fixed arguments,
defcfun will treat the foreign function as a variadic function. The variadic arguments
should be passed in a way similar to what foreign-funcall would expect. Unlike foreign-
funcall though, defcfun will take care of doing argument promotion. Note that in this
case defcfun will generate a Lisp macro instead of a function and will only work for Lisps
that support foreign-funcall.

If a foreign structure is to be passed or returned by value (that is, the type is of the
form (:struct ...)), then the cffi-libffi system must be loaded, which in turn depends on
libffi, including the header files. Failure to load that system will result in an error. Variadic
functions cannot at present accept or return structures by value.

http://sourceware.org/libffi/

Chapter 10: Functions 90

Examples

(defcfun "strlen" :int

"Calculate the length of a string."

(n :string))

CFFI> (strlen "123")

⇒ 3

(defcfun ("abs" c-abs) :int (n :int))

CFFI> (c-abs -42)

⇒ 42

Function without arguments:

(defcfun "rand" :int)

CFFI> (rand)

⇒ 1804289383

Variadic function example:

(defcfun "sprintf" :int

(str :pointer)

(control :string)

&rest)

CFFI> (with-foreign-pointer-as-string (s 100)

(sprintf s "%c %d %.2f %s" :char 90 :short 42 :float pi

:string "super-locrian"))

⇒ "A 42 3.14 super-locrian"

See Also

[foreign-funcall], page 91
[foreign-funcall-pointer], page 93

Chapter 10: Functions 91

foreign-funcall

Syntax

[Macro]foreign-funcall name-and-options &rest arguments ⇒
return-value

arguments ::= { arg-type arg }* [return-type] name-and-options ::= name | (name &key
library convention)

Arguments and Values

name A Lisp string.

arg-type A foreign type.

arg An argument of type arg-type.

return-type
A foreign type, :void by default.

return-value
A lisp object.

library A lisp symbol; not evaluated.

convention
One of :cdecl (default) or :stdcall.

Description

The foreign-funcall macro is the main primitive for calling foreign functions.

If a foreign structure is to be passed or returned by value (that is, the type is of the
form (:struct ...)), then the cffi-libffi system must be loaded, which in turn depends on
libffi, including the header files. Failure to load that system will result in an error. Variadic
functions cannot at present accept or return structures by value.

Note: The return value of foreign-funcall on functions with a :void return type is still
undefined.

Implementation-specific Notes

• Corman Lisp does not support foreign-funcall. On implementations that don’t
support foreign-funcall cffi-sys::no-foreign-funcall will be present in
features. Note: in these Lisps you can still use the defcfun interface.

Examples

CFFI> (foreign-funcall "strlen" :string "foo" :int)

⇒ 3

Given the C code:

void print_number(int n)

{

printf("N: %d\n", n);

}

http://sourceware.org/libffi/

Chapter 10: Functions 92

CFFI> (foreign-funcall "print_number" :int 123456)

a N: 123456

⇒ NIL

Or, equivalently:

CFFI> (foreign-funcall "print_number" :int 123456 :void)

a N: 123456

⇒ NIL

CFFI> (foreign-funcall "printf" :string (format nil "%s: %d.~%")

:string "So long and thanks for all the fish"

:int 42 :int)

a So long and thanks for all the fish: 42.

⇒ 41

See Also

[defcfun], page 89
[foreign-funcall-pointer], page 93

Chapter 10: Functions 93

foreign-funcall-pointer

Syntax

[Macro]foreign-funcall-pointer pointer options &rest arguments ⇒
return-value

arguments ::= { arg-type arg }* [return-type] options ::= (&key convention)

Arguments and Values

pointer A foreign pointer.

arg-type A foreign type.

arg An argument of type arg-type.

return-type
A foreign type, :void by default.

return-value
A lisp object.

convention
One of :cdecl (default) or :stdcall.

Description

The foreign-funcall macro is the main primitive for calling foreign functions.

Note: The return value of foreign-funcall on functions with a :void return type is still
undefined.

Implementation-specific Notes

• Corman Lisp does not support foreign-funcall. On implementations that don’t
support foreign-funcall cffi-sys::no-foreign-funcall will be present in
features. Note: in these Lisps you can still use the defcfun interface.

Examples

CFFI> (foreign-funcall-pointer (foreign-symbol-pointer "abs") ()

:int -42 :int)

⇒ 42

See Also

[defcfun], page 89
[foreign-funcall], page 91

Chapter 10: Functions 94

translate-camelcase-name

Syntax

[Function]translate-camelcase-name name &key upper-initial-p
special-words ⇒ return-value

Arguments and Values

name Either a symbol or a string.

upper-initial-p
A generalized boolean.

special words
A list of strings.

return-value
If name is a symbol, this is a string, and vice versa.

Description

translate-camelcase-name is a helper function for specializations of translate-name-
from-foreign and translate-name-to-foreign. It handles the common case of convert-
ing between foreign camelCase names and lisp names. upper-initial-p indicates whether the
first letter of the foreign name should be uppercase. special-words is a list of strings that
should be treated atomically in translation. This list is case-sensitive.

