
EduMIPS64

version 1.2.10

Andrea Spadaccini and the EduMIPS64 development team

March 05, 2022

Contents
Welcome to the EduMIPS64 documentation! 1

Source files format 1

Memory limits 1

The .data section 1

The .code section 3

The #include command 4

The instruction set 4

ALU Instructions 4

Load/Store instructions 8

Flow control instructions 8

The SYSCALL instruction 9

SYSCALL 0 - exit() 9

SYSCALL 1 - open() 9

SYSCALL 2 - close() 10

SYSCALL 3 - read() 10

SYSCALL 4 - write() 10

SYSCALL 5 - printf() 10

Other instructions 11

BREAK 11

NOP 11

TRAP 11

HALT 11

Floating Point Unit 11

Special values 11

NaN or Invalid Operation 12

Zeroes or Underflows 12

Infinites or Overflows 12

Exception configuration 12

The .double directive 12

The FCSR register 12

Instruction set 13

The user interface 17

The menu bar 17

File 17

Execute 18

Configure 18

Tools 18

Window 18

Help 18

Frames 18

Cycles 18

Registers 19

Statistics 19

Pipeline 19

Memory 19

Code 19

Input/Output 19

Dialogs 19

Settings 19

Dinero Frontend 20

Help 20

Command line options 20

Code Examples 20

SYSCALL 20

SYSCALL 0 20

SYSCALL 1 21

SYSCALL 2 21

SYSCALL 3 22

SYSCALL 4 22

SYSCALL 5 23

A more complex usage example of SYSCALL 5 23

Welcome to the EduMIPS64 documentation!
EduMIPS64 is a MIPS64 Instruction Set Architecture (ISA) simulator. It is designed to be used to execute small
programs that use the subset of the MIPS64 ISA implemented by the simulator, allowing the user to see how
instructions behave in the pipeline, how stalls are handled by the CPU, the status of registers and memory and much
more. It is both a simulator and a visual debugger.

The website for the project is http://www.edumips.org, and the code is hosted at
http://github.com/EduMIPS64/edumips64. If you find any bugs, or have any suggestion for improving the simulator,
please open an issue on github or send an email at bugs@edumips.org.

EduMIPS64 is developed by a group of students of the University of Catania (Italy), and started as a clone of
WinMIPS64, even if now there are lots of differences between the two simulators.

This manual will introduce you to EduMIPS64, and will cover some details on how to use it.

The first chapter of this manual covers the format of source files accepted by the simulator, describing the data types
and the directives, in addition to command line parameters. In the second chapter there’s an overview of the subset
of the MIPS64 instruction set that is accepted by EduMIPS64, with all the needed parameters and indications to use
them. The third chapter is a description of the Floating Point Unit and its instruction set. The fourth chapter is a
description of the user interface of EduMIPS64, that explains the purpose of each frame and menu, along with a
description of the configuration dialog, the Dinero frontend dialog, the Manual dialog and command line options. The
fifth chapter contains some useful examples.

This manual describes EduMIPS64 version 1.2.10.

Source files format
EduMIPS64 tries to follow the conventions used in other MIPS64 and DLX simulators, so that old time users will not
be confused by its syntax.

There are two sections in a source file, the data section and the code section, introduced respectively by the .data
and the .code directives. In the following listing you can see a very basic EduMIPS64 program:

; This is a comment
 .data
label: .word 15 ; This is an inline comment

 .code
 daddi r1, r0, 0
 syscall 0

To distinguish the various parts of each source code line, any combination of spaces and tabs can be used, as the
parser ignores multiple spaces and only detects whitespaces to separate tokens.

Comments can be specified using the “;” character, everything that follows that character will be ignored. So a
comment can be used “inline” (after the directive) or on a row by itself.

Labels can be used in the code to reference a memory cell or an instruction. They are case insensitive. Only a label
for each source code line can be used. The label can be specified one or more rows above the effective data
declaration or instruction, provided that there’s nothing, except for comments and empty lines, between the label and
the declaration.

Memory limits
EduMIPS64 has a fixed memory size for both data (the .data section, capped at 640 kB – i.e., 80000 64-bit values)
and instructions (the .code section, capped at 128 kB – i.e., 32000 instructions, each occupying 32 bits).

These limits are hardcoded in the simulator.

The .data section
The data section contains commands that specify how the memory must be filled before program execution starts.
The general form of a .data command is:

Welcome to the EduMIPS64 documentation!

1

http://www.edumips.org
http://github.com/EduMIPS64/edumips64
mailto:bugs@edumips.org

[label:] .datatype value1 [, value2 [, ...]]

EduMIPS64 supports different data types, that are described in the following table.

Type Directive Bits required

Byte .byte 8

Half word .word16 16

Word .word32 32

Double Word .word or .word64 64

Please note that a double word can be introduced either by the .word directive or by the .word64 directive.

All the data types are interpreted as signed. This means that integer literals in the .data section must be between
-2^(n-1) and 2^(n-1) - 1 (inclusive).

There is a big difference between declaring a list of data elements using a single directive or by using multiple
directives of the same type. EduMIPS64 starts writing from the next 64-bit double word as soon as it finds a datatype
identifier, so the first .byte statement in the following listing will put the numbers 1, 2, 3 and 4 in the space of 4 bytes,
taking 32 bits, while code in the next four rows will put each number in a different memory cell, occupying 32 bytes:

.data

.byte 1, 2, 3, 4

.byte 1

.byte 2

.byte 3

.byte 4

In the following table, the memory is represented using byte-sized cells and each row is 64 bits wide. The address on
the left side of each row of the table refers to the right-most memory cell, that has the lowest address of the eight
cells in each line.

0 0 0 0 0 4 3 2 1

8 0 0 0 0 0 0 0 1

16 0 0 0 0 0 0 0 2

24 0 0 0 0 0 0 0 3

36 0 0 0 0 0 0 0 4

There are some special directives that need to be discussed: .space, .ascii and .asciiz.

The .space directive is used to leave some free space in memory. It accepts as a parameter an integer, that
indicates the number of bytes that must be left empty. It is handy when you must save some space in memory for the
results of your computations.

The .ascii directive accepts strings containing any of the ASCII characters, and some special C-like escaping
sequences, that are described in the following table, and puts those strings in memory.

Escaping sequence Meaning ASCII code

\0 Null byte 0

\t Horizontal tabulation 9

\n Newline character 10

\” Literal quote character 34

\ Literal backslash character 92

The .asciiz directive behaves exactly like the .ascii command, with the difference that it automatically ends the string
with a null byte.

Welcome to the EduMIPS64 documentation!

2

The .code section
The code section contains commands that specify how the memory must be filled when the program will start. The
general form of a .code command is:

[label:] instruction [param1 [, param2 [, param3]]]

The code section can be specified with the .text alias.

The number and the type of parameters depends on the instruction itself.

Instructions can take three types of parameters:

• Registers a register parameter is indicated by an uppercase or lowercase “r”, or a $, followed by the number of
the register (between 0 and 31), as in “r4”, “R4” or “$4”;

• Immediate values an immediate value can be a number or a label; the number can be specified in base 10 or in
base 16: base 10 numbers are simply inserted by writing the number, while base 16 number are inserted by
putting before the number the prefix “0x”. Immediate values can be preceded by the # character.

