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Abstract
We present a new algorithm for efficiently converting a bi-
nary floating-point number into the shortest and correctly
rounded decimal representation. The algorithm is based on
Schubfach algorithm [1] introduced in around 2017-2018,
and is also inspired from Grisu [2] and Grisu-Exact [4]. In
addition to the core idea of Schubfach, Dragonbox utilizes
some Grisu-like ideas to minimize the number of expen-
sive 128-bit× 64-bit multiplications, at the cost of having
more branches and divisions-by-constants. According to our
benchmarks, Dragonbox performs better than Ryū, Grisu-
Exact, and Schubfach for both IEEE-754 binary32 and bi-
nary64 formats.

0. Disclaimer
This paper is not a completely formal writing, and is not
intended for publications into peer-reviewed conferences
or journals. The paper might contain some alleged claims
and/or lack of references.

1. Introduction
Due to recent popularity of JavaScript and JSON, interest
on fast and correct algorithm for converting between binary
and decimal representations of floating-point numbers has
been continuously increasing. As a consequence, many new
algorithms have been proposed recently, in spite of the long
history of the subject.

[Copyright notice will appear here once ’preprint’ option is removed.]

We will assume all floating-point numbers are in either
IEEE-754 binary32 or binary64 formats, as these are the
most common formats used today.12 We will also focus on
the binary-to-decimal conversion in this paper and will not
discuss how to do decimal-to-binary conversion. Contrary to
one might think, in fact decimal-to-binary conversion and
binary-to-decimal conversion are largely asymmetric, be-
cause of the asymmetric nature of input and output. In gen-
eral, for the input side, one needs to deal with wide variety of
possible input data, but the form of output is usually defini-
tive. On the other hand, for the output side, the input data
has a strict format but one needs to choose between various
possibilities of outputs. Floating-point I/O is not an excep-
tion. When it comes to decimal-to-binary conversion, which
corresponds to the input side, the input data can be usually
arbitrarily long so we have to somehow deal with that, but
any input data can, if not malformed, usually represent a
unique floating-point number. On the other hand, in binary-
to-decimal conversion, which corresponds to the output side,
the input is a single binary floating-point number but the out-
put can be all decimal numbers which any correct parser will
read as the original binary floating-point number. To resolve
this ambiguity, Steele and White proposed the following cri-
teria in [6]:3

1. Information preservation: a correct decimal-to-binary
converter must return the original binary floating-point
number,

2. Minimum-length output: the output decimal significand
should be as short as possible, and

3. Correct rounding: among all possible shortest outputs,
the one that is closest to the true value of the given
floating-point number should be chosen.

1 Details of these formats will be reviewed in Section 2
2 It should be not so difficult to generalize Dragonbox to similar formats,
such as IEEE-754 binary16 or binary128.
3 To be precise, the criteria given by Steele and White were in terms of the
character string generated from the decimal representation. However, we
can write those criteria in terms of the decimal representation itself as well.
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Notable examples of recently proposed binary-to-decimal
conversion algorithms include but not limited to Grisu [2],
Errol [3], Ryū [5], and Grisu-Exact [4]. Among these, Errol,
Ryū, and Grisu-Exact satisfy all of the above criteria. Grisu
does not satisfy all of the criteria, but Grisu3, which can
detect its failure to satisfy the criteria, with the fallback into
Dragon4 [6], proposed by Steele and White and satisfies all
the criteria, is still popular.

Schubfach [1] is another example of those algorithms, de-
veloped in around 2017-2018, but it seems that, compared to
Ryū, Schubfach did not get much attention from the public
probably because at that time there was no document ex-
plaining details of the algorithm. Nevertheless, the under-
lying idea of Schubfach is theoretically very appealing and
its implementation [7] also seems to outperform that of the
other algorithms.

Although Schubfach is already a very tight algorithm,
there can be ways to improve its performance further. One
possible way might be to eliminate the necessity to perform
three 128-bit× 64-bit multiplications all the time. The core
idea of Dragonbox is to achieve this by applying some Grisu-
like ideas to Schubfach.

2. IEEE-754 Specifications4

Before diving into the details of Dragonbox, let us review
IEEE-754 and fix some related notations. For a real number
w, by (binary) floating-point representation we mean the
representation

w = (−1)σw ·Fw · 2Ew

where σw = 0, 1, 0 ≤ Fw < 2, and Ew is an integer. We
say the above representation is normal if 1 ≤ Fw < 2. Of
course, there is no normal floating-point representation of 0,
while any other real number has a unique normal floating-
point representation. If the representation is not normal, we
say it is subnormal.

IEEE-754 specifications consist of the following rules
that define a mapping from the set of fixed-length bit patterns
bq−1bn−2 · · · b0 for some q into the real line augmented
with some special values:

1. The most-significant bit bq−1 is the sign σw.

2. The least-significant p-bits bp−1 · · · b0 are for storing the
significand Fw, while the remaining (q − p− 1)-bits are
for storing the exponent Ew. We call p the precision of
the representation.5

3. If q− p− 1 exponent bits are not all-zero nor all-one, the
representation is normal. In this case, we compute Fw as

Fw = 1 + 2−p ·
p−1∑
k=0

bk · 2k

4 This section is mostly copied from [4].
5 Usually, it is actually p+1 that is called the precision of the format in other
literatures. However, we call p the precision in this paper for simplicity.

and Ew as

Ew = −(2q−p−2 − 1) +

q−p−2∑
k=0

bp+k · 2k.

The constant term 2q−p−2 − 1 is called the bias, and we
denote this value as Emax := 2q−p−2 − 1.

4. If q− p− 1 exponent bits are all-zero, the representation
is subnormal. In this case, we compute Fw as

Fw = 2−p ·
p−1∑
k=0

bk · 2k

and let Ew = −(2q−p−2− 2). Let us denote this value of
Ew as Emin := −(2q−p−2 − 2).

5. If q−p−1 exponent bits are all-one, the pattern represents
either ±∞ when all of p significand bits are zero, or
NaN’s (Not-a-Number) otherwise.

When (q, p) = (32, 23), the resulting encoding format is
called binary32, and when (q, p) = (64, 52), the resulting
encoding format is called binary64.

For simplicity, let us only consider bit patterns corre-
sponding to positive real numbers from now on. Zeros, in-
finities, and NaN’s should be treated specially, and for neg-
ative numbers, we can simply ignore the sign until the fi-
nal output string is generated. Hence, for example, we do
not think of all-zero nor all-one patterns, and especially ex-
ponent bits are never all-one. Also, we always assume that
the sign bit is 0. With these assumptions, the mapping de-
fined above is one-to-one: each bit pattern corresponds to a
unique real number, and no different bit patterns correspond
to a same real number.

From now on, by saying w = Fw · 2Ew a floating-point
number we implicitly assumes that

(1) w is a positive number representable within an IEEE-754
binary format with some q and p, and

(2) Fw and Ew are those obtained from the rules above.

In particular, the representation is normal (1 ≤ Fw < 2) if
Ew 6= Emin and is can be subnormal (0 ≤ Fw < 1) only
if Ew = Emin. If the representation is normal, we call w a
normal number, and for otherwise, we call w a subnormal
number.

For a floating-point number w = Fw · 2Ew , we define
w− as the greatest floating-point number smaller than w.
When w is the minimum possible positive floating-number
representable within the specified encoding format, that is,
w = 2−p · 2Emin , then we define w− = 0. Similarly, we de-
fine w+ as the smallest floating-point number greater than
w. Again, if w is the largest possible finite number repre-
sentable within the format, that is, w = (2 − 2−p)2Emax ,
then we define w+ := 2Emax+1.
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In general, it can be shown that

w− =

{
(Fw − 2−p−1)2Ew if Fw = 1 and Ew 6= Emin

(Fw − 2−p)2Ew otherwise

and
w+ = (Fw + 2−p)2Ew .

We will also use the notations

m−w :=
w− + w

2
=


(Fw − 2−p−2)2Ew if Fw = 1 and

Ew 6= Emin

(Fw − 2−p−1)2Ew otherwise
,

m+
w :=

w + w+

2
= (Fw + 2−p−1)2Ew

to denote the midpoints of the intervals [w−, w], [w,w+],
respectively.

2.1 Rounding Modes
Floating-point calculations are inherently imprecise as the
available precision is limited. Hence, it is necessary to round
calculational results to make them fit into the precision limit.
Specifying how any rounding should be performed means to
define for each real number a corresponding floating-point
number in a consistent way. IEEE-754 currently defines five
rounding modes. We can describe those rounding modes by
specifying the inverse image in the real line of each floating-
point number w:

1. Round to nearest, ties to even: If the LSB (Least Signifi-
cant Bit) of the significand bits of w is 0, then the inverse
image is the closed interval [m−w ,m

+
w ]. Otherwise, it is

the open interval (m−w ,m
+
w). This is the default rounding

mode in most of the platforms. In fact, it is required to be
the default mode for binary encodings.

2. Round to nearest, ties away from zero: The inverse im-
age of w is the half-open interval [m−w ,m

+
w). This mode

is introduced in the 2008 revision of the IEEE-754 stan-
dard. Some platforms and languages, such as the recent
standards of the C and C++ languages, do not have the
corresponding way of representing this rounding mode.

3. Round toward 0: The inverse image of w is the half-open
interval [w,w+).

4. Round toward +∞: The inverse image of w is the half-
open intervals (w−, w] if w is positive, and [w,w+) if w
is negative.6

5. Round toward −∞: The inverse image of w is the half-
open intervals [w,w+) if w is positive, and (w−, w] is w
is negative.

6 We supposed to deal only with positive numbers, so w here is actually a
positive number. The phrases “if w is positive” or “if w is negative” simply
mean that the original input is positive or negative, respectively.

Though not included in the IEEE-754 standard, we can think
of the following additional rounding modes with their obvi-
ous meanings:

• Round to nearest, ties to odd

• Round to nearest, ties toward zero

• Round to nearest, ties toward +∞
• Round to nearest, ties toward −∞
• Round away from 0

Note that if I is the interval given as the inverse image
of w according to a given rounding mode, then a correct
decimal-to-binary converter must output w from any num-
bers in I . Therefore, in order to produce a shortest possible
decimal representation of w, we need to search for a num-
ber inside I that has the least number of decimal significand
digits.

2.2 Notations
From now on, we will assume that a floating-point number
w and a specific rounding mode is given so the interval I is
defined accordingly. Note that for all cases I is an interval
contained in the positive real axis and it avoids 0. We will
denote the left and the right endpoints of I as wL and wR,
respectively. For example, when one of the round-to-nearest
rounding mode is specified, wL = m−w and wR = m+

w . We
will also denote the length of I as ∆ := wR−wL. Note that
there are only three possible values of ∆:

1. ∆ = 2Ew−p−1, if wL = w−, wR = w, Fw = 1, and
Ew 6= Emin,

2. ∆ = 3 · 2Ew−p−2 if wL = m−w , wR = m+
w , Fw = 1, and

Ew 6= Emin, and

3. ∆ = 2Ew−p for all other cases.

We also denote

e := Ew − p, fc := Fw2p

so that fc is an integer and

w = fc · 2e,

w− =

{(
fc − 1

2

)
· 2e if Fw = 1 and Ew 6= Emin

(fc − 1) · 2e otherwise
,

w+ = (fc + 1) · 2e,

m−w =

{(
fc − 1

4

)
· 2e if Fw = 1 and Ew 6= Emin(

fc − 1
2

)
· 2e otherwise

,

m+
w =

(
fc +

1

2

)
· 2e.

With this notation, ∆ is one of 2e−1, 3 · 2e−2, or 2e.

3. Review of Schubfach
In this section, we will briefly review how Schubfach works.
Most of the results are from [1], but we changed the nota-
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tions and formulations, and also rewrote the proofs to help
understanding the rest of our paper.