Examples

CFFI> (translate-camelcase-name some-xml-function)

⇒ "someXmlFunction"

CFFI> (translate-camelcase-name some-xml-function :upper-initial-p t)

⇒ "SomeXmlFunction"

CFFI> (translate-camelcase-name some-xml-function :special-words ’("XML"))

⇒ "someXMLFunction"

CFFI> (translate-camelcase-name "someXMLFunction")

⇒ SOME-X-M-L-FUNCTION

CFFI> (translate-camelcase-name "someXMLFunction" :special-words ’("XML"))

⇒ SOME-XML-FUNCTION

See Also

[translate-name-from-foreign], page 95
[translate-name-to-foreign], page 96
[translate-underscore-separated-name], page 97

Chapter 10: Functions 95

translate-name-from-foreign

Syntax

[Function]translate-name-from-foreign foreign-name package &optional
varp ⇒ symbol

Arguments and Values

foreign-name
A string denoting a foreign function.

package A Lisp package

varp A generalized boolean.

symbol The Lisp symbol to be used a function name.

Description

translate-name-from-foreign is used by [defcfun], page 89 to handle the conversion of
foreign names to lisp names. By default, it translates using [translate-underscore-separated-
name], page 97. However, you can create specialized methods on this function to make
translating more closely match the foreign library’s naming conventions.

Specialize package on some package. This allows other packages to load libraries with
different naming conventions.

Examples

CFFI> (defcfun "someXmlFunction" ...)

⇒ SOMEXMLFUNCTION

CFFI> (defmethod translate-name-from-foreign ((spec string)

(package (eql *package*))

&optional varp)

(let ((name (translate-camelcase-name spec)))

(if varp (intern (format nil "*~a*" name)) name)))

⇒ #<STANDARD-METHOD TRANSLATE-NAME-FROM-FOREIGN (STRING (EQL #<Package "SOME-PACKAGE">))>

CFFI> (defcfun "someXmlFunction" ...)

⇒ SOME-XML-FUNCTION

See Also

[defcfun], page 89
[translate-camelcase-name], page 94
[translate-name-to-foreign], page 96
[translate-underscore-separated-name], page 97

Chapter 10: Functions 96

translate-name-to-foreign

Syntax

[Function]translate-name-to-foreign lisp-name package &optional varp
⇒ string

Arguments and Values

lisp-name A symbol naming the Lisp function to be created.

package A Lisp package

varp A generalized boolean.

string The string representing the foreign function name.

Description

translate-name-to-foreign is used by [defcfun], page 89 to handle the conversion of lisp
names to foreign names. By default, it translates using [translate-underscore-separated-
name], page 97. However, you can create specialized methods on this function to make
translating more closely match the foreign library’s naming conventions.

Specialize package on some package. This allows other packages to load libraries with
different naming conventions.

Examples

CFFI> (defcfun some-xml-function ...)

⇒ "some_xml_function"

CFFI> (defmethod translate-name-to-foreign ((spec symbol)

(package (eql *package*))

&optional varp)

(let ((name (translate-camelcase-name spec)))

(if varp (subseq name 1 (1- (length name))) name)))

⇒ #<STANDARD-METHOD TRANSLATE-NAME-TO-FOREIGN (STRING (EQL #<Package "SOME-PACKAGE">))>

CFFI> (defcfun some-xml-function ...)

⇒ "someXmlFunction"

See Also

[defcfun], page 89
[translate-camelcase-name], page 94
[translate-name-from-foreign], page 95
[translate-underscore-separated-name], page 97

Chapter 10: Functions 97

translate-underscore-separated-name

Syntax

[Function]translate-underscore-separated-name name ⇒ return-value

Arguments and Values

name Either a symbol or a string.

return-value
If name is a symbol, this is a string, and vice versa.

Description

translate-underscore-separated-name is a helper function for specializations of
[translate-name-from-foreign], page 95 and [translate-name-to-foreign], page 96. It handles
the common case of converting between foreign underscore separated names and lisp
names.

Examples

CFFI> (translate-underscore-separated-name some-xml-function)

⇒ "some_xml_function"

CFFI> (translate-camelcase-name "some_xml_function")

⇒ SOME-XML-FUNCTION

See Also

[translate-name-from-foreign], page 95
[translate-name-to-foreign], page 96
[translate-camelcase-name], page 94

Chapter 11: Libraries 98

11 Libraries

11.1 Defining a library

Almost all foreign code you might want to access exists in some kind of shared library. The
meaning of shared library varies among platforms, but for our purposes, we will consider it
to include ‘.so’ files on unix, frameworks on Darwin (and derivatives like Mac OS X), and
‘.dll’ files on Windows.

Bringing one of these libraries into the Lisp image is normally a two-step process.

1. Describe to CFFI how to load the library at some future point, depending on platform
and other factors, with a define-foreign-library top-level form.

2. Load the library so defined with either a top-level use-foreign-library form or by
calling the function load-foreign-library.

See Section 4.3 [Loading foreign libraries], page 5, for a working example of the above
two steps.