• Address an address is composed by an immediate value followed by a register name enclosed in brackets. The
value of the register will be used as base, the value of the immediate will be the offset.

The size of immediate values is limited by the number of bits that are available in the bit encoding of the instruction.

When 16-bit immediates can be used, for example in ALU I-Type instructions, it’s also possible to use as an
immediate value a memory label. The assembler will put as immediate value the memory address the label points to.

You can use standard MIPS assembly aliases to address the first 32 registers, appending the alias to one of the
standard register prefixes like “r”, “$” and “R”. See the next table.

Register Alias

0 zero

1 at

2 v0

3 v1

4 a0

5 a1

6 a2

7 a3

8 t0

9 t1

10 t2

11 t3

12 t4

13 t5

14 t6

15 t7

16 s0

17 s1

18 s2

19 s3

20 s4

21 s5

Welcome to the EduMIPS64 documentation!

3

22 s6

23 s7

24 t8

25 t9

26 k0

27 k1

28 gp

29 sp

30 fp

31 ra

The #include command
Source files can contain the #include filename command, which has the effect of putting in place of the command
row the content of the file filename. It is useful if you want to include external routines, and it comes with a
loop-detection algorithm that will warn you if you try to do something like “#include A.s” in file B.s and “#include B.s”
in file A.s.

The instruction set
In this section we will the subset of the MIPS64 instruction set that EduMIPS64 recognizes. We can operate two
different taxonomic classification: one based on the functionality of the instructions and one based on the type of the
parameters of the instructions.

The first classification divides instruction into three categories: ALU instructions, Load/Store instructions, Flow control
instructions. The next three subsections will describe each category and every instruction that belongs to those
categories.

The fourth subsection will describe instructions that do not fit in any of the three categories.

ALU Instructions
The Arithmetic Logic Unit (in short, ALU) is a part of the execution unit of a CPU, that has the duty of doing
arithmetical and logic operations. So in the ALU instructions group we will find those instructions that do this kind of
operations.

ALU Instructions can be divided in two groups: R-Type and I-Type.

Four of those instructions make use of two special registers: LO and HI. They are internal CPU registers, whose
value can be accessed through the MFLO and MFHI instructions.

Here’s the list of R-Type ALU Instructions.

• AND rd, rs, rt

Executes a bitwise AND between rs and rt, and puts the result into rd.

• ADD rd, rs, rt

Sums the content of 32-bits registers rs and rt, considering them as signed values, and puts the result into rd. If
an overflow occurs then trap.

• ADDU rd, rs, rt

Sums the content of 32-bits registers rs and rt, and puts the result into rd. No integer overflow occurs under any
circumstances.

• DADD rd, rs, rt

Sums the content of 64-bits registers rs and rt, considering them as signed values, and puts the result into rd. If
an overflow occurs then trap.

The instruction set

4

• DADDU rd, rs, rt

Sums the content of 64-bits registers rs and rt, and puts the result into rd. No integer overflow occurs under any
circumstances.

• DDIV rs, rt

Executes the division between 64-bits registers rs and rt, putting the 64-bits quotient in LO and the 64-bits
remainder in HI.

• DDIVU rs, rt

Executes the division between 64-bits registers rs and rt, considering them as unsigned values and putting the
64-bits quotient in LO and the 64-bits remainder in HI.

• DIV rs, rt

Executes the division between 32-bits registers rs and rt, putting the 32-bits quotient in LO and the 32-bits
remainder in HI.

• DIVU rs, rt

Executes the division between 32-bits registers rs and rt, considering them as unsigned values and putting the
32-bits quotient in LO and the 32-bits remainder in HI.

• DMULT rs, rt

Executes the multiplication between 64-bits registers rs and rt, putting the low-order 64-bits doubleword of the
result into special register LO and the high-order 64-bits doubleword of the result into special register HI.

• DMULU rs, rt

Executes the multiplication between 64-bits registers rs and rt, considering them as unsigned values and
putting the low-order 64-bits doubleword of the result into special register LO and the high-order 64-bits
doubleword of the result into special register HI.

• DMULTU rs, rt

Executes the multiplication between 64-bits registers rs and rt, considering them as unsigned values and
putting the low-order 64-bits doubleword of the result into special register LO and the high-order 64-bits
doubleword of the result into special register HI.

• DSLL rd, rt, sa

Does a left shift of 64-bits register rt, by the amount specified in the immediate (positive) value sa, and puts the
result into 64-bits register rd. Empty bits are padded with zeros.

• DSLLV rd, rt, rs

Does a left shift of 64-bits register rt, by the amount specified in low-order 6-bits of rs threatd as unsigned value,
and puts the result into 64-bits register rd. Empty bits are padded with zeros.

• DSRA rd, rt, sa

Does a right shift of 64-bits register rt, by the amount specified in the immediate (positive) value sa, and puts
the result into 64-bits register rd. Empty bits are padded with zeros if the leftmost bit of rt is zero, otherwise they
are padded with ones.

• DSRAV rd, rt, rs

Does a right shift of 64-bits register rt, by the amount specified in low-order 6-bits of rs threatd as unsigned
value, and puts the result into 64-bits register rd. Empty bits are padded with zeros if the leftmost bit of rt is
zero, otherwise they are padded with ones.

• DSRL rd, rs, sa

Does a right shift of 64-bits register rs, by the amount specified in the immediate (positive) value sa, and puts
the result into 64-bits register rd. Empty bits are padded with zeros.

• DSRLV rd, rt, rs

Does a right shift of 64-bits register rt, by the amount specified in low-order 6-bits of rs threatd as unsigned
value, and puts the result into 64-bits register rd. Empty bits are padded with zeros.

The instruction set

5

• DSUB rd, rs, rt

Subtracts the value of 64-bits register rt to 64-bits register rs, considering them as signed values, and puts the
result in rd. If an overflow occurs then trap.

• DSUBU rd, rs, rt

Subtracts the value of 64-bits register rt to 64-bits register rs, and puts the result in rd. No integer overflow
occurs under any circumstances.

• MFLO rd

Moves the content of the special register LO into rd.

• MFHI rd

Moves the content of the special register HI into rd.

• MOVN rd, rs, rt

If rt is different from zero, then moves the content of rs into rd.

• MOVZ rd, rs, rt

If rt is equal to zero, then moves the content of rs into rd.

• MULT rs, rt

Executes the multiplication between 32-bits registers rs and rt, putting the low-order 32-bits word of the result
into special register LO and the high-order 32-bits word of the result into special register HI.

• MULTU rs, rt

Executes the multiplication between 32-bits registers rs and rt, considering them as unsigned values and
putting the low-order 32-bits word of the result into special register LO and the high-order 32-bits word of the
result into special register HI.

• OR rd, rs, rt

Executes a bitwise OR between rs and rt, and puts the result into rd.