The beauty of Schubfach is that, not like Ryū or Grisu-
Exact, it does not perform an iterative search to find the
shortest decimal representation. Rather, Schubfach finds it
with just one trial using the following simple fact:7

Proposition 3.1.
Let k0 := −blog10 ∆c. Then

1.
∣∣I ∩ 10−k0+1Z

∣∣ ≤ 1, and
2.
∣∣I ∩ 10−k0Z

∣∣ ≥ 1.8

where | · | denotes the cardinality the set and for any a ∈ R
and A ⊆ R, aA denotes the set {av : v ∈ A}.

Figure 1. If I is shorter than the unit, then it contains at
most one lattice point

Figure 2. If I is longer than the unit, then it contains at least
one lattice point

Proof. By definition of k0, we have

−k0 ≤ log10 ∆ < −k0 + 1,

or equivalently,

10−k0 ≤ ∆ < 10−k0+1. (1)

If
∣∣I ∩ 10−k0+1Z

∣∣ > 1, then it means there are at least
two distinct points in I which are apart from each other by
distance 10−k0+1. Hence, the length of I should be at least
10−k0+1, or equivalently,

∆ ≥ 10−k0+1,

which is a contradiction. This shows the first claim.
On the other hand, pick any point v ∈ I , then we know⌊

10k0v
⌋
≤ 10k0v <

⌊
10k0v

⌋
+ 1.

7 One might regard this proposition as a form of the pigeonhole principle.
In fact, the name Schubfach is coming from the German name of the
pigeonhole principle, Schubfachprinzip, meaning “drawer principle”.
8 In fact, we show in the proof that for any v ∈ I , at least one of

⌊
10kv

⌋
and

⌊
10kv

⌋
+ 1 should be in 10kI .

We claim that at least one of
⌊
10k0v

⌋
and

⌊
10k0v

⌋
+ 1 is in

10k0I . Suppose not, then the left endpoint of 10k0I should
lie inside

[⌊
10k0v

⌋
, 10k0v

]
and the right endpoint of 10k0I

should lie inside
[
10k0v,

⌊
10k0v

⌋
+ 1
]
. This implies that the

length of 10k0I is at most 1, but since 10−k0 ≤ ∆, it follows
that ∆ = 10−k0 and 10k0I =

(⌊
10k0v

⌋
,
⌊
10k0v

⌋
+ 1
)
.

Note that ∆ = 10−k0 is only possible for very rare cases;
indeed, since 5 does not appear as a prime factor of ∆ (as
a rational number), the equality ∆ = 10−k0 can hold only
when k0 = 0. Hence, we have ∆ = 1, which can hold only
when e = 1 or e = 0 because ∆ is one of 2e−1, 3 · 2e−2,
or 2e, depending on how I is given.9 However, this implies
that w = fc · 2e is an integer, but since w ∈ I , we get that
I ∩ Z 6= ∅. This is absurd, because I is an open interval
between two consecutive integers.

It should be noted that the shortest decimal numbers in
I are the elements of the intersection I ∩ 10−kZ where k
is the smallest integer making the intersection nonempty.
Although this sounds obvious, let us formally prove it. First,
we define the number of decimal significand digits of a
nonzero real number v as

⌊
log10(v · 10k)

⌋
+ 1 where k is

the smallest integer such that v · 10k ∈ Z. For example,

• If v = 1.23, then k = 2 and
⌊
log10(v · 10k)

⌋
+ 1 = 3,

• If v = 0.01234, then k = 5 and
⌊
log10(v · 10k)

⌋
+1 = 5,

and
• If v = 1200, then k = −2 and

⌊
log10(v · 10k)

⌋
+ 1 = 2.

Proposition 3.2.
The set I ∩ 10−kZ, where k is the smallest integer making
the intersection nonempty, is precisely the set of elements in
I with the smallest number of decimal significand digits..

Proof. By the assumption on k, we know that I ∩ 10−kZ
is not empty while I ∩ 10−k+1Z is empty. Equivalently,
10kI ∩ Z is not empty while 10k−1I ∩ Z is empty. Since
I is an interval, 10kI ∩ Z = {m,m+ 1, · · · ,M − 1,M}
for some integers m,M ∈ Z. Since 10k−1I ∩ Z is empty,
there is no multiple of 10 among m, · · · ,M . Hence, we get
blog10mc = blog10Mc; otherwise, we have

log10m < blog10mc+ 1

≤ blog10Mc ≤ log10M,

thus
m < 10blog10mc+1 ≤M,

which contradicts to that there is no multiple of 10 among
m, · · · ,M . Note that for any v in the set

I ∩ 10−kZ =
{

10−km, · · · , 10−kM
}
,

k is the smallest integer such that v · 10k is an integer, thus
all such v have blog10mc+ 1 decimal significand digits.

9 In fact, since I is an open interval, the first case is impossible, so we have
e = 0.
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Now, let us show that blog10mc + 1 is the minimum
possible number of decimal significand digits. To show that,
we first claim that

blog10(m− 1)c = blog10mc

if m 6= 1. Indeed, if not, then we have

log10(m− 1) < blog10(m− 1)c+ 1

≤ blog10mc ≤ log10m,

thus
m− 1 < 10blog10(m−1)c+1 ≤ m.

Since 10blog10(m−1)c + 1 is an integer, we must have m =
10blog10(m−1)c+1, which contradicts to that m is not a mul-
tiple of 10. This shows the claim.

Next, note that for any v ∈ I such that there exists l ∈ Z
with v · 10l ∈ Z, we have l ≥ k because of how we chose k.
If l = k, then v · 10l is one ofm, · · · ,M , so we may assume
l > k. Note also that we may assume m 6= 1, because if
m = 1 then the number of decimal significand digits of
elements in I∩10−kZ is 1, which is of course a lower bound
on the number of decimal significand digits of v. Now, since
we have⌊

log10(v · 10l)
⌋

=
⌊
log10(v · 10k)

⌋
+ (l − k)

≥
⌊
log10(v · 10k)

⌋
+ 1,

it suffices to show that
⌊
log10(v · 10k)

⌋
≥ blog10mc. This

inequality actually follows directly from our previous claim
blog10(m− 1)c = blog10mc; indeed, as 10−k(m − 1) is
not an element of I , we should have v > 10−k(m − 1), or
equivalently, v · 10k > m− 1, which implies⌊

log10(v · 10k)
⌋
≥ blog10(m− 1)c = blog10mc .

Since we have the following chain property

I ∩ 10−k+1Z ⊆ I ∩ 10−kZ

for all k ∈ Z, we get the following:

Corollary 3.3.
Let k0 := −blog10 ∆c. Then:

1. If I ∩ 10−k0+1Z is not empty, then the unique element in
it has the smallest number of decimal significand digits
in I .

2. Otherwise, elements in I ∩ 10−k0Z have the smallest
number of decimal significand digits.

Proof. Suppose first that I ∩ 10−k0+1Z is not empty. Let
l ∈ Z be the smallest integer such that I ∩ 10−lZ is not
empty, then by the chain property, we know

∅ 6= I ∩ 10−lZ ⊆ I ∩ 10−k0+1Z,

but since I∩10−k0+1Z can have at most 1 element by Propo-
sition 3.1, it follows that the unique element of I∩10−k0+1Z
is the unique element of I ∩ 10−lZ. Hence, that unique el-
ement has the smallest number of decimal significand digits
in I by Proposition 3.2.

Next, suppose that I ∩ 10−k0+1Z = ∅. Then again by
the chain property, k0 must be the smallest integer such
that I ∩ 10−k0Z is not empty, so the result follows from
Proposition 3.2.

Note that, since we always have w ∈ I , so if I ∩
10−kZ is nonempty for some k ∈ Z, then at least one
of
⌊
w · 10k

⌋
10−k and

(⌊
w · 10k

⌋
+ 1
)

10−k must be in
I ∩ 10−kZ. More precisely, pick any v ∈ I ∩ 10−kZ, then if
v ≤ w, then

⌊
w · 10k

⌋
10−k is in I ∩ 10−kZ since

⌊
w · 10k

⌋
is the largest integer smaller than or equal to w · 10k, so
it should lie in between v · 10k and w · 10k. Similarly, if
v > w, then

(⌊
w · 10k

⌋
+ 1
)

10−k is in I ∩ 10−kZ since⌊
w · 10k

⌋
+ 1 is the smallest integer strictly greater than

w · 10k, so it should lie in between w · 10k and v · 10k. This
leads us to the following strategy of finding the shortest
decimal representation of w, which is the basic skeleton of
Schubfach:

Algorithm 3.4 (Skeleton of Schubfach).

1. Compute k0 := −blog10 ∆c.
2. Compute

⌊
w · 10k0−1

⌋
and

⌊
w · 10k0−1

⌋
+ 1. If one of

them (and only one of them) belongs to I · 10k0−1, then
call that number s. In this case, s · 10−k0+1 is the unique
number in I with the smallest number of decimal signif-
icand digits. However, s might contain trailing decimal
zeros; that is, it might be a multiple of a power of 10 as
I · 10−lZ might not be empty for some l < k0− 1. Thus,
let d be the greatest integer such that 10d divides s, then
s

10d
× 10d−k0+1 is the unique shortest decimal represen-

tation of w.
3. Otherwise, we compute

⌊
w · 10k0

⌋
and

⌊
w · 10k0

⌋
+ 1.

Then at least one of them must be in I · 10k0 , and if only
one of them is inside I , call that number s. In this case,
s · 10−k0 is the unique number in I with the smallest
number of decimal significand digits. Since we assumed
that I ∩ 10−k0+1Z is empty, s is never divisible by 10
so there is no trailing decimal zeros and s× 10−k0 is the
unique shortest decimal representation of w.

4. If both
⌊
w · 10k0

⌋
and

⌊
w · 10k0

⌋
+ 1 are inside I · 10k0 ,

choose the one that is closer to w · 10k0 . When the dis-
tances fromw · 10k0 to those numbers are the same, break
the tie according to a given rule.10 Call the chosen num-
ber s, then again s cannot have any trailing decimal zeros
and s × 10−k0 is the correctly rounded shortest decimal
representation of w.

10 The most common rule is to choose the even one, but we can consider
other rules as well.
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Based on the above strategy, the details of Schubfach
include following:

• How to efficiently compute blog10 ∆c?
• How to efficiently compute

⌊
w · 10k0−1

⌋
,
⌊
w · 10k0−1

⌋
+

1,
⌊
w · 10k0

⌋
and

⌊
w · 10k0

⌋
+ 1?

• How to efficiently compare these numbers to the end-
points of I · 10k0−1 or I · 10k0?

Similar to Ryū and Grisu-Exact, Schubfach uses a table
of precomputed binary digits of powers of 10 in order to
accomplish the second item. In addition to that, it uses an
ingenious rounding trick to make the third item trivial.11

More precisely, after computing k0, Schubfach computes
approximations of wL · 10k0 and wR · 10k0 along with that
of w · 10k0 , with the aforementioned rounding rule applied,
and the construction of the rounding rule ensures that we can
just compare our number to the computed approximations of
wL · 10k0 and wR · 10k0 in order to deduce if our number is
in the interval or not.

However, even with the precomputed cache, computing
the approximate multiplications wL× 10k0 , wR× 10k0 , and
w × 10k0 , is not cheap, because it requires several 64-bit
multiplications, which, for typical modern x86 machines, are
a lot slower than many other instructions. (We will review
how these approximate multiplications can be done in Sec-
tion 4.2.) The core idea of Dragonbox is, thus, on how we
can avoid these multiplications.