11.2 Library definition style

Looking at the libcurl library definition presented earlier, you may ask why we did not
simply do this:

(define-foreign-library libcurl

(t (:default "libcurl")))

Indeed, this would work just as well on the computer on which I tested the tutorial. There
are a couple of good reasons to provide the ‘.so’’s current version number, however. Namely,
the versionless ‘.so’ is not packaged on most unix systems along with the actual, fully-
versioned library; instead, it is included in the “development” package along with C headers
and static ‘.a’ libraries.

The reason CFFI does not try to account for this lies in the meaning of the version num-
bers. A full treatment of shared library versions is beyond this manual’s scope; see Section
“Library interface versions” in GNU Libtool, for helpful information for the unfamiliar. For
our purposes, consider that a mismatch between the library version with which you tested
and the installed library version may cause undefined behavior.1

Implementor’s note: Maybe some notes should go here about OS X, which I know
little about. –stephen

1 Windows programmers may chafe at adding a unix-specific clause to define-foreign-library. Instead,
ask why the Windows solution to library incompatibility is “include your own version of every library
you use with every program”.

Chapter 11: Libraries 99

close-foreign-library

Syntax

[Function]close-foreign-library library ⇒ success

Arguments and Values

library A symbol or an instance of foreign-library.

success A Lisp boolean.

Description

Closes library which can be a symbol designating a library define through define-foreign-

library or an instance of foreign-library as returned by load-foreign-library.

See Also

[define-foreign-library], page 101
[load-foreign-library], page 105
[use-foreign-library], page 108

Chapter 11: Libraries 100

darwin-framework-directories

Syntax

[Special Variable]*darwin-framework-directories*

Value type

A list, in which each element is a string, a pathname, or a simple Lisp expression.

Initial value

A list containing the following, in order: an expression corresponding to
Darwin path ‘~/Library/Frameworks/’, #P"/Library/Frameworks/", and
#P"/System/Library/Frameworks/".

Description

The meaning of “simple Lisp expression” is explained in [*foreign-library-directories*],
page 103. In contrast to that variable, this is not a fallback search path; the default value
described above is intended to be a reasonably complete search path on Darwin systems.

Examples

CFFI> (let ((lib (load-foreign-library ’(:framework "OpenGL"))))

(foreign-library-pathname lib))

⇒ #P"/System/Library/Frameworks/OpenGL.framework/OpenGL"

See also

[*foreign-library-directories*], page 103
[define-foreign-library], page 101

Chapter 11: Libraries 101

define-foreign-library

Syntax

[Macro]define-foreign-library name-and-options { load-clause }* ⇒
name

name-and-options ::= name | (name &key convention search-path) load-clause ::= (fea-
ture library &key convention search-path)

Arguments and Values

name A symbol.

feature A feature expression.

library A library designator.

convention
One of :cdecl (default) or :stdcall

search-path
A path or list of paths where the library will be searched if not found in system-
global directories. Paths specified in a load clause take priority over paths spec-
ified as library option, with *foreign-library-directories* having lowest priority.

Description

Creates a new library designator called name. The load-clauses describe how to load that
designator when passed to load-foreign-library or use-foreign-library.

When trying to load the library name, the relevant function searches the load-clauses in
order for the first one where feature evaluates to true. That happens for any of the following
situations:

1. If feature is a symbol present in common-lisp:*features*.

2. If feature is a list, depending on (first feature), a keyword:

:and All of the feature expressions in (rest feature) are true.

:or At least one of the feature expressions in (rest feature) is true.

:not The feature expression (second feature) is not true.

3. Finally, if feature is t, this load-clause is picked unconditionally.

Upon finding the first true feature, the library loader then loads the library. The meaning
of “library designator” is described in [load-foreign-library], page 105.

Functions associated to a library defined by define-foreign-library (e.g. through
defcfun’s :library option, will inherit the library’s options. The precedence is as follows:

1. defcfun/foreign-funcall specific options;

2. load-clause options;

3. global library options (the name-and-options argument)

Examples

See Section 4.3 [Loading foreign libraries], page 5.

Chapter 11: Libraries 102

See Also

[close-foreign-library], page 99
[load-foreign-library], page 105

Chapter 11: Libraries 103

foreign-library-directories

Syntax

[Special Variable]*foreign-library-directories*

Value type

A list, in which each element is a string, a pathname, or a simple Lisp expression.

Initial value

The empty list.

Description

You should not have to use this variable.

Most, if not all, Lisps supported by CFFI have a reasonable default search algorithm for
foreign libraries. For example, Lisps for unix usually call dlopen(3), which in turn looks
in the system library directories. Only if that fails does CFFI look for the named library
file in these directories, and load it from there if found.

Thus, this is intended to be a CFFI-only fallback to the library search configuration
provided by your operating system. For example, if you distribute a foreign library with
your Lisp package, you can add the library’s containing directory to this list and portably
expect CFFI to find it.

A simple Lisp expression is intended to provide functionality commonly used in search
paths such as ASDF’s1, and is defined recursively as follows:2

1. A list, whose ‘first’ is a function designator, and whose ‘rest’ is a list of simple Lisp
expressions to be evaluated and passed to the so-designated function. The result is the
result of the function call.

2. A symbol, whose result is its symbol value.

3. Anything else evaluates to itself.

The result of evaluating the simple Lisp expression should yield a designator for a list
of pathname designators.