• SLL rd, rt, sa

Does a left shift of 32-bits register rt, by the amount specified in the immediate (positive) value sa, and puts the
result into 32-bits register rd. Empty bits are padded with zeros.

• SLLV rd, rt, rs

Does a left shift of 32-bits register rt, by the amount specified in low-order 5-bits of rs threatd as unsigned value,
and puts the result into 32-bits register rd. Empty bits are padded with zeros.

• SRA rd, rt, sa

Does a right shift of 32-bits register rt, by the amount specified in the immediate (positive) value sa, and puts
the result into 32-bits register rd. Empty bits are padded with zeros if the leftmost bit of rt is zero, otherwise they
are padded with ones.

• SRAV rd, rt, rs

Does a right shift of 32-bits register rt, by the amount specified in low-order 5-bits of rs threatd as unsigned
value, and puts the result into 32-bits register rd. Empty bits are padded with zeros if the leftmost bit of rt is
zero, otherwise they are padded with ones.

• SRL rd, rs, sa

Does a right shift of 32-bits register rs, by the amount specified in the immediate (positive) value sa, and puts
the result into 32-bits register rd. Empty bits are padded with zeros.

• SRLV rd, rt, rs

Does a right shift of 32-bits register rt, by the amount specified in low-order 5-bits of rs threatd as unsigned
value, and puts the result into 32-bits register rd. Empty bits are padded with zeros.

• SUB rd, rs, rt
Subtracts the value of 32-bits register rt to 32-bits register rs, considering them as signed values, and puts the
result in rd. If an overflow occurs then trap.

The instruction set

6

• SUBU rd, rs, rt

Subtracts the value of 32-bits register rt to 32-bits register rs, and puts the result in rd. No integer overflow
occurs under any circumstances.

• SLT rd, rs, rt

Sets the value of rd to 1 if the value of rs is less than the value of rt, otherwise sets it to 0. This instruction
performs a signed comparison.

• SLTU rd, rs, rt

Sets the value of rd to 1 if the value of rs is less than the value of rt, otherwise sets it to 0. This instruction
performs an unsigned comparison.

• XOR rd, rs, rt

Executes a bitwise exclusive OR (XOR) between rs and rt, and puts the result into rd.

Here’s the list of I-Type ALU Instructions.

• ADDI rt, rs, immediate

Executes the sum between 32-bits register rs and the immediate value, putting the result in rt. This instruction
considers rs and the immediate value as signed values. If an overflow occurs then trap.

• ADDIU rt, rs, immediate

Executes the sum between 32-bits register rs and the immediate value, putting the result in rt. No integer
overflow occurs under any circumstances.

• ANDI rt, rs, immediate

Executes the bitwise AND between rs and the immediate value, putting the result in rt.

• DADDI rt, rs, immediate

Executes the sum between 64-bits register rs and the immediate value, putting the result in rt. This instruction
considers rs and the immediate value as signed values. If an overflow occurs then trap.

• DADDIU rt, rs, immediate

Executes the sum between 64-bits register rs and the immediate value, putting the result in rt. No integer
overflow occurs under any circumstances.

• DADDUI rt, rs, immediate

Executes the sum between 64-bits register rs and the immediate value, putting the result in rt. No integer
overflow occurs under any circumstances.

• LUI rt, immediate

Loads the constant defined in the immediate value in the upper half (16 bit) of the lower 32 bits of rt,
sign-extending the upper 32 bits of the register.

• ORI rt, rs, immediate

Executes the bitwise OR between rs and the immediate value, putting the result in rt.

• SLTI rt, rs, immediate

Sets the value of rt to 1 if the value of rs is less than the value of the immediate, otherwise sets it to 0. This
instruction performs a signed comparison.

• SLTUI rt, rs, immediate

Sets the value of rt to 1 if the value of rs is less than the value of the immediate, otherwise sets it to 0. This
instruction performs an unsigned comparison.

• XORI rt, rs, immediate

Executes a bitwise exclusive OR (XOR) between rs and the immediate value, and puts the result into rt.

The instruction set

7

Load/Store instructions
This category contains all the instructions that operate transfers between registers and the memory. All of these
instructions are in the form:

[label:] instruction rt, offset(base)

Where rt is the source or destination register, depending if we are using a store or a load instruction; offset is a label
or an immediate value and base is a register. The address is obtained by adding to the value of the register base the
immediate value offset.

The address specified must be aligned according to the data type that is treated. Load instructions ending with “U”
treat the content of the register rt as an unsigned value.

List of load instructions:

• LB rt, offset(base)

Loads the content of the memory cell at address specified by offset and base in register rt, treating it as a
signed byte.

• LBU rt, offset(base)

Loads the content of the memory cell at address specified by offset and base in register rt, treating it as an
unsigned byte.

• LD rt, offset(base)

Loads the content of the memory cell at address specified by offset and base in register rt, treating it as a
double word.

• LH rt, offset(base)

Loads the content of the memory cell at address specified by offset and base in register rt, treating it as a
signed half word.

• LHU rt, offset(base)

Loads the content of the memory cell at address specified by offset and base in register rt, treating it as an
unsigned half word.

• LW rt, offset(base)

Loads the content of the memory cell at address specified by offset and base in register rt, treating it as a
signed word.

• LWU rt, offset(base)

Loads the content of the memory cell at address specified by offset and base in register rt, treating it as a
signed word.

List of store instructions:

• SB rt, offset(base)

Stores the content of register rt in the memory cell specified by offset and base, treating it as a byte.

• SD rt, offset(base)

Stores the content of register rt in the memory cell specified by offset and base, treating it as a double word.

• SH rt, offset(base)

Stores the content of register rt in the memory cell specified by offset and base, treating it as a half word.

• SW rt, offset(base)

Stores the content of register rt in the memory cell specified by offset and base, treating it as a word.

Flow control instructions
Flow control instructions are used to alter the order of instructions that are fetched by the CPU. We can make a
distinction between these instructions: R-Type, I-Type and J-Type.

The instruction set

8

Those instructions effectively executes the jump in the ID stage, so often an useless fetch is executed. In this case,
two instructions are removed from the pipeline, and the branch taken stalls counter is incremented by two units.

List of R-Type flow control instructions:

• JALR rs

Puts the content of rs into the program counter, and puts into R31 the address of the instruction that follows the
JALR instruction, the return value.

• JR rs

Puts the content of rs into the program counter.

List of I-Type flow control instructions:

• B offset

Unconditionally jumps to offset

• BEQ rs, rt, offset

Jumps to offset if rs is equal to rt.

• BEQZ rs, offset

Jumps to offset if rs is equal to zero.

• BGEZ rs, offset

If rs is greather than zero, does a PC-relative jump to offset.

• BNE rs, rt, offset

Jumps to offset if rs is not equal to rt.

• BNEZ rs, offset

Jumps to offset if rs is not equal to zero.

List of J-Type flow control instructions:

• J target

Puts the immediate value target into the program counter.

• JAL target

Puts the immediate value target into the program counter, and puts into R31 the address of the instruction that
follows the JAL instruction, the return value.

The SYSCALL instruction
The SYSCALL instruction offers to the programmer an operating-system-like interface, making available six different
system calls.