4. Dragonbox
For this section, we will assume a round-to-nearest rounding
rule, which is the most relevant and at the same time the
most difficult case. Algorithms for other rounding rules can
be developed in similar ways, and they will be covered in
Appendix A and Appendix B.

4.1 Overview
We will describe a brief overview of Dragonbox for the case
when Fw 6= 1 or Ew = Emin (we call this normal interval
case), so that ∆ = 2e. The case Fw = 1 and Ew 6= Emin

(we call this shorter interval case) will be covered in Section
5.

Not like Schubfach, consider the following exponent in-
stead of k0 := −blog10 ∆c:

k := k0 + κ = −blog10 ∆c+ κ,

where κ is a positive integer constant in a certain range that
we will discuss in Section 4.5. We will also discuss on how
to compute k efficiently in that section.

11 To be honest, I did not look at this rounding trick carefully, and do not
fully understand how it works. Dragonbox does not rely on this trick, so it
should be irrelevant for the rest of the paper. However, it might be that we
can still possibly apply the trick also to Dragonbox so that we can make it
even faster.

Similarly to [4], let us use the following notations:

x := wL · 10k,

y := w · 10k,

z := wR · 10k,

δ := z − x = ∆ · 10k,

and for a ∈ R, we denote a(i) := bac, a(f) := a− bac.
Using a Grisu-like idea based on the following simple

fact, we can mostly avoid computing x and y when doing
the second step of Algorithm 3.4:

Proposition 4.1.
Let s, r be the unique integers satisfying

z(i) = 10κ+1s+ r, 0 ≤ r < 10κ+1.

Then, I ∩ 10−k0+1Z is nonempty if and only if

s ∈ 10k0−1I,

if and only if:

1. r + z(f) ≤ δ, when I = [wL, wR],
2. r + z(f) < δ, when I = (wL, wR].
3. r+z(f) ≤ δ and r 6= 0 or z(f) 6= 0, when I = [wL, wR),

and
4. r+z(f) < δ and r 6= 0 or z(f) 6= 0, when I = (wL, wR).

Proof. We first show that I ∩ 10−k0+1Z is nonempty if
and only if s ∈ 10k0−1I . Clearly, sκ · 10−k0+1 is always
an element of 10−k0+1Z, so if it belongs to I , then I ∩
10−k0+1Z is nonempty.

Conversely, suppose I ∩10−k0+1Z is nonempty. Let v be
any element of it. Then, v ≤ wR, so

10k−κ−1v ≤ z

10κ+1
,

but since 10k−κ−1v = 10k0−1v ∈ Z, it follows that

10k−κ−1v ≤
⌊ z

10κ+1

⌋
= s.

Figure 3. The unique lattice point in I should be the floor
of the right endpoint, since I is longer than the unit

Now, since 10k0−1v and s are both integers, if we suppose

10k0−1v 6= s,

then
10k0−1v + 1 ≤ s
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follows, which implies

10−k0+1s ≥ v + 10−k0+1 > v + ∆ ≥ wL + ∆ = wR

by definition of k0. This is absurd, because

10−k0+1s = 10−k · 10κ+1s ≤ 10−k · z = wR.

Hence, we deduce s = 10k0−1v ∈ 10k0−1I , concluding the
first “if and only if”.

To show the second “if and only if”, let us recall that
10−k0+1s = 10−k · 10κ+1s is at most wR. Hence, when
wR ∈ I , 10−k0+1s is in I if and only if its distance from wL
is less than or equal to ∆, or strictly less than ∆, depending
on whether or not if wL is in I , which are precisely the
claims 1 and 2.

On the other hand, if wR /∈ I , then we need to rule out
the case wR = 10−k0+1sκ in addition, which is precisely
the case when rκ = 0 and z(f) = 0, thus we have the last
two claims as well.

Note that r + z(f) ≤ δ if and only if

1. r < δ(i), or

2. r = δ(i) and z(f) ≤ δ(f),

and we have a similar equivalence for r+z(f) < δ. As in [4],
we can efficiently perform these comparisons. In particular,
since

x(i) + x(f) = (z(i) − δ(i)) + (z(f) − δ(f)),

and −1 < z(f) − δ(f) < 1, we conclude

x(i) =

{
z(i) − δ(i) if z(f) ≥ δ(f)

z(i) − δ(i) − 1 if z(f) < δ(f)
,

so we just need to compare the parity of x(i) and z(i)−δ(i) to
conclude if the inequality z(f) ≥ δ(f) holds or not. Details
of how to compute the parity of x(i) is explained in Section
4.3.

Note that we need to compare the fractional parts only
when we know r = δ(i); in this case, note that

z(i) − δ(i) = 10κ+1s

is always an even number. Thus, we have z(f) < δ(f) if and
only if x(i) is an odd number. When x(i) is an even number,
then we have either z(f) = δ(f) or z(f) > δ(f). Depending
on whether or not wL is contained in I , we may need to
distinguish these two cases. To do that, we check if x is an
integer, since z(f) = δ(f) if and only if x(f) = 0 if and only
if x is an integer. Details of how to check if x is an integer is
explained in Section 4.6.

Let us now more precisely describe how to inspect if
I ∩ 10−k0+1Z is empty:

Algorithm 4.2 (Skeleton of Dragonbox, part 1).

1. Compute k = −blog10 ∆c + κ. Since κ is just a fixed
constant, it boils down to calculating blog10 ∆c; see Sec-
tion 4.5 for details.

2. Compute z(i); see Section 4.2 for details.
3. Compute s, r by dividing z(i) by 10κ+1. Given that κ is a

known constant, this can be done efficiently without actu-
ally issuing the notoriously slow integer division instruc-
tion, as described in [8]. Compilers these days usually
automatically perform this optimization pretty well, but
we can sometimes do better than them because of some
additional constraints they are usually not aware of. See
Section 4.7 for details.

4. Compute δ(i); see Section 4.4 for details.
5. Check if the inequality r > δ(i) holds. If that is the case,

then we conclude that I ∩ 10−k0+1Z is empty.
6. Otherwise, check if the inequality r < δ(i) holds. If that

is the case, we need to check if r = z(f) = 0 in addition
when wR /∈ I . We can inspect the equality z(f) = 0 by
checking if z is an integer; see Section 4.6 for details.

• If wR /∈ I and r = z(f) = 0, then we conclude that
I ∩ 10−k0+1Z is empty.

• Otherwise, we conclude that 10−k+κ+1s is the unique
element in I ∩ 10−k0+1Z.

7. Otherwise, we have r = δ(i). Then, compute the parity
of x(i).

• If x(i) is an odd number, then we have z(f) < δ(f), so
we conclude that 10−k+κ+1s is the unique element in
I ∩ 10−k0+1Z.

• If x(i) is an even number and wL /∈ I , then we
conclude that I ∩ 10−k0+1Z is empty.

• If x(i) is an even number and wL ∈ I , then check if x
is an integer. If that is the case, then we conclude that
10−k+κ+1s is the unique element in I ∩ 10−k0+1Z.
Otherwise, we conclude that I ∩ 10−k0+1Z is empty.

8. When we have concluded that 10−k+κ+1s is the unique
element in I ∩ 10−k0+1Z, then since s might contain
trailing decimal zeros, find the greatest integer d such that
10d divides s. Then we conclude that

s

10d
× 10−k+κ+1+d

is the answer we are looking for.

Note that in order to compare z(f) and δ(f), we need to
compute (the parity of) x(i) which is what we want to avoid.
Hence, we want to minimize the chance of having r = δ(i).
Thus, we want to choose κ as large as possible. However,
choosing too big κ will prevent us from computing z(i) and
δ(i) efficiently, so there are in fact not so many choices for κ
we have. See Section 4.5 for details.

Next, let us discuss what we do if I ∩10−k0+1Z turns out
to be empty. Our procedure in this case is a bit different from
the Schubfach’s way. Recall that Corollary 3.3 tells us that
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in this case,

I ∩ 10−k0Z = 10−k
(
10kI ∩ 10κZ

)
is not empty and its elements are precisely the elements with
the smallest number of significand digits.

We will now compute

y(ru) :=

⌊
y

10κ
+

1

2

⌋
10κ and

y(rd) :=

⌈
y

10κ
− 1

2

⌉
10κ,

which are the elements in 10κZ that are closest to y ∈ 10kI ,
using a method similar to that described in [4]. As shown in
[4], both of y(ru) and y(rd) should be in 10kI because we
have assumed that Fw 6= 1 or Ew = Emin; we will revisit
this and explain in more detail in Section 4.9.

Note that y(ru) = y(rd) + 1 if and only if

y

10κ
−
⌊ y

10κ

⌋
=

1

2
,

and y(ru) = y(rd) otherwise. In other words, y(ru) and
y(rd) are same except when there is a tie, so we just need
to focus on computing y(ru), detect the tie, and decrease the
computed value of y(ru) by one if we prefer to choose y(rd)

according to a given rule to break the tie. Let y(r) be the
chosen one when we had a tie, or otherwise the common
value of y(ru) = y(rd), then the correctly rounded decimal
representation of w with the shortest number of digits is thus

y(r) × 10−k+κ.

To actually compute y(ru), note that

y(ru) =

⌊
y + (10κ/2)

10κ

⌋
=

⌊
z + (10κ/2)− (z − y)

10κ

⌋
= 10s+

⌊
r + (10κ/2)− ε(i) + (z(f) − ε(f))

10κ

⌋
where we define

ε := z − y.

Since we have assumed Fw 6= 1 orEw = Emin,w should lie
at the exact center of I . Hence in particular, ε = δ

2 , so ε(i) =⌊
δ(i)

2

⌋
. Also, since κ is a positive integer, 10κ/2 is an integer.

Recall that we already have assumed that I ∩ 10−k0+1Z is
empty; hence, by Proposition 4.1, either r ≥ δ or r = 0.
Since ε < δ, for the first case we know

r +
10κ

2
− ε(i) > 0.

To make the arguments from now on simpler, for the case
r = 0, let us replace r by 10κ+1 and s by s − 1 so that we

still have the inequality above even for the case r = 0. To be
precise, let us define

s̃ :=

{
s if r 6= 0

s− 1 if r = 0
, r̃ :=

{
r if r 6= 0

10κ+1 if r = 0
,

so that we have
z(i) = 10κ+1s̃+ r̃

and

y(ru) = 10s̃+

⌊
r̃ + (10κ/2)− ε(i) − (z(f) − ε(f))

10κ

⌋
.

Now, define

D := r̃ + (10κ/2)− ε(i),

then by definition it is clear that D ≥ 0. Next, let t, ρ be the
unique integers satisfying

D = 10κt+ ρ, 0 ≤ ρ < 10κ.

Then,

y(ru) = (10s̃+ t) +

⌊
ρ+ (z(f) − ε(f))

10κ

⌋
.

Note that the residue term⌊
ρ+ (z(f) − ε(f))

10κ

⌋
is always 0 except when ρ = 0 and z(f) < ε(f), and for
that case it is equal to −1. Hence, we can just ignore the
fractional parts and conclude y(ru) = 10s̃+ t when D is not
divisible by 10κ, which is usually the case especially when
κ is large. Of course when D is divisible by 10κ, we need
to compare z(f) and ε(f) but this can be done by computing
the parity of y(i) just like the comparison of z(f) and δ(f).
Indeed, note that

y(i) + y(f) = (z(i) − ε(i)) + (z(f) − ε(f)),

and since −1 < z(f) − ε(f) < 1, we conclude

y(i) =

{
z(i) − ε(i) if z(f) ≥ ε(f)

z(i) − ε(i) − 1 if z(f) < ε(f)
,

so we just need to compare the parity of y(i) and z(i) − ε(i)
to conclude if the inequality z(f) ≥ ε(f) holds or not. In fact,
since 10κ+1 is even, the parity of z(i) and that of r is same, so
we can compare the parity of y(i) with that of D− (10κ/2).
If the parities are the same, then we conclude z(f) ≥ ε(f) so
y(ru) = 10s̃+ t, and otherwise, we conclude z(f) < ε(f) so
y(ru) = 10s̃+ t− 1. Details of how to compute the parity of
y(i) will be explained in Section 4.3.