Note: in Common Lisp, #p"/foo/bar" designates the bar file within the /foo direc-
tory whereas #p"/foo/bar/" designates the /foo/bar directory. Keep that in mind when
customising the value of *foreign-library-directories*.

Examples

$ ls

a liblibli.so libli.lisp

In ‘libli.lisp’:

1 See Section “Using asdf to load systems” in asdf: another system definition facility , for information on
asdf:*central-registry*.

2 See mini-eval in ‘libraries.lisp’ for the source of this definition. As is always the case with a Lisp
eval, it’s easier to understand the Lisp definition than the english.

http://www.opengroup.org/onlinepubs/009695399/functions/dlopen.html

Chapter 11: Libraries 104

(pushnew #P"/home/sirian/lisp/libli/" *foreign-library-directories*

:test #’equal)

(load-foreign-library ’(:default "liblibli"))

The following example would achieve the same effect:

(pushnew ’(merge-pathnames #p"lisp/libli/" (user-homedir-pathname))

foreign-library-directories

:test #’equal)

⇒ ((MERGE-PATHNAMES #P"lisp/libli/" (USER-HOMEDIR-PATHNAME)))

(load-foreign-library ’(:default "liblibli"))

See also

[*darwin-framework-directories*], page 100
[define-foreign-library], page 101

Chapter 11: Libraries 105

load-foreign-library

Syntax

[Function]load-foreign-library library-designator ⇒ library

Arguments and Values

library-designator
A library designator.

library-designator
An instance of foreign-library.

Description

Load the library indicated by library-designator. A library designator is defined as follows:

1. If a symbol, is considered a name previously defined with define-foreign-library.

2. If a string or pathname, passed as a namestring directly to the implementation’s foreign
library loader. If that fails, search the directories in *foreign-library-directories*

with cl:probe-file; if found, the absolute path is passed to the implementation’s
loader.

3. If a list, the meaning depends on (first library):

:framework

The second list element is taken to be a Darwin framework name, which
is then searched in *darwin-framework-directories*, and loaded when
found.

:or Each remaining list element, itself a library designator, is loaded in order,
until one succeeds.

:default The name is transformed according to the platform’s naming convention to
shared libraries, and the resultant string is loaded as a library designator.
For example, on unix, the name is suffixed with ‘.so’.

If the load fails, signal a load-foreign-library-error.

Please note: For system libraries, you should not need to specify the directory containing
the library. Each operating system has its own idea of a default search path, and you should
rely on it when it is reasonable.

Implementation-specific Notes

On ECL platforms where its dynamic FFI is not supported (ie. when :dffi is not present
in *features*), cffi:load-foreign-library does not work and you must use ECL’s own
ffi:load-foreign-library with a constant string argument.

Examples

See Section 4.3 [Loading foreign libraries], page 5.

Chapter 11: Libraries 106

See Also

[close-foreign-library], page 99
[*darwin-framework-directories*], page 100
[define-foreign-library], page 101
[*foreign-library-directories*], page 103
[load-foreign-library-error], page 107
[use-foreign-library], page 108

Chapter 11: Libraries 107

load-foreign-library-error

Syntax

[Condition Type]load-foreign-library-error

Class precedence list

load-foreign-library-error, error, serious-condition, condition, t

Description

Signalled when a foreign library load completely fails. The exact meaning of this varies
depending on the real conditions at work, but almost universally, the implementation’s
error message is useless. However, CFFI does provide the useful restarts retry and use-

value; invoke the retry restart to try loading the foreign library again, or the use-value

restart to try loading a different foreign library designator.

See also

[load-foreign-library], page 105

Chapter 11: Libraries 108

use-foreign-library

Syntax

[Macro]use-foreign-library name

Arguments and values

name A library designator; unevaluated.

Description

See [load-foreign-library], page 105, for the meaning of “library designator”. This is intended
to be the top-level form used idiomatically after a define-foreign-library form to go
ahead and load the library. Finally, on implementations where the regular evaluation rule
is insufficient for foreign library loading, it loads it at the required time.1

Examples

See Section 4.3 [Loading foreign libraries], page 5.

See also

[load-foreign-library], page 105

1 Namely, CMUCL. See use-foreign-library in ‘libraries.lisp’ for details.

Chapter 12: Callbacks 109

12 Callbacks

Chapter 12: Callbacks 110

callback

Syntax

[Macro]callback symbol ⇒ pointer

Arguments and Values

symbol A symbol denoting a callback.

pointer
new-value A pointer.

Description

The callback macro is analogous to the standard CL special operator function and will
return a pointer to the callback denoted by the symbol name.

Examples

CFFI> (defcallback sum :int ((a :int) (b :int))

(+ a b))

⇒ SUM

CFFI> (callback sum)

⇒ #<A Mac Pointer #x102350>

See Also

[get-callback], page 113
[defcallback], page 111

Chapter 12: Callbacks 111

defcallback

Syntax

[Macro]defcallback name-and-options return-type arguments &body
body ⇒ name

name-and-options ::= name | (name &key convention) arguments ::= ({ (arg-name arg-
type) }*)

Arguments and Values

name A symbol naming the callback created.

return-type
The foreign type for the callback’s return value.

arg-name A symbol.

arg-type A foreign type.

convention
One of :cdecl (default) or :stdcall.