System calls expect that the address of their parameters is stored in register R14 ($t6), and will put their return value
in register R1 ($at).

System calls follow as much as possible the POSIX convention.

SYSCALL 0 - exit()

SYSCALL 0 does not expect any parameter, nor it returns anything. It simply stops the simulator.

Note that if the simulator does not find SYSCALL 0 in the source code, or any of its equivalents (HALT - TRAP 0), it
will be added automatically at the end of the source.

SYSCALL 1 - open()

The SYSCALL 1 expects two parameters: a zero-terminated string that indicates the pathname of the file that must
be opened, and a double word containing an integer that indicates the flags that must be used to specify how to open
the file.

The instruction set

9

This integer must be built summing the flags that you want to use, choosing them from the following list:

• O_RDONLY (0x01) Opens the file in read only mode;

• O_WRONLY (0x02) Opens the file in write only mode;

• O_RDWR (0x03) Opens the file in read/write mode;

• O_CREAT (0x04) Creates the file if it does not exist;

• O_APPEND (0x08) In write mode, appends written text at the end of the file;

• O_TRUNC (0x08) In write mode, deletes the content of the file as soon as it is opened.

It is mandatory to specify one of the first three modes. The fourth and the fifth modes are exclusive, you can not
specify O_APPEND if you specify O_TRUNC (and vice versa).

You can specify a combination of modes by simply adding the integer values of those flags. For instance, if you want
to open a file in write only mode and append the written text to the end of file, you should specify the mode 2 + 8 =
10.

The return value of the system call is the new file descriptor associated with the file, that can be further used with the
other system calls. If there is an error, the return value will be -1.

SYSCALL 2 - close()

SYSCALL 2 expects only one parameter, the file descriptor of the file that is closed.

If the operation ends successfully, SYSCALL 2 will return 0, otherwise it will return -1. Possible causes of failure are
the attempt to close a non-existent file descriptor or the attempt to close file descriptors 0, 1 or 2, that are associated
respectively to standard input, standard output and standard error.

SYSCALL 3 - read()

SYSCALL 3 expects three parameters: the file descriptor to read from, the address where the read data must be put
into, the number of bytes to read.

If the first parameter is 0, the simulator will prompt the user for an input, via an input dialog. If the length of the input
is greater than the number of bytes that have to be read, the simulator will show again the message dialog.

It returns the number of bytes that have effectively been read, or -1 if the read operation fails. Possible causes of
failure are the attempt to read from a non-existent file descriptor, the attempt to read from file descriptors 1 (standard
output) or 2 (standard error) or the attempt to read from a write-only file descriptor.

SYSCALL 4 - write()

SYSCALL 4 expects three parameters: the file descriptor to write to, the address where the data must be read from,
the number of bytes to write.

If the first parameter is two or three, the simulator will pop the input/output frame, and write there the read data.

It returns the number of bytes that have been written, or -1 if the write operation fails. Possible causes of failure are
the attempt to write to a non-existent file descriptor, the attempt to write to file descriptor 0 (standard input) or the
attempt to write to a read-only file descriptor.

SYSCALL 5 - printf()

SYSCALL 5 expects a variable number of parameters, the first being the address of the so-called “format string”. In
the format string can be included some placeholders, described in the following list:

• %s indicates a string parameter;

• %i indicates an integer parameter;

• %d behaves like %i;

• %% literal %

For each %s, %d or %i placeholder, SYSCALL 5 expects a parameter, starting from the address of the previous one.

The instruction set

10

When the SYSCALL finds a placeholder for an integer parameter, it expects that the corresponding parameter is an
integer value, when if it finds a placeholder for a string parameter, it expects as a parameter the address of the string.

The result is printed in the input/output frame, and the number of bytes written is put into R1.

If there’s an error, -1 is written to R1.

Other instructions
In this section there are instructions that do not fit in the previous categories.

BREAK

The BREAK instruction throws an exception that has the effect to stop the execution if the simulator is running. It can
be used for debugging purposes.

NOP

The NOP instruction does not do anything, and it’s used to create gaps in the source code.

TRAP

The TRAP instruction is a deprecated alias for the SYSCALL instruction.

HALT

The HALT instruction is a deprecated alias for the SYSCALL 0 instruction, that halts the simulator.

Floating Point Unit
This chapter 1 describes the Floating Point Unit (FPU) emulated in EduMIPS64.

In the first paragraph we introduce the double format, the special floating point values defined in the IEEE 754
standard and the exceptions that floating point computations can raise.

In the second paragraph we explain how EduMIPS64 allows users to enable or disable the IEEE floating point traps.

In the third paragraph we describe how double precision numbers and special values can be specified in the source
programs.

In the fourth paragraph, we introduce the FCSR register, used by the FPU to represent its state. It contains
information about rounding, the boolean results of comparison operations and the policies for handling IEEE floating
point exceptions.

In the fifth and last paragraph, we present all the MIPS64 floating point instructions that have been implemented in
EduMIPS64.

Before starting the discussion about the FPU, we define the domain of floating point double precision numbers as
[-1.79E308,-4.94E-324] ■ {0} ■ [4.94E-324,1.79E308].

1 This chapter is part of the Bachelor’s degree thesis by Massimo Trubia: “Progetto e
implementazione di un modello di Floating Point Unit per un simulatore di CPU MIPS64”.

Special values
Floating point arithmetics allows the programmer to choose whether to stop the computation or not, if invalid
operations are carried on. In this scenario, operations like the division between zeroes or square roots of negative
numbers must produce a result that, not being a number (NaN) is treated as somehting different.

Floating Point Unit

11

NaN or Invalid Operation

The IEEE Standard for Floating-Point Arithmetic (IEEE 754) defined that invalid arithmetic operations can either
signal the error while the program is running (using a trap for the IEEE exception Invalid Operation) or return as a
result the special value QNan (Quit Not a Number). Another NaN value, that inconditionally raises the same trap
once it is detected as being one of the operands, is SNan (Signalling Not a Number). This value is seldom used in
applications, and historically it has been used to initialize variables.

Zeroes or Underflows

Another special value defined by the standard is zero. Since the double format does not include the zero in its
domain, it is considered a special value. There is a positive zero and a negative zero: the former is used when a
representation of a negative number ∈]-4.94E-324,0[) is attempted, and a result is required (as opposed to allowing
an Underflow trap), while the latter is used when the number that should be represented is ∈ [0,4.94E-324[, and the
Underflow trap is disabled.

Infinites or Overflows

When a program attempts to represent a value with an extremely large absolute value (∈]-∞,-1.79E308[■
]1.79E308,+∞[), that is outside the domain of double values, the CPU returns either -∞ or +∞. The alternative is to
trigger a trap for the exceptional Overflow condition.

Infinites can also be returned in case of a division by zero; in that case the sign of the infinite is given by the product
of the sign of the zero and the sign of the dividend. The Divide by zero trap can be alternatively raised.

Exception configuration
EduMIPS64 allows the user to enable or disable the traps for 4 of the 5 IEEE exceptions, through the FPU
Exceptions tab in the Configure → Settings window. If any of them is disabled, the respective special value will be
returned (as described in Special values).