8 2020/12/26



Note that tie happens exactly when ρ = z(f) − ε(f) = 0;
indeed, tie happens when the fractional part of y

10κ is exactly
1/2, or equivalently,

y

10κ
+

1

2
= (10s̃+ t) +

ρ+ (z(f) − ε(f))
10κ

is an integer. Since

−1 < ρ+ (z(f) − ε(f)) < 10κ,

it follows that y
10κ + 1

2 is an integer if and only if

ρ+ (z(f) − ε(f)) = 0,

if and only if ρ = z(f) − ε(f) = 0. Or equivalently, tie
happens if and only if D is divisible by 10κ and y = z − ε
is an integer. If tie happens, then we need to choose between
y(ru) = 10s̃ + t and y(rd) = 10s̃ + t − 1 according to a
given rule. Details of how to check if y is an integer will be
explained in Section 4.6.

In summary, when I ∩ 10−k0+1Z turns out to be empty,
then:

Algorithm 4.3 (Skeleton of Dragonbox, part 2).

1. Compute D = r̃ + (10κ/2)−
⌊
δ(i)/2

⌋
.

2. Compute t, ρ by dividing D by 10κ. Again, given that κ
is a known constant, this can be done efficiently using
the method described in [8]. In fact, since we do not care
about the actual value of ρ and we only need to know if ρ
is zero or not, we can do even better; see Section 4.8 for
details.

3. If ρ 6= 0, then (10s̃ + t) × 10−k+κ is the answer we are
looking for.

4. Otherwise, compare the parity of y(i) with that of D −
(10κ/2). If they are different, then we have z(f) < ε(f),
so (10s̃+ t− 1)× 10−k+κ is the answer we are looking
for.

5. Otherwise, check if y is an integer. If that is the case,
then we have a tie; break it according to a given rule,
so that we choose one of (10s̃ + t − 1) × 10−k+κ and
(10s̃+ t)× 10−k+κ as the answer.

6. Otherwise, (10s̃ + t) × 10−k+κ is the answer we are
looking for.

Again, we want to avoid computing (the parity of) y(i),
so we prefer to choose κ as big as possible.

4.2 Computing z(i)

As in [4], we denote

10k = ϕk · 2ek

where ek is an integer and ϕk is the unique rational number
satisfying 2Q−1 ≤ ϕk < 2Q. This means that

2ek+Q−1 ≤ 10k < 2ek+Q,

thus

k log2 10−Q < ek ≤ k log2 10−Q+ 1,

implying
ek = bk log2 10c −Q+ 1. (2)

In Section 6, we will show that if Q is large enough, then

z(i) =
⌊
wR · 10k

⌋
=

⌊(
fc +

1

2

)
· 2e · 10k

⌋
=

⌊(
fc +

1

2

)
· 2e · ϕ̃k · 2ek

⌋
where ϕ̃k = bϕkc or bϕkc + 1, depending on the sign of k.
Therefore,

z(i) =

⌊((
fc +

1

2

)
· 2e+ek+Q

)
· ϕ̃k · 2−Q

⌋
.

Let us define

β := e+ ek +Q = e+ bk log2 10c+ 1

so that

z(i) =

⌊((
fc +

1

2

)
· 2β
)

· ϕ̃k · 2−Q
⌋
.

We will impose a condition on κ to make sure that the
quantity (

fc +
1

2

)
· 2β

is a q-bit integer; see Section 4.5 for details. Then,

z(i) =

⌊((
fc +

1

2

)
· 2β
)

· ϕ̃k · 2−Q
⌋

is nothing but the upper q-bits of the (q+Q)-bit result of the
multiplication of a q-bit integer

(
fc + 1

2

)
· 2β and a Q-bit

integer ϕ̃k.12

Now we will analyze how the computation of z(i) can
be done in terms of full/half multiplications. By P -bit full
multiplication, we mean computing the 2P -bit result of a
multiplication of two P -bit integers. By P -bit half multipli-
cation, we mean computing the lower half of the result of
P -bit full multiplication. Typical machines today, like mod-
ern x86, often provide instructions for full multiplications.
Some machines do not provide them, but even for such cases
we can emulate full multiplication using several half multi-
plications. See, for example, [9]. It should be noted that even
if the machine provides instructions for full multiplications,
it is often the case that they are slower than some half mul-
tiplication instructions for the same size of integers. Also, it

12 To be precise, we need to be aware there might be a possibility that ϕ̃k is
not a Q-bit integer, if bϕkc = 2Q − 1 and ϕ̃k = bϕkc+1. However, this
never happens for any practical values of k and Q.
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is worth mentioning that for a typical modern x86 CPU, 64-
bit multiplications tend to be significantly slower than 32-bit
multiplications.

For the case of binary32 format, we chooseQ = 2q = 64.
Hence, we need to compute the upper 32-bits from the 96-bit
multiplication result of a 32-bit integer and a 64-bit integer.
On a typical modern x86 CPU, this can be done by one 64-
bit full multiplication.13

For the case of binary64 format, we choose Q = 2q =
128. Hence, we need to compute the upper 64-bits from the
192-bit multiplication result of a 64-bit integer and a 128-bit
integer. This can be done by two 64-bit full multiplications,
one 64-bit addition, and one 64-bit addition-with-carry. One
can see, for example, Section 3.7 of [4] for details.

4.3 Computing the Parities of x(i) and y(i)

We need to compute the parities (that is, the least significant
bits) of x(i) and y(i), when we compare the fractional part
of z and that of δ and ε, respectively. This can be done faster
than the full computation of x(i) and y(i).

First, note that

x(i) =

⌊((
fc −

1

2

)
· 2β
)

· ϕ̃k · 2−Q
⌋

and
y(i) =

⌊(
fc · 2β

)
· ϕ̃k · 2−Q

⌋
.

Here, the trick is to compute the multiplication of ϕ̃k with
2fc − 1 or 2fc, not with

(
fc − 1

2

)
· 2β or fc · 2β . Note that

x(i) =
⌊
(2fc − 1) · ϕ̃k · 2−Q+β−1⌋ .

Here, 2fc − 1 is at most (p + 2)-bit integer, so assuming
q ≥ p+2 (which is always the case for all relevant formats),
we can represent it as a q-bit integer. Note that the least
significant bit of x(i) is nothing but the (β − 1)th bit of
the second first q-bit block of the (q + Q)-bit result of
the multiplication (2fc − 1) · ϕ̃k, counting from the most
significant bit. The same can be said for y(i).

For the case of binary32 format, we chooseQ = 2q = 64.
Hence, we need to compute the middle 32-bits from the
96-bit multiplication result. Since the middle 32-bits are
nothing but the upper 32-bits of the lower 64-bits, this can be
done by one 64-bit half multiplication. After performing the
multiplication, we shift the result to the right by 64−(β−1)
bits, and return the least significant bit of the shifted result.

For the case of binary64 format, we choose Q = 2q =
128. Hence, we need to compute the middle 64-bits from the
192-bit multiplication result. This can be done by one 64-bit
full multiplication (the upper half of the yellow boxes in the
Figure 4) and one 64-bit half multiplication (the lower half

13 To be precise, we only need the upper 64-bits, but generally computing
the upper half while ignoring the lower half is not noticeably faster than the
full multiplication. Thus, it is fair to consider such a computation as a form
of full multiplication.

𝛽𝛽 − 1

2𝑓𝑓𝑐𝑐 − 1 =

�𝜑𝜑𝑘𝑘 =

Figure 4. Illustration of the parity computation of x(i)

of the purple boxes in the Figure 4), and one 64-bit addition.
After computing the addition, we shift the result to the right
by 64 − (β − 1) bits, and return the least significant bit of
the shifted result.

4.4 Computing δ(i)

Since are considering the normal interval case (Fw 6= 1 or
Ew = Emin), computation of δ(i) is very simple, as ∆ = 2e

is a power of 2. Section 6 shows that if Q is large enough,
then

δ(i) =
⌊
2e · 10k

⌋
= b2e · ϕ̃k · 2ekc =

⌊
ϕ̃k · 2β−Q

⌋
,

so δ(i) is nothing but the first β bits of ϕ̃k, counting from the
most significant bit.

4.5 Computing k, β, and κ
Note that

k = −blog10 ∆c+ κ = −be log10 2c+ κ

as we have assumed the normal interval case. The above can
be computed efficiently using the usual trick of multiply-
and-shift; see, for example, Section 3.4 of [4]. See Section
5.4 also. Similarly, we can compute

β = e+ bk log2 10c+ 1

once we know the value of k.
As noted several times, we want to choose κ as big as

possible, but at the same time we need to guarantee that(
fc +

1

2

)
· 2β = (2fc + 1) · 2β−1

is at most a q-bit integer. Hence, let us compute the possible
range of β in terms of κ.

From the definition of k, we know

κ− k = be log10 2c ≤ e log10 2 < κ− k + 1,

so
κ− e log10 2 ≤ k < κ+ 1− e log10 2.
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Hence,

κ log2 10− e ≤ k log2 10 < (κ+ 1) log2 10− e,

so

κ log2 10 + 1 ≤ e+ k log2 10 + 1 < (κ+ 1) log2 10 + 1.

Therefore, taking the floor gives

bκ log2 10c+ 1 ≤ β ≤ b(κ+ 1) log2 10c+ 1. (3)

It is clear from the above that β ≥ 1, so
(
fc + 1

2

)
· 2β is an

integer. Also, since fc+ 1
2 is strictly less than 2p+1, it follows

that (
fc +

1

2

)
· 2β < 2β+p+1,

so it suffices to have

β + p+ 1 ≤ q.

Thus, from (3), we know that it is sufficient to have

b(κ+ 1) log2 10c+ p+ 2 ≤ q. (4)

For the case of binary32 format, we have q = 32 and
p = 23, so (4) becomes

b(κ+ 1) log2 10c ≤ 7,

so κ ≤ 1. Since we want κ to be at least 1, the only possible
choice is κ = 1.

For the case of binary64 format, we have q = 64 and
p = 52, so (4) becomes

b(κ+ 1) log2 10c ≤ 10,

so κ ≤ 2. Since we want κ to be at least 1, the only possible
choices are κ = 1, 2. As we want to choose κ as big as
possible, we let κ = 2 in this case.

4.6 Integer Checks
Recall that sometimes we need to know if x, y, z are integers
or not. Let us look at the case of z first. Recall that

z =

(
fc +

1

2

)
· 2e · 10k = (2fc + 1) · 2e+k−1 · 5k,

and 2fc + 1 is an odd integer. Therefore, we have:

Lemma 4.4.
z is an integer if and only if:

1. e+ k − 1 ≥ 0, and
2. Either k ≥ 0 or k < 0 and 5−k divides 2fc + 1.

Note that
k = −be log10 2c+ κ,

so 0 ≤ e+ k − 1 if and only if

0 ≤ e+ κ− 1− be log10 2c ,

if and only if

be log10 2c ≤ e+ κ− 1,

if and only if
e log10 2 < e+ κ,

if and only if
−κ < e log10 5,

if and only if
−κ log5 10 < e.

Or equivalently,

e ≥ −bκ log5 10c = −κ− bκ log5 2c

as κ log5 10 is never an integer.
On the other hand, note that we have k ≥ 0 if and only if

be log10 2c ≤ κ

if and only if
e log10 2 < κ+ 1

if and only if
e < (κ+ 1) log2 10.