Description

The defcallback macro defines a Lisp function that can be called from C. The arguments
passed to this function will be converted to the appropriate Lisp representation and its
return value will be converted to its C representation.

This Lisp function can be accessed by the callbackmacro or the get-callback function.

Portability note: defcallback will not work correctly on some Lisps if it’s not a top-level
form.

Examples

(defcfun "qsort" :void

(base :pointer)

(nmemb :int)

(size :int)

(fun-compar :pointer))

(defcallback < :int ((a :pointer) (b :pointer))

(let ((x (mem-ref a :int))

(y (mem-ref b :int)))

(cond ((> x y) 1)

((< x y) -1)

(t 0))))

CFFI> (with-foreign-object (array :int 10)

;; Initialize array.
(loop for i from 0 and n in ’(7 2 10 4 3 5 1 6 9 8)

do (setf (mem-aref array :int i) n))

Chapter 12: Callbacks 112

;; Sort it.
(qsort array 10 (foreign-type-size :int) (callback <))

;; Return it as a list.
(loop for i from 0 below 10

collect (mem-aref array :int i)))

⇒ (1 2 3 4 5 6 7 8 9 10)

See Also

[callback], page 110
[get-callback], page 113

Chapter 12: Callbacks 113

get-callback

Syntax

[Accessor]get-callback symbol ⇒ pointer

Arguments and Values

symbol A symbol denoting a callback.

pointer A pointer.

Description

This is the functional version of the callback macro. It returns a pointer to the callback
named by symbol suitable, for example, to pass as arguments to foreign functions.

Examples

CFFI> (defcallback sum :int ((a :int) (b :int))

(+ a b))

⇒ SUM

CFFI> (get-callback ’sum)

⇒ #<A Mac Pointer #x102350>

See Also

[callback], page 110
[defcallback], page 111

Chapter 13: The Groveller 114

13 The Groveller

CFFI-Grovel is a tool which makes it easier to write CFFI declarations for libraries that
are implemented in C. That is, it grovels through the system headers, getting information
about types and structures, so you don’t have to. This is especially important for libraries
which are implemented in different ways by different vendors, such as the unix/posix
functions. The CFFI declarations are usually quite different from platform to platform, but
the information you give to CFFI-Grovel is the same. Hence, much less work is required!

If you use ASDF, CFFI-Grovel is integrated, so that it will run automatically when your
system is building. This feature was inspired by SB-Grovel, a similar SBCL-specific project.
CFFI-Grovel can also be used without ASDF.

13.1 Building FFIs with CFFI-Grovel

CFFI-Grovel uses a specification file (*.lisp) describing the features that need groveling.
The C compiler is used to retrieve this data and write a Lisp file (*.cffi.lisp) which contains
the necessary CFFI definitions to access the variables, structures, constants, and enums
mentioned in the specification.

CFFI-Grovel provides an ASDF component for handling the necessary calls to the C
compiler and resulting file management.

13.2 Specification File Syntax

The specification files are read by the normal Lisp reader, so they have syntax very similar
to normal Lisp code. In particular, semicolon-comments and reader-macros will work as
expected.

There are several forms recognized by CFFI-Grovel:

[Grovel Form]progn &rest forms
Processes a list of forms. Useful for conditionalizing several forms. For example:

#+freebsd

(progn

(constant (ev-enable "EV_ENABLE"))

(constant (ev-disable "EV_DISABLE")))

[Grovel Form]include &rest files
Include the specified files (specified as strings) in the generated C source code.

[Grovel Form]in-package symbol
Set the package to be used for the final Lisp output.

[Grovel Form]ctype lisp-name size-designator
Define a CFFI foreign type for the string in size-designator, e.g. (ctype :pid "pid_

t").

[Grovel Form]constant (lisp-name &rest c-names) &key type documentation
optional

Search for the constant named by the first c-name string found to be known to the
C preprocessor and define it as lisp-name.

Chapter 13: The Groveller 115

The type keyword argument specifies how to grovel the constant: either integer (the
default) or double-float. If optional is true, no error will be raised if all the c-names
are unknown. If lisp-name is a keyword, the actual constant will be a symbol of the
same name interned in the current package.

[Grovel Form]define name &optional value
Defines an additional C preprocessor symbol, which is useful for altering the behavior
of included system headers.

[Grovel Form]cc-flags &rest flags
Adds cc-flags to the command line arguments used for the C compiler invocation.

[Grovel Form]pkg-config-cflags pkg &key optional
Adds pkg to the command line arguments for the external program pkg-config

and runs it to retrieve the relevant include flags used for the C compiler invocation.
This syntax can be used instead of hard-coding paths using cc-flags, and ensures
that include flags are added correctly on the build system. Assumes pkg-config is
installed and working. pkg is a string that identifies an installed pkg-config package.
See the pkg-config manual for more information. If optional is true, failure to execute
pkg-config does not abort compilation.