The .double directive
The .double directive must be used in the .data section of source files, and allows to allocate a memory cell for a
double value.

The directive can be used in 2 ways:

variable-name: .double double_number
variable-name: .double keyword

where double_number can be represented either in extended notation (1.0,0.003), or in scientific
notation(3.7E-12,0.5E32). keyword can be POSITIVEINFINITY, NEGATIVEINFINITY, POSITIVEZERO,
NEGATIVEZERO, SNAN e QNAN, thus allowing to directly insert in memory the special values.

The FCSR register
The FCSR (Floating point Control Status Register) is the register that controls several functional aspects of the FPU.
It is 32 bits long and it is represented in the statistics window.

The FCC field is 8 bits wide, from 0 to 7. The conditional instructions (C.EQ.D,C.LT.D) use it to save the boolean
result of comparisons between two registers.

The Cause, Enables and Flag fields handle the dynamics of IEEE exceptions described in Special values. Each of
them is composed of 5 bits, V (Invalid Operation), Z (Divide by Zero), O (Overflow), U (Underflow) and I (Inexact); the
latter is not yet used.

The Clause field bits are set if the corresponding IEEE exceptions occur during the execution of a program.

The Enable field bits are set through the configuration window and show the IEEE exceptions for which traps are
enabled.

The Flag field shows the exceptions that have happened but, since the trap is not enabled for that particular
exception, have returned special values (the ones described in Special values).

Floating Point Unit

12

The RM field describes the rounding method currently in use to convert floating point numbers to integers (see the
description of the CVT.L.D instruction).

Instruction set
This section describes the MIPS64 FPU instruction implemented by EduMIPS64; they are listed in alphabetic order.
The operations performed by the instruction are described using a notation according to which the i-th memory cell is
represented as memory[i], and the FCC fields of the FCSR register are FCSR_FCC[cc], cc ∈ [0,7].

In some instructions, to avoid ambiguity, the registers are represented as GPR[i] and FPR[i], i ∈ [0,31], but in
most cases we just use the rx or fx notation, with x ∈ {d,s,t}. The three letters are used to indicate the purpose of
each register (destination, source, third). Lastly, the values returned by conversion operations are represented with
the following notation: convert_conversiontype(register[,rounding_type]), where the
rounding_type parameter is optional.

Some examples for the FPU instructions are available at
http://www.edumips.org/attachment/wiki/Upload/FPUMaxSamples.rar.

• ADD.D fd, fs, ft

Description: fd = fs + ft

Exceptions: Overflow and underflow traps are generated if the result cannot be represented according to IEEE
754. Invalid operation is raised if fs or ft contain QNaN or SNan, or if an invalid operation (+∞ - ∞) is executed.

• BC1F cc, offset

Description: if FCSR_FCC[cc] == 0 then branch

If FCSR_FCC[cc] is false, do a PC-relative branch.

Example:

C.EQ.D 7,f1,f2
BC1F 7,label

In this example, C.EQ.D checks if f1 and f2 are equal, writing the results of the comparison in the 7th bit of the
FCC field of the FCSR register. After that, BC1F jumps to label if the result of the comparison is 0 (false).

• BC1T cc, offset

Description: if FCSR_FCC[cc] == 1 then branch

If FCSR_FCC[cc] is true, do a PC-relative branch.

Example:

C.EQ.D 7,f1,f2
BC1T 7,label

In this example, C.EQ.D checks if f1 and f2 are equal, writing the results of the comparison in the 7th bit of the
FCC field of the FCSR register. After that, BC1F jumps to label if the result of the comparison is 1 (false).

• C.EQ.D cc, fs, ft

Description: FCSR_FCC[cc] = (fs==ft)

Checks if fs is equal to ft, and saves the result of the comparison in FCSR_FCC[cc]. See examples for BC1T,
BC1F.

Exceptions: Invalid Operation can be thrown if fs or ft contain QNaN (trap is triggered if it is enabled) o SNaN
(trap is always triggered).

• C.LT.D cc, fs, ft

Description: FCSR_FCC[cc] = (fs<ft)

Checks if fs is smaller than ft, and saves the result of the comparison in FCSR_FCC[cc].

Example:

Floating Point Unit

13

C.LT.D 2,f1,f2
BC1T 2,target

In this example, C.LT.D checks if f1 is smaller than f2, and saves the result of the comparison in the second
bit of the FCC field of the FCSR register. After that, BC1T jumps to target if that bit is set to 1.

Exceptions: Invalid Operation can be thrown if fs or ft contain QNaN (trap is triggered if it is enabled) o SNaN
(trap is always triggered).

• CVT.D.L fd, fs

Description: fd = convert_longToDouble(fs)

Converts a long to a double.

Example:

DMTC1 r6,f5
CVT.D.L f5,f5

In this example, DMTC1 copies the value of GPR r6 to FPR f5; after that CVT.D.L converts the value stored in
f5 from long to double. If for instance r6 contains the value 52, after the execution of DMTC1 the binary
representation of 52 gets copied to f5. After the execution of CVT.D.L, f5 contains the IEEE 754 representation
of 52.0.

Exceptions: Invalid Operation is thrown if fs contains QNaN, SNaN or an infinite.

• CVT.D.W fd, fs

Description: fd = convert_IntToDouble(fs)

Converts an int to a double.

Example:

MTC1 r6,f5
CVT.D.W f5,f5

In this example, MTC1 copies the lower 32 bit of the GPR r6 into the FPR f5. Then, CVT.D.W, reads f5 as an int,
and converts it to double.

If we had r6=0xAAAAAAAABBBBBBBB, after the execution of MTC1 we get f5=0xXXXXXXXXBBBBBBBB; its
upper 32 bits (XX..X) are now UNDEFINED (haven’t been overwritten). CVT.D.W interprets f5 as an int
(f5=-1145324613), and converts it to double(f5=0xC1D1111111400000 =-1.145324613E9).

Exceptions: Invalid Operation is thrown if fs contains QNaN, SNaN or an infinite.

• CVT.L.D fd, fs

Description: fd = convert_doubleToLong(fs, CurrentRoundingMode)

Converts a double to a long, rounding it before the conversion.

Example:

CVT.L.D f5,f5
DMFC1 r6,f5

CVT.L.D the double value in f5 to a long; then DMFC1 copies f5 to r6; the result of this operation depends on
the current rounding modality, that can be set in the FPU Rounding tab of the Configure → Settings window.

Rounding examples

Tipo RM field f5 register r6 register

To nearest 0 6.4 6

To nearest 0 6.8 7

Floating Point Unit

14

To nearest 0 6.5 6 (to even)

To nearest 0 7.5 8 (to even)

Towards 0 1 7.1 7

Towards 0 1 -2.3 -2

Towards ∞ 2 4.2 5

Towards ∞ 2 -3.9 -3

Towards -∞ 3 4.2 4

Towards -∞ 3 -3.9 -4

• CVT.W.D fd, fs

Description: fd = convert_DoubleToInt(fs, CurrentRoundingMode)

Converts a double to an int, using the current rounding modality.