Or equivalently,

e ≤ b(κ+ 1) log2 10c

as (κ+ 1) log2 10 is never an integer.
Consequently,

1. If e < −κ − bκ log5 2c, then e + k − 1 < 0, so z is not
an integer.

2. Otherwise, if e ≤ b(κ+ 1) log2 10c, then k ≥ 0, so z is
an integer.

3. Otherwise, z is an integer if and only if 5−k divides
2fc + 1.

Recall that fc + 1
2 is strictly smaller than 2p+1, so

2fc + 1 < 2p+2.

Hence, 2fc + 1 cannot have 5−k as a factor if 5−k ≥ 2p+2,
or equivalently,

−k ≥ (p+ 2) log5 2.

Or, in terms of e, we can rewrite the above inequality as

be log10 2c − κ ≥ (p+ 2) log5 2,

or equivalently,

be log10 2c − κ > b(p+ 2) log5 2c ,

which is equivalent to

e log10 2 ≥ b(p+ 2) log5 2c+ κ+ 1.
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Thus, we conclude that z is not an integer if

e > b(b(p+ 2) log5 2c+ κ+ 1) log2 10c .

If

b(κ+ 1) log2 10c < e

≤ b(b(p+ 2) log5 2c+ κ+ 1) log2 10c ,

then we do need to check divisibility of 2fc + 1 by 5−k.
In this case, we can apply the divisibility test method intro-
duced in [8]. To briefly explain the method, for given a posi-
tive integerm in a certain range, we precompute the modular
inverse of 5m in the ring Z/2q . Since multiplying the mod-
ular inverse of 5m is an automorphism on Z/2q , and since
multiplying the modular inverse of 5m coincides with divid-
ing by 5m for numbers divisible by 5m, it follows that the
set of integers 0 ≤ n < 2q that is divisible by 5m should be
bijectively mapped onto the set {0, 1, · · · , b(2q − 1)/5mc}.
Hence, if the result of multiplying the modular inverse of 5m

to the given number is less than or equal to the precomputed
b(2q − 1)/5mc, then we conclude that the given number is
divisible by 5m, and otherwise, it is not divisible by 5m. See
Section 9 of [8] for details.

Now, for our case, the exponent −k lies in the range
1, 2, · · · , b(p+ 2) log5 2c, so it suffices to precompute the
modular inverses and the maximum possible quotients for
those exponents and store them in a static data table, and
then use them to determine if 2fc + 1 is divisible by 5−k.

To check if x is an integer, we can apply exactly the same
procedure. However, to check if y is an integer, we need a
slight modification since we do not know how many times
fc is divisible by 2. To be precise, recall that

y = fc · 2e · 10k = fc · 2e+k · 5k,

so:

Lemma 4.5.
y is an integer if and only if:

1. Either e+k ≥ 0 or e+k < 0 and 2−e−k divides fc, and
2. Either k ≥ 0 or k < 0 and 5−k divides fc.

Following a similar procedure, we can deduce that e+k ≥
0 if and only if

e ≥ −b(κ+ 1) log5 10c = −(κ+ 1)− b(κ+ 1) log5 2c .

Thus, the strategy of checking if y is an integer is:

1. If e > b(κ+ 1) log2 10c, then e+ k ≥ 0 and k < 0, so y
is an integer if and only if 5−k divides fc.

2. Otherwise, if e ≥ −(κ + 1) − b(κ+ 1) log5 2c, then
e+ k ≥ 0 and k ≥ 0, so y is an integer.

3. Otherwise, we have e + k < 0 and l ≥ 0, so y is an
integer if and only if 2−e−k divides fc.

Note that fc is divisible by 2−e−k if and only if there are at
least−e−k many trailing zeros in the binary representation
of fc. Many typical modern CPU’s provide an instruction
returning the number of trailing zeros, so on such machines
this is very cheap. Otherwise, we can still check divisibility
by, for example, shifting fc to right by −e− k bits and then
to left by−e−k bits, and then comparing the result with the
original value of fc. In this case, we need to be careful that
shifting by an excessive amount of bits might not be a valid
operation in many CPU’s.

4.7 Efficient Division by 10κ+1

As noted earlier, we can replace the notoriously slow integer
division by simpler instructions if the divisor is a known
constant, as explained in [8]. Usually, compilers these day
are smart enough to perform this optimization very well, but
still there is a chance that we can do better than them when
there are some constraints that compilers may not be aware
of.

In this section, we will discuss on how to optimize the
computation of the integers s, r satisfying

z(i) = 10κ+1s+ r, 0 ≤ r < 10κ+1.

Note that the usual trick of optimizing divisions-by-constants
is to find a binary approximation of the reciprocal of the di-
visor, multiply it to the dividend, and then shift the result.
However, this sometimes does not work because the required
precision of the approximation might be too large so that the
multiplication can overflow. Therefore, the valuable piece of
information here is that the dividend z(i) does not span the
full range of q-bit integers, so that the required precision can
be smaller than usual. More specifically, recall that

z =

(
fc +

1

2

)
· 2e · 10k,

and since

k = −be log10 2c+ κ < −e log10 2 + κ+ 1

and fc + 1
2 < 2p+1, it follows that

z < 2p+1 · 2e · 2−e · 10κ+1 = 2p+1 · 10κ+1.

Now, we use the following lemma from [4], originally
presented in [5], to find a required precision for dividing by
10κ+1.

Lemma 4.6 (Adams, 2018).
Let k be a nonnegative integer, b an integer, and g a positive
integer. Then for any integer u satisfying

u > b+ log2

5kg

5k − (2bg mod 5k)
,

we have ⌊
g · 2b

5k

⌋
=

⌊
g · 2b−u

(⌊
2u

5k

⌋
+ 1

)⌋
.
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In our setting, g = z(i), b = −κ − 1, and k = κ + 1, so
that

s =

⌊
z(i)

10κ+1

⌋
=

⌊
z(i) · 2−κ−1

5κ+1

⌋
.

Hence, by the lemma,

s =

⌊
z(i) ·

(⌊
2u

5κ+1

⌋
+ 1

)
· 2−κ−u−1

⌋
if u satisfies the inequality

u > −κ− 1 + log2

5κ+1z(i)

5κ+1 − (2−κ−1z(i) mod 5κ+1)
. (5)

Note that

(2−κ−1z(i) mod 5κ+1) ≤ 5κ+1 − 2−κ−1,

so the right-hand side of the inequality (5) is upper-bounded
by

−κ− 1 + log2

(
2κ+1 · 5κ+1z(i)

)
= log2

(
5κ+1z(i)

)
,

which is again strictly upper-bounded by

log2

(
5κ+1 · 2p+1 · 10κ+1

)
= p+ κ+ 2 + (2κ+ 2) log2 5.

Therefore, in order to conclude

s =

⌊
z(i) ·

(⌊
2u

5κ+1

⌋
+ 1

)
· 2−κ−u−1

⌋
,

it suffices to have

u ≥ p+ κ+ 3 + b(2κ+ 2) log2 5c .

For the case of binary32 format with κ = 1, the minimum
possible value of u estimated above is

23 + 1 + 3 + b4 log2 5c = 36.

This actually does not give us a better bound compared to
the classical method explained in [8], Theorem 4.2, which
gives us u ≥ 35. Thus, there is little hope that we can do
better than the compiler in this case.

On the other hand, for the case of binary64 format with
κ = 2, the minimum possible value of u estimated above is

52 + 2 + 3 + b6 log2 5c = 70,

which is better than the bound we get from [8], Theorem 4.2,
which gives us u ≥ 71. Although it may seem to be not a big
difference, the consequence of saving one more bit here is
actually quite big. Indeed, note that the approximation given
by [8] is⌈

271

125

⌉
= 0x1,0624,dd2f,1a9f,be77,

which exceeds 64-bits, while the approximation we derived
is ⌈

270

125

⌉
= 0x8312,6e97,8d4f,df3c,

which fits inside 64-bits. Therefore, our approximation en-
ables us to compute s by only one 64-bit full multiplication
and one 64-bit shift, but that is not achievable with the classi-
cal method. Specifically, according to Lemma 4.6, we know

s =

⌊
z(i) ·

⌈
270

125

⌉
· 2−73

⌋
,

thus we can compute s by first performing a 64-bit full
multiplication of z(i) and

⌈
270

125

⌉
, taking the upper 64-bits

from the result, and then shifting it to the right by 9 bits.
It is also worth mentioning that since r is strictly smaller

than 10κ+1, we do not need q-bits for storing r. For example,
for the case of binary64 format, we can store r in a 32-bit
register. This enables us to compute r without performing
64-bit operations. Instead, it suffices to perform one 32-bit
half multiplication to compute the lower 32-bits of 10κ+1s,
and then by subtracting the result from the lower 32-bits of
z(i), we get the correct answer for r.

4.8 Efficient Division by 10κ

Recall that when I ∩ 10−k0+1Z is not empty, we need to
divide

D = r̃ + (10κ/2)−
⌊
δ(i)/2

⌋
by 10κ to compute the integers t, ρ satisfying

D = 10κt+ ρ, 0 ≤ ρ < 10κ.

Usually, obtaining both the quotient and the remainder re-
quires two multiplications to be performed. However, since
we are only interested in whether or not ρ is zero, rather
than the complete value of ρ, we might be able to do better.
Indeed, because D and 10κ are not big, we can reduce the
required number of multiplications to 1.

Recall from Section 9 of [8] that an N -bit integer n
is divisible by 5m if and only if the lower N -bits of n
times the modular inverse of 5m is less than or equal to⌊
(2N − 1)/5m

⌋
. On the other hand, recall from Section 4

of [8] that we can divide by a constant by multiplying the
binary expansion of the reciprocal of the divisor, and then
shifting to the right by a certain amount. Now, the trick is to
combine two magic numbers of these methods into one. We
will explain this trick in more detail for each of the binary32
and the binary64 formats separately.

Before that, let us first observe that D is at most 10κ+1.
Indeed, by definition we have r̃ ≤ 10κ+1. Also, because of
how we choose k, we have δ ≥ 10κ. To see why, recall from
(1) that

10−k0 ≤ ∆ < 10−k0+1,

and since δ = ∆ · 10k0+κ, it follows that

10κ ≤ δ < 10κ+1. (6)
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This shows D ≤ 10κ+1.
Next, note that dividing by 10κ is not different from

dividing first by 2κ and then by 5κ. The first division is
nothing but shifting to the right by κ bits. Divisibility check
by 2κ is also trivial; we just need to take κ bits counting
from the least significant bit and check if they are all zero.
If D turns out to be not divisible by 2κ, we do not need to
further check if D is divisible by 5κ. Hence, in this case,
we just divide D by 10κ directly, as we do not need to care
about divisibility anymore. Assuming D is stored as a 32-
bit integer which is the most common preferred word size
of today’s machines, since we know D ≤ 10κ+1 and 10κ+1

fits inside 16-bits for small values of κ we are caring about,
division by 10κ can be performed by a single 32-bit half
multiplication and a single shift. This can be theoretically
verified, but can be also exhaustively checked for all possible
values of D ≤ 10κ+1. Our reference implementation [10]
contains a program verifying this.

Hence, we only need to consider how to divide D
2κ by

5κ and at the same time check the divisibility when D has
turned out to be divisible by 2κ. Thus, we can further reduce
the range of dividend to

[
0, 2 · 5κ+1

]
.

Now, let us consider the binary32 format with κ = 1.
In this case, we are dividing D/2 by 5. Again assuming D
is stored as a 32-bit integer, we wish to compute the quo-
tient and at the same time check if D/2 is divisible by 5,
by only performing one 32-bit half multiplication. Luckily,
a very special fact about 5 is that its modular inverse in any
Z/2N always coincides with the approximate reciprocal of
5 given by Theorem 4.2 of [8], whenever N is a multiple
of 4.14 Hence, we can indeed perform two operations (com-
puting the quotient and checking the divisibility) by just one
multiplication. More concretely, our strategy is the follow-
ing.