[Grovel Form]cstruct lisp-name c-name slots
Define a CFFI foreign struct with the slot data specfied. Slots are of the form (lisp-

name c-name &key type count (signed t)).

[Grovel Form]cunion lisp-name c-name slots
Identical to cstruct, but defines a CFFI foreign union.

[Grovel Form]cstruct-and-class c-name slots
Defines a CFFI foreign struct, as with cstruct and defines a CLOS class to be used
with it. This is useful for mapping foreign structures to application-layer code that
shouldn’t need to worry about memory allocation issues.

[Grovel Form]cvar namespec type &key read-only
Defines a foreign variable of the specified type, even if that variable is potentially a C
preprocessor pseudo-variable. e.g. (cvar ("errno" errno) errno-values), assum-
ing that errno-values is an enum or equivalent to type :int.

The namespec is similar to the one used in [defcvar], page 85.

[Grovel Form]cenum name-and-opts &rest elements
Defines a true C enum, with elements specified as ((lisp-name &rest c-names) &key

optional documentation). name-and-opts can be either a symbol as name, or a list
(name &key base-type define-constants). If define-constants is non-null, a Lisp
constant will be defined for each enum member.

[Grovel Form]constantenum name-and-opts &rest elements
Defines an enumeration of pre-processor constants, with elements specified as ((lisp-
name &rest c-names) &key optional documentation). name-and-opts can be ei-
ther a symbol as name, or a list (name &key base-type define-constants). If
define-constants is non-null, a Lisp constant will be defined for each enum member.

Chapter 13: The Groveller 116

This example defines :af-inet to represent the value held by AF_INET or PF_INET,
whichever the pre-processor finds first. Similarly for :af-packet, but no error will
be signalled if the platform supports neither AF_PACKET nor PF_PACKET.

(constantenum address-family

((:af-inet "AF_INET" "PF_INET")

:documentation "IPv4 Protocol family")

((:af-local "AF_UNIX" "AF_LOCAL" "PF_UNIX" "PF_LOCAL")

:documentation "File domain sockets")

((:af-inet6 "AF_INET6" "PF_INET6")

:documentation "IPv6 Protocol family")

((:af-packet "AF_PACKET" "PF_PACKET")

:documentation "Raw packet access"

:optional t))

[Grovel Form]bitfield name-and-opts &rest elements
Defines a bitfield, with elements specified as ((lisp-name &rest c-names) &key

optional documentation). name-and-opts can be either a symbol as name, or a
list (name &key base-type). For example:

(bitfield flags-ctype

((:flag-a "FLAG_A")

:documentation "DOCU_A")

((:flag-b "FLAG_B" "FLAG_B_ALT")

:documentation "DOCU_B")

((:flag-c "FLAG_C")

:documentation "DOCU_C"

:optional t))

13.3 ASDF Integration

An example software project might contain four files; an ASDF file, a package definition file,
an implementation file, and a CFFI-Grovel specification file.

The ASDF file defines the system and its dependencies. Notice the use of eval-when
to ensure CFFI-Grovel is present and the use of (cffi-grovel:grovel-file name &key

cc-flags) instead of (:file name).

;;; CFFI-Grovel is needed for processing grovel-file components
(cl:eval-when (:load-toplevel :execute)

(asdf:operate ’asdf:load-op ’cffi-grovel))

(asdf:defsystem example-software

:depends-on (cffi)

:serial t

:components

((:file "package")

(cffi-grovel:grovel-file "example-grovelling")

(:file "example")))

Chapter 13: The Groveller 117

The “package.lisp” file would contain several defpackage forms, to remove circular de-
pendencies and make building the project easier. Note that you may or may not want to
:use your internal package.

Implementor’s note: Mention that it’s a not a good idea to :USE when names may
clash with, say, CL symbols.

(defpackage #:example-internal

(:use)

(:nicknames #:exampleint))

(defpackage #:example-software

(:export ...)

(:use #:cl #:cffi #:exampleint))

The internal package is created by Lisp code output from the C program written by
CFFI-Grovel; if your specification file is exampleint.lisp, the exampleint.cffi.lisp file will
contain the CFFI definitions needed by the rest of your project. See Section 13.2 [Groveller
Syntax], page 114.

13.4 Implementation Notes

Implementor’s note: This info might not be up-to-date.

For foo-internal.lisp, the resulting foo-internal.c, foo-internal, and foo-

internal.cffi.lisp are all platform-specific, either because of possible reader-macros
in foo-internal.lisp, or because of varying C environments on the host system. For this
reason, it is not helpful to distribute any of those files; end users building CFFI-Grovel
based software will need cffi-Grovel anyway.

If you build with multiple architectures in the same directory (e.g. with NFS/AFS home
directories), it is critical to remove these generated files or the resulting constants will be
very incorrect.

Implementor’s note: Maybe we should tag the generated names with something
host or OS-specific?

Implementor’s note: For now, after some experimentation with clisp having no
long-long, it seems appropriate to assert that the generated .c files are architecture
and operating-system dependent, but lisp-implementation independent. This way
the same .c file (and so the same .grovel-tmp.lisp file) will be shareable between
the implementations running on a given system.