Exceptions: Invalid Operation is thrown if fs contains an infinite value, any NaN or the results is outside the
signed int domain [-2 63, 2 63 -1]

• DIV.D fd, fs, ft

Description: fd = fs \div ft

Exceptions: Overflow or Underflow are raised if the results cannot be represented using the IEEE 754 standard.
Invalid Operation is raised if fs or ft contain QNaN or SNan, or if an invalid operation is executed (0div0,∞ div
∞). Divide by zero is raised if a division by zero is attempted with a dividend that is not QNaN or SNaN.

• DMFC1 rt,fs

Description: rt = fs

Executes a bit per bit copy of the FPR fs into the GPR rt.

• DMTC1 rt, fs

Description: fs = rt

Executes a bit per bit copy of the GPR rt into the FPR fs.

• L.D ft, offset(base)

Description: ft = memory[GPR[base] + offset]

Loads from memory a doubleword and stores it in ft.

Note

L.D is not present in the MIPS64 ISA, it is an alias for LDC1 that is present in EduMIPS64 for compatibility with
WinMIPS64.

• LDC1 ft, offset(base)

Description: memory[GPR[base] + offset]

Loads from memory a doubleword and stores it in ft.

• LWC1 ft, offset(base)

Description: ft = memory[GPR[base] + offset]

Loads from memory a word and stores it in ft.

• MFC1 rt, fs

Description: rt = readInt(fs)

Reads the fs FPR as an int and writes its value to the rt GPR as long. Example:

Floating Point Unit

15

MFC1 r6,f5
SD r6,mem(R0)

Let f5=0xAAAAAAAABBBBBBBB; MFC1 reads f5 as an int (lower 32 bits), interpreting BBBBBBBB as
-1145324613, and writes the value to f6 (64 bits). After the execution of MFC1, r6=0xFFFFFFFFBBBBBBBB =
-1145324613. So the SD instruction will write to memory a doubleword with this value, since the sign in r6 was
extended.

• MOVF.D fd, fs, cc

Description: if FCSR_FCC[cc] == 0 then fd=fs

If FCSR_FCC[cc] is false, the copies fs to fd.

• MOVT.D fd, fs, cc

Description: if FCSR_FCC[cc] == 1 then fd=fs

If FCSR_FCC[cc] is true, the copies fs to fd.

• MOV.D fd, fs

Description: fd = fs

Copies fs to fd.

• MOVN.D fd, fs, rt

Description: if rt != 0 then fd=fs

If rt is not zero, copies fs to fd.

• MOVZ.D fd, fs, rt

Description: if rt == 0 then fd=fs

If rt is equal to zero, copies fs to fd.

• MTC1 rt, fs

Description: fs = rt
0..31

Copies the lower 32 bit of rt to fs.

Example:

MTC1 r6,f5

Let r5=0xAAAAAAAABBBBBBBB; MTC1 reads the lower 32 bits of r5 copying them to the 32 lower bits of f5. The
higher 32 bits of f5 are not overwritten.

• MUL.D fd, fs, ft

Description: fd = fs × ft

Exceptions: Overflow or Underflow are raised if the results cannot be represented using the IEEE 754 standard.
Invalid Operation is raised if fs or ft contain QNaN or SNan, or if an invalid operation is executed (multiply by ∞
OR BY QNaN).

• S.D ft, offset(base)

Description: memory[base+offset] = ft

Copies ft to memory.

Note

S.D is not present in the MIPS64 ISA, it is an alias for SDC1 that is present in EduMIPS64 for compatibility with
WinMIPS64.

Floating Point Unit

16

• SDC1 ft, offset(base)

Description: memory[base+offset] = ft

Copies ft to memory.

• SUB.D fd, fs, ft

Description: fd = fs-ft

Exceptions: Overflow and underflow traps are generated if the result cannot be represented according to IEEE
753. Invalid operation is raised if fs or ft contain QNaN or SNan, or if an invalid operation (+∞ - ∞) is executed.

• SWC1 ft, offset(base)

Description: memory[base+offset] = ft

Copies the lower 32 bits of ft to memory.

The user interface
The GUI of EduMIPS64 is inspired to WinMIPS64 user interface. In fact, the main window is identical, except for
some menus.

The EduMIPS64 main window is composed by a menu bar and six frames, showing different aspects of the
simulation. There’s also a status bar, that has the double purpose to show the content of memory cells and registers
when you click them and to notify the user that the simulator is running when the simulation has been started but
verbose mode is not selected.

The status bar also shows the CPU status. It can show one of the following four states:

• READY The CPU hasn’t executed any instructions (no program is loaded).

• RUNNING The CPU is executing a series of instructions.

• STOPPING The CPU has found a termination instruction, and is executing the instructions that are already in
the pipeline before terminating the execution.

• HALTED The CPU is stopped: a program just finished running.

Note that the CPU status is different from the simulator status. The simulator may execute a number of CPU cycles
and then stop executing, allowing the user to inspect memory and registers: in this state, between CPU cycles, the
CPU stays in RUNNING or STOPPING state. Once the CPU reaches the HALTED state, the user cannot run any
CPU cycle without loading a program again (the same program, or a different one).

There are more details in the following sections.

The menu bar
The menu bar contains six menus:

File

The File menu contains menu items about opening files, resetting or shutting down the simulator, writing trace files.

• Open… Opens a dialog that allows the user to choose a source file to open.

• Open recent Shows the list of the recent files opened by the simulator, from which the user can choose the file
to open

• Reset Resets the simulator, keeping open the file that was loaded but resetting the execution.

• Write Dinero Tracefile… Writes the memory access data to a file, in xdin format.

• Exit Closes the simulator.

The Write Dinero Tracefile… menu item is only available when a whole source file has been executed and the end
has been already reached.

The user interface

17

Execute

The Execute menu contains menu items regarding the execution flow of the simulation.

• Single Cycle Executes a single simulation step

• Run Starts the execution, stopping when the simulator reaches a SYSCALL 0 (or equivalent) or a BREAK
instruction, or when the user clicks the Stop menu item (or presses F9).

• Multi Cycle Executes some simulation steps. The number of steps executed can be configured through the
Setting dialog.

• Stop Stops the execution when the simulator is in “Run” or “Multi cycle” mode, as described previously.

This menu is only available when a source file is loaded and the end of the simulation is not reached. The Stop menu
item is available only in “Run” or “Multi Cycle” mode.

Note that the simulator slows down when updating the UI. If you want to execute long (thousands of cycles)
programs quickly, disable the “Sync graphics with CPU in multi-step execution” option.

Configure

The Configure menu provides facilities for customizing EduMIPS64 appearance and behavior.

• Settings… Opens the Settings dialog, described in the next sections of this chapter;

• Change Language Allows the user to change the language used by the user interface. Currently only English
and Italian are supported. This change affects every aspect of the GUI, from the title of the frames to the online
manual and warning/error messages.

The Settings… menu item is not available when the simulator is in “Run” or “Multi Cycle” mode, because of potential
race conditions.