1. Compute the 32-bit half multiplication of D/2 and the
magic number 0xcccd. Note that 0xcccd is the modu-
lar inverse of 5 in Z/216. At the same time it satisfies the
condition for approximate reciprocal of 5 given by Theo-
rem 4.2 of [8]. Indeed, since D/2 is at most 2 · 25 = 50,
so D is at most a 6-bit integer. And, we have the inequal-
ity ⌈

26+12

5

⌉
≤ 0xcccd ≤

⌊
26+12 + 212

5

⌋
,

thus Theorem 4.2 of [8] applies. The multiplication of
D/2 and 0xcccd is at most 22-bits, so it cannot over-
flow as well.

14 This indeed comes from the fact that 5 is a number of the form
2n + 1. Note that the binary expansion of 5 is 101, and multi-
plying the binary number 1100, 1100, · · · 1100 to 101 results in
1111, 1111, · · · 1111, 00, so multiplying 1100, 1100, · · · 1101 to 101
results in 1, 0000, 0000, · · · 0000, 01, regardless of how many 1100’s we
initially had.

2. The quotient can be obtained by shifting the result to the
right by 18 bits.

3. Furthermore,D/2 is divisible by 5 if and only if the lower
16-bits of the result of the multiplication is less than or
equal to

⌊
(216 − 1)/5

⌋
.

Next, let us consider the binary64 format with κ = 2.
In this case, we are dividing D/4 by 25. Again assuming
D is stored as a 32-bit integer, we wish to compute the
quotient and at the same time check if D/4 is divisible
by 25, by only performing one 32-bit half multiplication.
Unfortunately, 25 is not that good compared to 5 in the sense
that the approximate reciprocal and the modular inverse are
in general very different. However, since D/4 is at most
250, which fits in 8-bits, we can split the magic number into
two parts, so that the upper part consists of the approximate
reciprocal and the lower part consists of the modular inverse.

To be precise, we choose the magic number µ such that
the lower 8-bits of µ is the modular inverse of 25 in Z/28
and µ satisfies the inequality⌈

28+`

25

⌉
≤ µ ≤

⌊
28+` + 2`

25

⌋
.

The smallest ` such that such µ exists is 12, and we can
choose µ = 0xa429. Thus, our strategy is:

1. Compute the 32-bit half multiplication of D/4 and the
magic number 0xa429. The result of the multiplication
is at most 24-bits, so we do not need to worry about
overflow.

2. The quotient can be obtained by shifting the result to the
right by 20 bits.

3. Furthermore, D/4 is divisible by 25 if and only if the
lower 8-bits of the result of the multiplication is less than
or equal to

⌊
(28 − 1)/25

⌋
.

4.9 Some Facts about Correct Rounding
In this section, we will show that

y(ru) :=

⌊
y

10κ
+

1

2

⌋
10κ and

y(rd) :=

⌈
y

10κ
− 1

2

⌉
10κ

are always inside 10kI . First, note that y(ru) and y(rd)

should be one of a :=
⌊
y

10κ

⌋
10κ and b :=

(⌊
y

10κ

⌋
+ 1
)

10κ.
More precisely,

1. y(ru) = y(rd) = a if
(
y

10κ

)(f)
< 1

2 ,

2. y(ru) = b and y(rd) = a if
(
y

10κ

)(f)
= 1

2 ,

3. y(ru) = y(rd) = b if
(
y

10κ

)(f)
> 1

2 .

Note that a
10κ =

⌊
w · 10k0

⌋
. As shown in the proof of

Proposition 3.1, w ∈ I implies that at least one of a
10κ ∈
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10k0I or b
10κ ∈ 10k0I holds, thus we have at least one of

a ∈ 10kI or b ∈ 10kI .
Suppose first that a /∈ 10kI , so b ∈ 10kI . We claim that in

this case the fractional part of y
10κ should be strictly greater

than 1
2 , so y(ru) = y(rd) = b ∈ 10kI . Since y is at the

exact center of 10kI , a /∈ 10kI and b ∈ 10kI together imply
that b − y ≥ y − a. In other words, the fractional part of
y

10κ should be at least 1
2 . Now it suffices to show that the

fractional part cannot be equal to 1
2 . Suppose on the contrary

that
(
y

10κ

)(f)
= 1

2 . Then b− y = y− a, but since a /∈ 10kI ,
b ∈ 10kI , and y is at the center of 10kI , it follows that
10kI = (a, b]. However, since

10κZ 3 b = z = (2fc + 1) · 2e−1 · 10k

= 2e+k−1 · 5k · (2fc + 1)

and 2fc + 1 is an odd integer, we must have

e+ k − 1 = κ and 2fc + 1 = 5e−1.

However, by the same reason, a = x implies

e+ k − 1 = κ and 2fc − 1 = 5e−1,

which is a contradiction. This shows the claim.
Next, suppose that b /∈ 10kI , so a ∈ 10kI . We claim

that in this case the fractional part of y
10κ should be strictly

smaller than 1
2 , so y(ru) = y(rd) = b ∈ 10kI . Again,

similar reasoning shows that the fractional part should be
at most 1

2 , and we should have 10kI = [a, b) in order to

have
(
y

10κ

)(f)
= 1

2 , which is absurd by the same reason.
Therefore, we always have that y(ru), y(rd) ∈ 10kI .

5. Shorter Interval Case
So far, we have assumed that either Fw 6= 1 or Ew = Emin,
so that the length of the interval ∆ is always equal to 2e.
In this section, we will assume Fw = 1 and Ew 6= Emin

so that ∆ = 3 · 2e−2. Note that presence of this shorter
interval case complicates a lot of things we argued in the last
section, including but not limited to computation of k and
δ(i), integer checks, and the claim that y(ru) and y(rd) are
always in 10kI is no longer true, etc.. Thus, we will follow
a completely separate path for the shorter interval case.

We will in fact more closely mimic the original Schub-
fach algorithm, rather than what is described in Section 4 in
this case, because of the following reasons:

1. Shorter interval cases are rare, especially extremely rare
for the binary64 format. Thus, whatever we do with them
will not affect an average performance very much.15

15 In fact, we have observed that failing to inline the code path for the shorter
interval case resulted in a measurably worse performance. Hence, in our
reference implementation [10], we enforced the compiler to inline the code
path for the shorter interval case.

2. The original Schubfach algorithm is much simpler com-
pared to the algorithm given in Section 4 especially given
that lots of the assumptions we made are simply not true
for the shorter interval case. And algorithmic simplicity
matters when it comes to performance optimization.

3. Because we have Fw = 1, computing the approximate
multiplications by 10k is no more a heavy operation; in
particular, no actual multiplication is needed. Thus, there
is little reason to try hard to avoid it. We will give some
detailed explanation on this in Section 5.2.

5.1 Overview
Following Schubfach [1], we will work with k0 = −blog10 ∆c
rather than k = k0 + κ. Let us define

x := wL · 10k0 ,

y := w · 10k0 ,

z := wR · 10k0

as before, where k is replaced by k0. First, we compute x(i)

and z(i); see Section 5.2 for details. Next, define

x̃(i) := min(10k0I ∩ Z), z̃(i) := max(10k0I ∩ Z).

In other words, x̃(i) is x(i) if x is an integer and is contained
in 10k0I , or x̃(i) is x(i) + 1 otherwise, and similarly, z̃(i) is
z(i) if z is not an integer or is contained in 10k0I , or z̃(i) is
z(i) − 1 otherwise.

Proposition 5.1.
I ∩ 10−k0+1Z is nonempty if and only if

x̃(i) ≤
⌊
z̃(i)

10

⌋
· 10.

If the above inequality is true, then
⌊
z̃(i)

10

⌋
· 10−k0+1 is the

unique element in I ∩ 10−k0+1Z.

Proof. By applying Proposition 4.1 with κ = 0, we conclude
that I ∩ 10−k0+1Z is nonempty if and only if

s ∈ 10k0−1I

where we define s, r to be the unique integer satisfying
z(i) = 10s+ r, 0 ≤ r < 10.16

Note that we can in fact replace z(i) by z̃(i) when we
compute s. Indeed, suppose that z is an integer and is not
contained in 10k0I , so that z̃(i) = z(i) − 1. Assume first
that s ∈ 10k0−1I . In this case, we should have r 6= 0 since
otherwise we have z(i) ∈ 10k0I . Thus, we get the same
quotient when we replace z(i) by z̃(i).

16 To be precise, we have assumed κ > 0 before stating Proposition 4.1, but
the proof of Proposition 4.1 does not depend on that assumption and it can
be applied for the case κ = 0 as well.
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Next, assume that s /∈ 10k0−1I . Again, we are okay if
r 6= 0, so suppose that r = 0, thus

z̃(i) = z(i) − 1 = 10s− 1 = 10(s− 1) + 9.

We claim that in this case we still have
⌊
z̃(i)

10

⌋
= s − 1 /∈

10k0−1I . If not, then we have s − 1 ∈ 10k0−1I but s /∈
10k0−1I . Note that s = z

10 is the right endpoint of the
interval 10k0−1I , thus we get that the length of the interval
10k0−1I is at least 1, or equivlanelty,

∆ ≥ 10−k0+1,

which is absurd by the definition of k0; see (1).
Therefore,

⌊
z(i)

10

⌋
is in 10k0−1I if and only if

⌊
z̃(i)

10

⌋
is

in 10k0−1I , and if one of them is true, then we should have⌊
z(i)

10

⌋
=
⌊
z̃(i)

10

⌋
.

Now, it remains to show that
⌊
z̃(i)

10

⌋
∈ 10k0−1I if and

only if

x̃(i) ≤
⌊
z̃(i)

10

⌋
· 10.

This is in fact trivial; note that
⌊
z̃(i)

10

⌋
∈ 10k0−1I if and only

if ⌊
z̃(i)

10

⌋
· 10 ∈ 10k0I,

if and only if

x̃(i) ≤
⌊
z̃(i)

10

⌋
· 10 ≤ z̃(i)

by definition of x̃(i) and z̃(i), but the inequality⌊
z̃(i)

10

⌋
· 10 ≤ z̃(i)

is obvious. This concludes the proof.

Again,
⌊
z̃(i)

10

⌋
might contain trailing zeros, so we need to

deal with them.
Next, it remains to discuss what should we do if I ∩

10−k0+1Z turns out to be empty. In this case, we first com-
pute

y(ru) =

⌊
y +

1

2

⌋
.

Again this can be done without actually performing a multi-
plication; see Section 5.3 for details. There are two remain-
ing issues we need to deal with.

First, there might be tie, and if that happens, we have to
choose between y(ru) and y(rd) = y(ru) − 1. However, if
we do not have tie, then we always have y(ru) = y(rd). It
is in fact very simple to detect a tie. Details are explained in
Section 5.6.

Second, not like the normal interval case, y(ru) nor y(rd)

are not guaranteed to be inside 10k0I . However, recall that
checking if an integer is in 10k0I is very simple: just com-
pare it with x̃(i) and z̃(i). And a good news here is that y(ru)

(and thus y(rd) as well) is guaranteed to be at most z̃(i), and
also whenever they are not in 10k0I , we can still compute
the closest element in 10k0I by adding 1 to them; see Sec-
tion 5.7 for details.

In conclusion, we can describe the algorithm for the
shorter interval case as:

Algorithm 5.2 (Skeleton of Dragonbox, part 3).

1. Compute k0 and β, where we define β as

β := e+ ek0 +Q = e+ bk0 log2 10c+ 1

as in the normal interval case, except for that k is replaced
by k0. See Section 5.4 for details.