Chapter 14: Limitations 118

14 Limitations

These are CFFI’s limitations across all platforms; for information on the warts on particular
Lisp implementations, see Chapter 3 [Implementation Support], page 3.

• The tutorial includes a treatment of the primary, intractable limitation of CFFI, or
any FFI: that the abstractions commonly used by C are insufficiently expressive. See
Section 4.6 [Breaking the abstraction], page 9, for more details.

• C structs cannot be passed by value.

Appendix A: Platform-specific features 119

Appendix A Platform-specific features

Whenever a backend doesn’t support one of CFFI’s features, a specific symbol is pushed
onto common-lisp:*features*. The meanings of these symbols follow.

cffi-sys::flat-namespace
This Lisp has a flat namespace for foreign symbols meaning that you won’t be
able to load two different libraries with homograph functions and successfully
differentiate them through the :library option to defcfun, defcvar, etc. . .

cffi-sys::no-foreign-funcall
The macro foreign-funcall is not available. On such platforms, the only way
to call a foreign function is through defcfun. See [foreign-funcall], page 91,
and [defcfun], page 89.

cffi-sys::no-long-long
The C long long type is not available as a foreign type.

However, on such platforms CFFI provides its own implementation of the long
long type for all of operations in chapters Chapter 6 [Foreign Types], page 22,
Chapter 7 [Pointers], page 57 and Chapter 9 [Variables], page 84. The function-
ality described in Chapter 10 [Functions], page 88 and Chapter 12 [Callbacks],
page 109 will not be available.

32-bit Lispworks 5.0+ is an exception. In addition to the CFFI implementation
described above, Lispworks itself implements the long long type for Chapter 10
[Functions], page 88. Chapter 12 [Callbacks], page 109 are still missing long

long support, though.

cffi-sys::no-stdcall
This Lisp doesn’t support the stdcall calling convention. Note that it only
makes sense to support stdcall on (32-bit) x86 platforms.

Appendix B: Glossary 120

Appendix B Glossary

aggregate type
A CFFI type for C data defined as an organization of data of simple type; in
structures and unions, which are themselves aggregate types, they are repre-
sented by value.

foreign value
This has two meanings; in any context, only one makes sense.

When using type translators, the foreign value is the lower-level Lisp value
derived from the object passed to translate-to-foreign (see [translate-to-
foreign], page 53). This value should be a Lisp number or a pointer (satisfies
pointerp), and it can be treated like any general Lisp object; it only completes
the transformation to a true foreign value when passed through low-level code in
the Lisp implementation, such as the foreign function caller or indirect memory
addressing combined with a data move.

In other contexts, this refers to a value accessible by C, but which may only
be accessed through CFFI functions. The closest you can get to such a foreign
value is through a pointer Lisp object, which itself counts as a foreign value in
only the previous sense.

simple type
A CFFI type that is ultimately represented as a builtin type; CFFI only provides
extra semantics for Lisp that are invisible to C code or data.

Index 121

Index

:
:bool . 24
:boolean &optional (base-type :int) 24
:char . 22
:double . 23
:float . 23
:int . 22
:int16 . 22
:int32 . 22
:int64 . 23
:int8 . 22
:llong . 22
:long . 22
:long-double . 23
:long-long . 22
:pointer &optional type . 23
:short . 22
:string . 23
:string+ptr . 23
:uchar . 22
:uint . 22
:uint16 . 22
:uint32 . 22
:uint64 . 23
:uint8 . 22
:ullong . 22
:ulong . 22
:unsigned-char . 22
:unsigned-int . 22
:unsigned-long . 22
:unsigned-long-long . 22
:unsigned-short . 22
:ushort . 22
:void . 23
:wrapper base-type &key to-c from-c 24

A
abstraction breaking . 9
abstractions in C . 4
advantages of FFI . 4

B
benefits of FFI . 4
bitfield . 116
breaking the abstraction . 9

C
C abstractions . 4
callback definition . 16
callback symbol ⇒ pointer 110
calling foreign functions . 6

cc-flags . 115
cenum . 115
close-foreign-library library ⇒ success . . 99
compiler macros for type translation 26
constant . 114
constantenum . 115
convert-from-foreign foreign-value type ⇒

value . 29
convert-to-foreign value type ⇒

foreign-value, alloc-params 30
cstruct . 115
cstruct-and-class . 115
ctype . 114
cunion . 115
cURL . 5
cvar . 115

D
data in Lisp and C . 18
defbitfield name-and-options &body masks . . 31
defcallback name-and-options return-type

arguments &body body ⇒ name 111
defcenum name-and-options &body enum-list

. 37
defcfun name-and-options return-type &body

[docstring] arguments [&rest] ⇒
lisp-name . 89

defcstruct name-and-options &body

doc-and-slots ⇒ name 33
defctype name base-type &optional

documentation . 36
defcunion name &body doc-and-slots ⇒ name

. 35
defcvar name-and-options type &optional

documentation ⇒ lisp-name 85
define . 115
define-foreign-library name-and-options {

load-clause }* ⇒ name 101
define-foreign-type class-name supers slots

&rest options ⇒ class-name 38
define-parse-method name lambda-list &body

body ⇒ name . 39
defining callbacks . 16
defining type-translation compiler macros 26
dynamic extent . 12