Tools

This menu contains only an item, used to invoke the Dinero Frontend dialog.

• Dinero Frontend… Opens the Dinero Frontend dialog.

This menu is not available until you have not executed a program and the execution has reached its end.

Window

This menu contains items related to operations with frames.

• Tile Sorts the visible windows so that no more that three frames are put in a row. It tries to maximize the space
occupied by every frame.

The other menu items simply toggle the status of each frame, making them visible or minimizing them.

Help

This menu contains help-related menu items.

• Manual… Shows the Help dialog.

• About us… Shows a cute dialog that contains the names of the project contributors, along with their roles.

Frames
The GUI is composed by seven frames, six of which are visible by default, and one (the I/O frame) is hidden.

Cycles

The Cycles frame shows the evolution of the execution flow during time, showing for each time slot which
instructions are in the pipeline, and in which stage of the pipeline they are located.

The user interface

18

Registers

The Registers frame shows the content of each register. By left-clicking on them you can see in the status bar their
decimal (signed) value, while double-clicking on them will pop up a dialog that allows the user to change the value of
the register.

Statistics

The Statistics frame shows some statistics about the program execution.

Note that during the last execution cycle the cycles counter is not incremented, because the last execution cycle is
not a full CPU cycle but rather a pseudo-cycle whose only duties are to remove the last instruction from the pipeline
and increment the counter of executed instructions.

Pipeline

The Pipeline frame shows the actual status of the pipeline, showing which instruction is in which pipeline stage.
Different colors highlight different pipeline stages.

Memory

The Memory frame shows memory cells content, along with labels and comments taken from the source code.
Memory cells content, like registers, can be modified double-clicking on them, and clicking on them will show their
decimal value in the status bar. The first column shows the hexadecimal address of the memory cell, and the second
column shows the value of the cell. Other columns show additional info from the source code.

Code

The Code window shows the instructions loaded in memory. The first column shows the address of the instruction,
while the second column shows the hexadecimal representation of the instructions. Other columns show additional
info taken from the source code.

Input/Output

The Input/Output window provides an interface for the user to see the output that the program creates through the
SYSCALLs 4 and 5. Actually it is not used for input, as there’s a dialog that pops up when a SYSCALL 3 tries to read
from standard input, but future versions will include an input text box.

Dialogs
Dialogs are used by EduMIPS64 to interact with the user in many ways. Here’s a summary of the most important
dialogs:

Settings

In the Settings dialog various aspects of the simulator can be configured. Clicking on the “OK” button will cause the
options to be saved, while clicking on “Cancel” (or simply closing the window) will cause the changes to be ignored.
Don’t forget to click “OK” if you want to save your changes.

The Main Settings tab allow to configure forwarding and the number of steps in the Multi Cycle mode.

The Behavior tab allow to enable or disable warnings during the parsing phase, the “Sync graphics with CPU in
multi-step execution” option, when checked, will synchronize the frames’ graphical status with the internal status of
the simulator. This means that the simulation will be slower, but you’ll have an explicit graphical feedback of what is
happening during the simulation. If this option is checked, the “Interval between cycles” option will influence how
many milliseconds the simulator will wait before starting a new cycle. Those options are effective only when the
simulation is run using the “Run” or the “Multi Cycle” options from the Execute menu.

The last two options set the behavior of the simulator when a synchronous exception is raised. If the “Mask
synchronous exceptions” option is checked, the simulator will ignore any Division by zero or Integer overflow
exception. If the “Terminate on synchronous exception” option is checked, the simulation will be halted if a
synchronous exception is raised. Please note that if synchronous exceptions are masked, nothing will happen, even

The user interface

19

if the termination option is checked. If exceptions are not masked and the termination option is not checked, a dialog
will pop out, but the simulation will go on as soon as the dialog is closed. If exceptions are not masked and the
termination option is checked, the dialog will pop out, and the simulation will be stopped as soon as the dialog is
closed.

The last tab allows to change the appearance of the user interface. There are options to change the colors
associated to the different pipeline stages, an option to choose whether memory cells are shown as long or double
values and an option to set the UI font size.

Note that the UI scaling with font size is far from perfect, but it should be enough to make the simulator usable with
high-resolution displays (e.g., 4k).

Dinero Frontend

The Dinero Frontend dialog allows to feed a DineroIV process with the trace file internally generated by the execution
of the program. In the first text box there is the path of the DineroIV executable, and in the second one there must be
the parameters of DineroIV.

The lower section contains the output of the DineroIV process, from which you can take the data that you need.

Help

The Help dialog brings up the on-line manual, which is an HTML copy of this document.

Command line options
Four command line options are available. They are described in the following list, with the long name enclosed in
round brackets. Long and short names can be used in the same way.

• -v (–version) prints the simulator version and exits.

• -h (–help) prints a help message with a brief summary of command line options, then exits.

• -f (–file) filename opens filename in the simulator

• -r (–reset) resets the stored configuration to the default values

• -d (–debug) enters Debug mode

• -hl (–headless) Runs EduMIPS64 in headless mode (no gui)

The –debug flag has the effect to activate Debug mode. In this mode, a new frame is available, the Debug frame,
and it shows the log of internal activities of EduMIPS64. It is not useful for the end user, it is meant to be used by
EduMIPS64 developers.

Code Examples
In this chapter you’ll find some sample listings that will be useful in order to understand how EduMIPS64 works.

SYSCALL
It’s important to understand that examples for SYSCALL 1-4 refer to the print.s file, that is the example for SYSCALL
5. If you want to run the examples, you should copy the content of that example in a file named print.s and include it
in your code.

Some examples use an already existing file descriptor, even if it doesn’t truly exist. If you want to run those
examples, use the SYSCALL 1 example to open a file.

SYSCALL 0

When SYSCALL 0 is called, it stops the execution of the program. Example:

.code
 daddi r1, r0, 0 ; saves 0 in R1
 syscall 0 ; exits

Code Examples

20

SYSCALL 1

Example program that opens a file:

 .data
error_op: .asciiz "Error opening the file"
ok_message: .asciiz "All right"
params_sys1: .asciiz "filename.txt"
 .word64 0xF

 .text
open: daddi r14, r0, params_sys1
 syscall 1
 daddi $s0, r0, -1
 dadd $s2, r0, r1
 daddi $a0,r0,ok_message
 bne r1,$s0,end
 daddi $a0,r0,error_op

end: jal print_string
 syscall 0

 #include print.s

In the first two rows we write to memory the strings containing the error message and the success message that we
will pass to print_string function, and we give them two labels. The print_string function is included in the print.s file.

Next, we write to memory the data required from SYSCALL 1 (row 4, 5), the path of the file to be opened (that must
exist if we work in read or read/write mode) and, in the next memory cell, an integer that defines the opening mode.

In this example, the file was opened using the following modes: O_RDWR | O_CREAT | O_APPEND. The number
15 (0xF in base 16) comes from the sum of the values of these three modes (3 + 4 + 8).

We give a label to this data so that we can use it later.