2. Compute x(i) and z(i); see Section 5.2 for details.
3. Compute x̃(i) and z̃(i). This involves how to check if x

or z are integers. Details of how to check that will be
explained in Section 5.5.

4. Compute
⌊
z̃(i)

10

⌋
and check if the inequality

x̃(i) ≤
⌊
z̃(i)

10

⌋
· 10

holds. If it holds, then we conclude that
⌊
z̃(i)

10

⌋
· 10−k0+1

is the unique element in I∩10−k0+1Z. In this case,
⌊
z̃(i)

10

⌋
might contain trailing decimal zeros, so find the greatest
integer d such that 10d divides

⌊
z̃(i)

10

⌋
, then(⌊

z̃(i)

10

⌋
/10d

)
× 10d−k0+1

is the answer we are looking for.
5. Otherwise, compute y(ru); see Section 5.3 for details.
6. Detect tie, as described in Section 5.6. If we have tie, then

choose between y(ru) and y(rd) = y(ru)−1 according to
a given rule. Let y(r) be the chosen one, then y(r)× 10k0

is the answer we are looking for.
7. Otherwise, check if y(ru) ≥ x̃(i) holds. If that is the case,

then y(ru) × 10k0 is the answer we are looking for.
8. Otherwise, (y(ru)+1)×10k0 is the answer we are looking

for.

5.2 Computing x(i) and z(i)

Recall that for shorter interval case, we have

wL =

(
fc −

1

4

)
· 2e,

so by results of Section 6, we get that

x(i) =
⌊
(4fc − 1) · 2e−2 · 10k0

⌋
=
⌊
(4fc − 1) · 2β−2 · ϕ̃k0 · 2−Q

⌋
.
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Note that Fw = 1, so fc = 2p, which implies

x(i) =
⌊
(2p+2 − 1) · ϕ̃k0 · 2−Q · 2β−2

⌋
=
⌊
(1− 2−p−2)ϕ̃k0 · 2−Q · 2p+β

⌋
.

For the case of binary32 format, we can exhaustively
verify that x(i) can be computed as

x(i) =

⌊(
ϕ̃k0 −

⌊
ϕ̃k0
2p+2

⌋)
· 2−(Q−p−β)

⌋
,

which consists two shifts and two subtractions.
For the case of binary64 format, we can exhaustively

verify that x(i) can be computed as

x(i) =

⌊(⌊
ϕ̃k0

2Q−q

⌋
−
⌊

ϕ̃k0
2Q−q+p+2

⌋)
· 2−(q−p−β)

⌋
,

which again consists of two shifts and two subtractions, after
extracting the upper 64-bits from ϕ̃k0 .

Similarly, we have

z(i) =
⌊
(2p+1 + 1) · ϕ̃k0 · 2−Q · 2β−1

⌋
=
⌊
(1− 2−p−1)ϕ̃k0 · 2−Q · 2p+β

⌋
,

and it can be exhaustively verified that z(i) also can be
computed in a similar way.

Our reference implementation [10] contains a program
verifying these computations.

5.3 Computing y(ru)

Note that

y = fc · 2e · 10k0 = 2p+β−Qϕk0 ,

thus

y(ru) =

⌊
y +

1

2

⌋
=

⌊
2y + 1

2

⌋
=

⌊
2p+β+1−Qϕk0 + 1

2

⌋
=

⌊⌊
2p+β+1−Qϕk0

⌋
+ 1

2

⌋
.

Applying the inequality (3) to κ = 0, we get 1 ≤ β ≤ 4,
so p + β + 1 ≤ p + 5. Note that for both binary32 and
binary64, Q = 2q is strictly bigger than p+ 5, so 2p+β+1−Q

is a negative power of 2. Hence, we have that⌊
2p+β+1−Qϕk0

⌋
=
⌊
2p+β+1−Q bϕk0c

⌋
.

It can be exhaustively checked for both binary32 and bi-
nary64 formats that⌊

2p+β+1−Q bϕk0c
⌋

=
⌊
2p+β+1−Qϕ̃k0

⌋

for all possible values of k0 and β, so we have

y(ru) =

⌊⌊
2p+β−Qϕ̃k0

⌋
+ 1

2

⌋
,

which means that y(ru) can be computed with one subtrac-
tion, one increment, and two shifts. Our reference imple-
mentation [10] contains a program verifying the above men-
tioned exhaustive check.

5.4 Computing k0 and β
We can apply the same idea as in Section 4.5 to compute k0
and β, but computing k0 is a bit more involved. Recall that
for the shorter interval case,

k0 = −blog10 ∆c
= −

⌊
log10

(
3 · 2e−2

)⌋
= −

⌊
e log10 2− log10

4

3

⌋
.

The idea is again approximate log10 2 and log10
4
3 using their

binary approximations. More precisely, for a positive integer
u, define

mu := b2u log10 2c , su :=

⌊
2u log10

4

3

⌋
,

and we approximate
⌊
e log10 2− log10

4
3

⌋
as⌊

(emu − su) 2−u
⌋
.

With the choice u = 22, it can be exhaustively verified that
the above approximation is correct up to |e| ≤ 1700. Our
reference implementation [10] contains a program verifying
this.

5.5 Integer Checks
We need to check if x or z are integers. Recall that

x =

(
fc −

1

4

)
· 2e · 10k0 = (2p+2 − 1) · 2e+k0−2 · 5k0 .

Suppose that 2p+2−1 is d1 times divisible by 5.17 Then since
2p+2 − 1 is an odd number, it follows that x is an integer if
and only if:

1. e+ k0 − 2 ≥ 0, and

2. k0 + d1 ≥ 0.

Using the definition k0 = −
⌊
log10(3 · 2e−2)

⌋
, the first con-

dition is equivalent to

e− 2 ≥
⌊
log10(3 · 2e−2)

⌋
,

17 Note that 2p+2 − 1 is a multiple of 5 if and only if p ≡ 2 (mod 4),
which is not the case for both binary32 (p = 23) and binary64 (p = 52),
so in fact d1 = 0 in all cases.
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which is again equivalent to

log10(3 · 2e−2) < e− 1.

Rewriting the above gives

(e− 2) log10 2 + log10 3 < (e− 2) + 1,

which is equivalent to

(e− 2) log10 5 > log10

3

10
.

Hence, it follows that e+ k0 − 2 ≥ 0 if and only if

e− 2 > log5

3

10
,

which is equivalent to e ≥ 2.
On the other hand, the second condition is equivalent to⌊

log10(3 · 2e−2)
⌋
≤ d1,

so
log10(3 · 2e−2) < d1 + 1,

which can be rewritten as

2e−2 <
10d1+1

3
.

Hence, it follows that k0 + d1 ≥ 0 if and only if

e < 2 + log2

10d1+1

3
,

or equivalently,

e ≤ 2 +

⌊
log2

10d1+1

3

⌋
.

Thus, x is an integer if and only if

2 ≤ e ≤ 2 +

⌊
log2

10d1+1

3

⌋
.

Similarly, since

z =

(
fc +

1

2

)
· 2e · 10k0 = (2p+1 + 1) · 2e+k0−1 · 5k0 ,

suppose that 2p+1 + 1 is d2 times divisible by 518, then z is
an integer if and only if:

1. e+ k0 − 1 ≥ 0, and

2. k0 + d2 ≥ 0.

18 Again d2 = 0 for both binary32 (p = 23) and binary64 (p = 52).

Again, the first condition is equivalent to

log10(3 · 2e−2) < e,

and by rewriting the above we get

(e− 2) log10 2 + log10 3 < (e− 2) + 2,

which is equivalent to

(e− 2) log10 5 > log10

3

100
.

Or, equivalently,

e > log5

3

100
+ 2 = log5

75

100
= log5

3

4
,

which is equivalent to e ≥ 0.
Since there is nothing different from the case of x for the

second condition other than d1 is replaced by d2, we get that
z is an integer if and only if

0 ≤ e ≤ 2 +

⌊
log2

10d2+1

3

⌋
.

5.6 Detecting Tie
In this section, we will show that when we search the cor-
rectly rounded integer in 10k0I ∩ Z, we have tie so we need
to choose between y(ru) and y(rd) = y(ru)− 1 if and only if

− p− 2− b(p+ 4) log5 2− log5 3c ≤ e
≤ −p− 2− b(p+ 2) log5 2c .

Note that tie occurs exactly when y + 1
2 is an integer, or

equivalently,

2y + 1 = 2p+e+1 · 10k0 + 1 = 2p+e+k0+1 · 5k0 + 1

is an even integer. Note that this happens exactly when:

1. p+ e+ k0 + 1 = 0, and

2. k0 ≥ 0.

Let us first solve the first equation. The equation can be
rewritten as

p+ e+ 1 =
⌊
log10(3 · 2e−2)

⌋
,

which is equivalent to the inequality

p+ e+ 1 ≤ log10(3 · 2e−2) < p+ e+ 2.

We can rewrite this inequality as

10p+3 · 10e−2 ≤ 3 · 2e−2 < 10p+4 · 10e−2,

which is equivalent to

10p+3 · 5e−2 ≤ 3 < 10p+4 · 5e−2,
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or,
3 · 10−p−4 < 5e−2 ≤ 3 · 10−p−3.

Taking log, we get

− p− 4− (p+ 4) log5 2 + log5 3 < e− 2

≤ −p− 3− (p+ 3) log5 2 + log5 3,

or equivalently,

− p− 2− ((p+ 4) log5 2− log5 3) < e

≤ −p− 1− ((p+ 3) log5 2− log5 3) .

On the other hand, the second condition k0 ≥ 0 is equivalent
to e ≤ 3 (specialize the arguments in Section 5.5 with
d1 = 0), which is always true if

e ≤ −p− 1− ((p+ 3) log5 2− log5 3)

whenever p ≥ 0, hence, y + 1
2 is an integer if and only if

− p− 2− b(p+ 4) log5 2− log5 3c ≤ e
≤ −p− 2− b(p+ 3) log5 2− log5 3c .

We will show in Section 5.7 that y(ru) is always upper
bounded by z̃(i). Note that if we have y(rd) /∈ 10k0I , then it
is wiser to consider the case not as a tie because y(rd) is no
longer a valid choice. Thus, we will now derive an equivalent
condition for having y(rd) ≥ x̃(i), which then automatically
implies y(ru), y(rd) ∈ 10k0I as y(rd) ≤ y(ru) ≤ z̃(i).

Assuming we have tie so that y− 1
2 is an integer, we have

y(rd) < x̃(i) if and only if

y − 1

2
< x or y − 1

2
≤ x,

depending on the rounding rule. In fact, since y − 1
2 is

assumed to be an integer, we have p+e+k0 +1 = 0, and as
explained in Section 5.5, x is an integer only if e+k0−2 ≥ 0,
which is not the case because

e+ k0 − 2 = −p− 3 < 0.

Hence, since y− 1
2 is an integer and x is not an integer, above

two inequalities have no difference, so let us work with

y − 1

2
< x

for simplicity. Using the definitions of x and y, the above
inequality can be written as

2p+e · 10k0 − 1

2
<

(
2p − 1

4

)
· 2e · 10k0 .

Rewriting the above, we get

1

4
· 2e · 10k0 <

1

2
.

Since we have assumed p+ e+ k0 + 1 = 0, we have

k0 = −p− e− 1,

so the inequality can be rewritten as

2e · 10−p−e−1 < 2,

or equivalently,
5p+e+1 > 2−p−2.

Taking log, we get

e+ p+ 1 > −(p+ 2) log5 2,

thus
e > −p− 1− (p+ 2) log5 2.

Note that the above bound

−p− 1− (p+ 2) log5 2

is strictly less than the bound

−p− 1− ((p+ 3) log5 2− log5 3).