E
enumeration, C . 7

F
file* and streams . 9

Index 122

foreign arguments . 7
foreign functions and data . 4
foreign library load . 6
foreign values with dynamic extent 12
foreign-alloc type &key initial-element

initial-contents (count 1)

null-terminated-p ⇒ pointer 60
foreign-bitfield-symbols type value ⇒

symbols . 40
foreign-bitfield-value type symbols ⇒ value

. 41
foreign-enum-keyword type value &key errorp

⇒ keyword . 42
foreign-enum-value type keyword &key errorp

⇒ value . 43
foreign-free ptr ⇒ undefined 59
foreign-funcall name-and-options &rest

arguments ⇒ return-value 91
foreign-funcall-pointer pointer options &rest

arguments ⇒ return-value 93
foreign-pointer . 57
foreign-slot-names type ⇒ names 44
foreign-slot-offset type slot-name ⇒ offset

. 45
foreign-slot-pointer ptr type slot-name ⇒

pointer . 46
foreign-slot-value ptr type slot-name ⇒

object . 47
foreign-string-alloc string &key encoding

null-terminated-p start end ⇒ pointer

. 78
foreign-string-free pointer 79
foreign-string-to-lisp ptr &key offset count

max-chars encoding ⇒ string 80
foreign-symbol-pointer foreign-name &key

library ⇒ pointer . 62
foreign-type-alignment type ⇒ alignment . . 48
foreign-type-size type ⇒ size 49
free-converted-object foreign-value type

params . 50
free-translated-object value type-name param

. 51
function definition . 6

G
get-callback symbol ⇒ pointer 113
get-var-pointer symbol ⇒ pointer 87

I
in-package . 114
inc-pointer pointer offset ⇒ new-pointer

. 63
incf-pointer place &optional (offset 1) ⇒

new-pointer . 64
include . 114

L
library, foreign . 6
limitations of type translators 20
lisp-string-to-foreign string buffer bufsize

&key start end offset encoding ⇒ buffer

. 81
Lispy C functions . 10
load-foreign-library library-designator ⇒

library . 105
load-foreign-library-error 107
loading CFFI . 5
looks like it worked . 7

M
make-pointer address ⇒ ptr 65
mem-aptr ptr type &optional (index 0) 66
mem-aref ptr type &optional (index 0) 67
mem-ref ptr type &optional offset ⇒ object

. 68
minimal bindings . 4

N
null-pointer ⇒ pointer . 69
null-pointer-p ptr ⇒ boolean 70

P
Perl . 4
pkg-config-cflags . 115
pointer-address ptr ⇒ address 72
pointer-eq ptr1 ptr2 ⇒ boolean 73
pointerp ptr ⇒ boolean . 71
pointers in Lisp . 7
premature deallocation . 12
progn . 114
Python . 4

R
requiring CFFI . 5

S
SLIME . 4
streams and C . 9
strings . 14
SWIG . 4

T
translate-camelcase-name name &key

upper-initial-p special-words ⇒
return-value . 94

translate-from-foreign foreign-value

type-name ⇒ lisp-value 52

Index 123

translate-into-foreign-memory lisp-value

type-name pointer . 54
translate-name-from-foreign foreign-name

package &optional varp ⇒ symbol 95
translate-name-to-foreign lisp-name package

&optional varp ⇒ string 96
translate-to-foreign lisp-value type-name ⇒

foreign-value, alloc-param 53
translate-underscore-separated-name name ⇒

return-value . 97
translating types . 18
tutorial, CFFI . 4
type definition . 18
type translators, optimizing . 26

U
use-foreign-library name 108

V
varargs . 7

W
with-foreign-object (var type &optional

count) &body body . 74
with-foreign-objects (bindings) &body body

. 74
with-foreign-pointer (var size &optional

size-var) &body body . 75
with-foreign-pointer-as-string (var size

&optional size-var &rest args) &body

body ⇒ string . 83
with-foreign-slots (vars ptr type) &body body

. 55
with-foreign-string (var-or-vars string &rest

args) &body body . 82
with-foreign-strings (bindings) &body body

. 82
workaround for C . 5

	Introduction
	Installation
	Implementation Support
	Limitations

	An Introduction to Foreign Interfaces and CFFI
	What makes Lisp different
	Getting a URL
	Loading foreign libraries
	Initializing libcurl
	Setting download options
	Breaking the abstraction
	Option functions in Lisp
	Memory management
	Calling Lisp from C
	A complete FFI?
	Defining new types
	What's next?

	Wrapper generators
	Foreign Types
	Built-In Types
	Other Types
	Defining Foreign Types
	Foreign Type Translators
	Optimizing Type Translators
	Foreign Structure Types
	Allocating Foreign Objects

	Pointers
	Basic Pointer Operations
	Allocating Foreign Memory
	Accessing Foreign Memory

	Strings
	Variables
	Functions
	Libraries
	Defining a library
	Library definition style

	Callbacks
	The Groveller
	Building FFIs with CFFI-Grovel
	Specification File Syntax
	ASDF Integration
	Implementation Notes

	Limitations
	Platform-specific features
	Glossary
	Index