In the .text section, we save the address of params_sys1 (that for the compiler is a number) in register r14; next we
can call SYSCALL 1 and save the content of r1 in $s2, so that we can use it in the rest of the program (for instance,
with other SYSCALL).

Then the print_string function is called, passing error_op as an argument if r1 is equal to -1 (rows 13-14) or else
passing ok_message as an argument if everything went smoothly (rows 12 and 16).

SYSCALL 2

Example program that closes a file:

 .data
params_sys2: .space 8
error_cl: .asciiz "Error closing the file"
ok_message: .asciiz "All right"

 .text
close: daddi r14, r0, params_sys2
 sw $s2, params_sys2(r0)
 syscall 2
 daddi $s0, r0, -1
 daddi $a0, r0, ok_message
 bne r1, $s0, end
 daddi $a0, r0, error_cl

end: jal print_string
 syscall 0

 #include print.s

Code Examples

21

First we save some memory for the only argument of SYSCALL 2, the file descriptor of the file that must be closed
(row 2), and we give it a label so that we can access it later.

Next we put in memory the strings containing the error message and the success message, that will be passed to the
print_string function (rows 3, 4).

In the .text section, we save the address of params_sys2 in r14; then we can call SYSCALL 2.

Now we call the print_string function using error_cl as a parameter if r1 yields -1 (row 13), or we call it using
ok_message as a parameter if all went smoothly (row 11).

Note: This listing needs that registry $s2 contains the file descriptor of the file to use.

SYSCALL 3

Example program that reads 16 bytes from a file and saves them to memory:

 .data
params_sys3: .space 8
ind_value: .space 8
 .word64 16
error_3: .asciiz "Error while reading from file"
ok_message: .asciiz "All right"

value: .space 30

 .text
read: daddi r14, r0, params_sys3
 sw $s2, params_sys3(r0)
 daddi $s1, r0, value
 sw $s1, ind_value(r0)
 syscall 3
 daddi $s0, r0, -1
 daddi $a0, r0,ok_message
 bne r1, $s0,end
 daddi $a0, r0,error_3

end: jal print_string
 syscall 0

 #include print.s

The first 4 rows of the .data section contain the arguments of SYSCALL 3, the file descriptor of the from which we
must read, the memory address where the SYSCALL must save the read data, the number of bytes to read. We give
labels to those parameters that must be accessed later. Next we put, as usual, the strings containing the error
message and the success message.

In the .text section, we save the params_sys3 address to register r14, we save in the memory cells for the SYSCALL
parameters the file descriptor (that we suppose to have in $s2) and the address that we want to use to save the read
bytes.

Next we can call SYSCALL 3, and then we call the print_string function passing as argument error_3 or
ok_message, according to the success of the operation.

SYSCALL 4

Example program that writes to a file a string:

 .data
params_sys4: .space 8
ind_value: .space 8
 .word64 16
error_4: .asciiz "Error writing to file"
ok_message: .asciiz "All right"
value: .space 30

Code Examples

22

 .text

write: daddi r14, r0,params_sys4
 sw $s2, params_sys4(r0)
 daddi $s1, r0,value
 sw $s1, ind_value(r0)
 syscall 4
 daddi $s0, r0,-1
 daddi $a0, r0,ok_message
 bne r1, $s0,end
 daddi $a0, r0,error_4

end: jal print_string
 syscall 0

 #include print.s

The first 4 rows of the .data section contain the arguments of SYSCALL 4, the file descriptor of the from which we
must read, the memory address from where the SYSCALL must read the bytes to write, the number of bytes to write.
We give labels to those parameters that must be accessed later. Next we put, as usual, the strings containing the
error message and the success message.

In the .text section, we save the params_sys4 address to register r14, we save in the memory cells for the SYSCALL
parameters the file descriptor (that we suppose to have in $s2) and the address from where we must take the bytes
to weite.

Next we can call SYSCALL 3, and then we call the print_string function passing as argument error_3 or
ok_message, according to the success of the operation.

SYSCALL 5

Example program that contains a function that prints to standard output the string contained in $a0:

 .data
params_sys5: .space 8

 .text
print_string:
 sw $a0, params_sys5(r0)
 daddi r14, r0, params_sys5
 syscall 5
 jr r31

The second row is used to save space for the string that must be printed by the SYSCALL, that is filled by the first
instruction of the .text section, that assumes that in $a0 there’s the address of the string to be printed.

The next instruction puts in r14 the address of this string, and then we can call SYSCALL 5 and print the string. The
last instruction sets the program counter to the content of r31, as the usual MIPS calling convention states.

A more complex usage example of SYSCALL 5

SYSCALL 5 uses a not-so-simple arguments passing mechanism, that will be shown in the following example:

 .data
format_str: .asciiz "%dth of %s:\n%s version %i.%i is being tested!"
s1: .asciiz "June"
s2: .asciiz "EduMIPS64"
fs_addr: .space 4
 .word 5
s1_addr: .space 4
s2_addr: .space 4
 .word 0

Code Examples

23

 .word 5
test:
 .code
 daddi r5, r0, format_str
 sw r5, fs_addr(r0)
 daddi r2, r0, s1
 daddi r3, r0, s2
 sd r2, s1_addr(r0)
 sd r3, s2_addr(r0)
 daddi r14, r0, fs_addr
 syscall 5
 syscall 0

The address of the format string is put into R5, whose content is then saved to memory at address fs_addr. The
string parameters’ addresses are saved into s1_addr and s2_addr. Those two string parameters are the ones that
match the two %s placeholders in the format string.

Looking at the memory, it’s obvious that the parameters matching the placeholders are stored immediately after the
address of the format string: numbers match integer parameters, while addresses match string parameters. In the
s1_addr and s2_addr locations there are the addresses of the two strings that we want to print instead of the %s
placeholders.

The execution of the example will show how SYSCALL 5 can handle complex format strings like the one stored at
format_str.

Code Examples

24

	Welcome to the EduMIPS64 documentation!
	Source files format
	Memory limits
	The .data section
	The .code section
	The #include command

	The instruction set
	ALU Instructions
	Load/Store instructions
	Flow control instructions
	The SYSCALL instruction
	SYSCALL 0 - exit()
	SYSCALL 1 - open()
	SYSCALL 2 - close()
	SYSCALL 3 - read()
	SYSCALL 4 - write()
	SYSCALL 5 - printf()

	Other instructions
	BREAK
	NOP
	TRAP
	HALT

	Floating Point Unit
	Special values
	NaN or Invalid Operation
	Zeroes or Underflows
	Infinites or Overflows

	Exception configuration
	The .double directive
	The FCSR register
	Instruction set

	The user interface
	The menu bar
	File
	Execute
	Configure
	Tools
	Window
	Help

	Frames
	Cycles
	Registers
	Statistics
	Pipeline
	Memory
	Code
	Input/Output

	Dialogs
	Settings
	Dinero Frontend
	Help

	Command line options

	Code Examples
	SYSCALL
	SYSCALL 0
	SYSCALL 1
	SYSCALL 2
	SYSCALL 3
	SYSCALL 4
	SYSCALL 5
	A more complex usage example of SYSCALL 5