Hence, more strict equivalent condition for having tie is

− p− 2− b(p+ 4) log5 2− log5 3c ≤ e
≤ −p− 2− b(p+ 2) log5 2c ,

and when this is the case, we do not need to worry about the
case of having y(rd) /∈ 10k0I .

5.7 Some Facts about Correct Rounding
In this section, we will show the following things:

1. We always have y(ru) ≤ z̃(i).
2. Whenever y(ru) /∈ 10k0I , the integer in 10k0I that is

closest to y is y(ru) + 1.

The consequence is that, we can check if y(ru) /∈ 10k0I only
by checking if y(ru) < x̃(i), and if that happens, we just need
to increase y(ru) by one.

To show the first claim, note that

y(ru) ≤ y +
1

2
= z − (z − y) +

1

2
,

and
z − y =

2δ

3
.

Recall from (1) that

10−k0 ≤ ∆ < 10−k0+1,

so δ := ∆ · 10k0 satisfies

1 ≤ δ < 10.
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Hence,

y(ru) ≤ z +
1

2
− 2δ

3
≤ z +

1

2
− 2

3
= z − 1

6
.

Therefore, y(ru) must be at most z̃(i).
To show the second claim, suppose y(ru) /∈ 10k0I . Then

by the first claim, we must have y(ru) ≤ x. Then,

y(ru) + 1 ≤ x+ 1 = z + 1− δ,

and again since δ ≥ 1, we get

y(ru) + 1 ≤ z.

In fact, the inequality should be strict; otherwise, we should
have δ = 1, which is impossible since

δ = ∆ · 10k0 = 3 · 2e−2 · 10k0

and there is no way to cancel out the factor 3. On the other
hand, note that

y(ru) =

⌊
y +

1

2

⌋
> y − 1

2
,

so
y(ru) + 1 > y +

1

2
> x.

Therefore, we always have

x < y(ru) + 1 < z

if y(ru) /∈ 10k0I . Note that in this case, since we have
y(ru) ≤ x < y and y(ru) is equal to either byc or byc + 1,
it follows that y(ru) = byc. Hence, we conclude that byc is
not in 10k0I while byc + 1 = y(ru) + 1 is in 10k0I , thus
y(ru) + 1 must be the integer inside 10k0I that is closest to
y. Therefore, the second claim is also proven.

6. Sufficiency of Cache Precision
We use following lemmas from [4], originally presented in
[5], to show that Q = 2q is sufficient to guarantee⌊

v · 10k
⌋

= bv · ϕ̃k · 2ekc ,

where

ϕ̃k =

{
bϕkc if k ≥ 0

bϕkc+ 1 if k < 0

and v is a number of the form v = g · 2b for some positive
integer g in a certain range and an integer b in a certain range:

Lemma 6.1 (Adams, 2018).
Let k be a nonnegative integer, b an integer, and g a positive
integer. Then for any integer u satisfying

u > b+ log2

5kg

5k − (2bg mod 5k)
,

we have ⌊
g · 2b

5k

⌋
=

⌊
g · 2b−u

(⌊
2u

5k

⌋
+ 1

)⌋
.
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Figure 5. Lower bounds on Q for each e with k ≥ 0 (top:
binary32, bitton: binary64); the maximum value is 62 for
binary32, 125 for binary64.

Lemma 6.2 (Adams, 2018).
Let k be a nonnegative integer, b an integer, and g a positive
integer. Then for any integer l satisfying

l ≤ log2 max

{
1,

5kg mod 2b

g

}
,

we have ⌊
g · 5k

2b

⌋
=

⌊
g · 2l−b

⌊
5k

2l

⌋⌋
.

For the proofs of these lemmas, one can see [5] or [4].

6.1 Case I: Normal Interval Case, k ≥ 0

Consider the case k ≥ 0 for the normal interval case. In this
case, it suffices to guarantee⌊

g · 2e−1 · 10k
⌋

=
⌊
g · 2e−1 · ϕ̃k · 2ek

⌋
20 2020/12/26
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Figure 6. Lower bounds on Q for each e with k < 0 (top:
binary32, bitton: binary64); the maximum value is 58 for
binary32, 125 for binary64.

when g ∈ [1, 2p+2 − 1] and e ∈ [Emin − p, e0], where we
define e0 as the maximum e such that

k = −blog10 2ec+ κ ≥ 0.

As we have seen in Section 4.6,

e0 = b(κ+ 1) log2 10c .

We want to take l so that

ϕ̃k =

⌊
5k

2l

⌋
∈ [2Q−1, 2Q).

This can be easily seen to be equivalent to

l = ek − k = bk log2 10c −Q+ 1− k,

where the second inequality follows from (2). What we want
to have is then the equality⌊

g · 5k

2−e−k+1

⌋
=
⌊
g · 2l+e+k−1 · ϕ̃k

⌋
,

and in order to have that, it suffices to have the inequality

bk log2 10c −Q+ 1− k

≤ log2 max

{
1,

5kg mod 2−e−k+1

g

}
,

or equivalently,

Q ≥ bk log2 10c − k + 1

− log2 max

{
1,

5kg mod 2−e−k+1

g

}
,

thanks to Lemma 6.2.
For each e and

k = −blog10 2ec+ κ,

we can obtain the minimum possible value of

5kg mod 2−e−k+1

using the improved min-max Euclid algorithm described in
[4], Section 4.3. Let us call that minimum valuem (note that
when −b− k ≤ 0, we have m = 0). Then, we can obtain

bk log2 10c − k + 1−
⌊

log2 max

{
1,

m

2p+2 − 1

}⌋
,

which is a sufficient lower bound of Q. It can be then ex-
plicitly verified that for all possible values of e, the above
lower bound does not exceed 2q, thus Q = 2q is sufficient,
as shown in Figure 5.

6.2 Case II: Normal Interval Case, k < 0

Consider the case k < 0 for the normal interval case. Again,
it suffices to guarantee⌊

g · 2e−1 · 10k
⌋

=
⌊
g · 2e−1 · ϕ̃k · 2ek

⌋
when g ∈ [1, 2p+2 − 1] and e ∈ [e0 + 1, Emax − p].

We want to take u so that

ϕ̃k =

⌊
2u

5−k

⌋
+ 1 ∈ [2Q−1, 2Q),

which is equivalent to

u = k − ek = k − bk log2 10c+Q− 1.

What we want to have is then the equality⌊
g · 2e+k−1

5−k

⌋
=
⌊
g · 2e+k−1−u · ϕ̃k

⌋
,
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and in order to have that, it suffices to have the inequality

k − bk log2 10c+Q− 1

> e+ k − 1 + log2

5−kg

5−k − (2e+k−1g mod 5−k)
,

or equivalently,

Q > e+ bk log2 10c

+ log2

5−kg

5−k − (2e+k−1g mod 5−k)
,

thanks to Lemma 6.1.
For each e and

k = −blog10 2ec+ κ,

we can obtain the maximum possible value of

2e+k−1g mod 5−k

using the improved min-max Euclid algorithm described in
[4], Section 4.3. Let us call that maximum value M . Then,
we can obtain

e+ bk log2 10c+

⌊
log2

5−kg

5−k −M

⌋
+ 1,

which is a sufficient lower bound of Q. It can be then ex-
plicitly verified that for all possible values of e, the above
lower bound does not exceed 2q, thus Q = 2q is sufficient,
as shown in Figure 6.

6.3 Case III: Shorter Interval Case
For the shorter interval case, we can apply the same idea to
show that the computations

x(i) =
⌊
(2p+2 − 1) · ϕ̃k0 · 2−Q · 2β−2

⌋
and

z(i) =
⌊
(2p+2 + 2) · ϕ̃k0 · 2−Q · 2β−2

⌋
are exact, ifQ = 2q. Our reference implementation [10] also
includes a verification program for this.

7. Performance
We compared the performance of Dragonbox with Grisu-
Exact [12] and Ryū [11], for the task of producing a decimal
string representation of a given floating-point number. The
source code for the benchmark is available in [10].

We did two set of benchmarks. The first set is testing
floating-point numbers with the given number of decimal
digits. (See Figure 7.) Since it is not easy to uniformly ran-
domly generate such floating-point numbers, we first uni-
formly randomly generated an integer with the given num-
ber of digits, combined it with a uniformly randomly gen-
erated exponent in the valid decimal exponent range and a

uniformly randomly generated sign, converted the result into
a string, and then converted it back to a floating-point num-
ber. If the resulting string does not fall in the valid range or
if there exists a shorter representation of the same floating-
point number, then we discarded he number and repeated the
procedure. Although this will not give us the uniform distri-
bution as the probability of collision will not be uniform, one
may nonethelessly claim that this will give a reasonable ap-
proximation. We generated 100, 000 samples per each num-
ber of digits, and measured the time elapsed for repeating
the string generation 1, 000 times for each sample.

The second set is testing uniformly randomly generated
floating-point numbers. (See Figure 8.) For this benchmark,
we generated 1, 000, 000 samples and measured the time
elapsed for repeating the task 1, 000 times for each sample.
Since 1, 000, 000 samples are too many to make a visible
plot, we randomly sampled 10, 000 among them for the plot
shown in Figure 8. The statistics attached on the plot is
drawn from all of 1, 000, 000 samples.

The benchmark data is obtained on a machine with
Intel (R) Core™ i7-7700HQ CPU @2.80GHz, and the
benchmark code is compiled with Clang-cl compiler shipped
with Visual Studio 2019 16.7.2.

We also have benchmarked our reference implementa-
tion [10] against a C++ implementation of Schubfach [7].
Since the Schubfach implementation we benchmarked does
not remove trailing decimal zeros, we also used a version
of Dragonbox implementation that does not remove trailing
decimal zeros. Other details for this benchmark is same as
above. See Figure 9 and Figure 10.

In our benchmarks, Dragonbox performed better than
the competitors for all number of digits and also for the
uniformly random data.

A. Right-Closed Directed Rounding Case
In this section, we describe the algorithm for the case when
the interval I is given as

I = (w−, w].

In this case, there is not much difference in the normal
interval case and the shorter interval case, so we will not
treat them differently. One more difference is that when we
know that I ∩ 10−k0+1Z is empty, we just need to find the
greatest integer from 10k0I , which can be done directly by
just adding the quotient of r divided by 10κ to 10s. Besides
those, there are not so much differences from the nearest
rounding. Here is the skeleton:

Algorithm A.1 (Skeleton of Dragonbox, Right-Closed Di-
rected Rounding Case).

1. Compute k = −blog10 ∆c + κ as described in Section
4.5. But in this case, we need to be careful that ∆ = 2e−1

if Fw = 1 and E 6= Emin, and ∆ = 2e otherwise.
2. Compute z(i), as described in Section 4.2
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Figure 7. Performances of Dragonbox, Ryū, and Grisu-Exact for random floating-point numbers with given number of digits;
solid lines are averages, dashed lines are medians, and shaded regions show 30%, 50%, and 70% percentiles. (top: binary32,
bottom: binary64)

3. Compute s, r by dividing z(i) by 10κ+1 with the opti-
mization described in Section 4.7.

4. Compute δ(i) as described in Section 4.4. But in this case,
again we need to take care of the presence of the closer
interval case. The only difference is, however, that we
need to shift by one less amount of bits, compared to the
normal interval case.

5. Check if the inequality r > δ(i) holds. If that is the case,
then we conclude that I ∩ 10−k0+1Z is empty.

6. Otherwise, check if the inequality r < δ(i) holds. If
that is the case, then we conclude that 10−k+κ+1s is the
unique element in I ∩ 10−k0+1Z.

7. Otherwise, we have r = δ(i). Then, compute the parity of
x(i), as described in Section 4.3. Again, we need to take
care of the presence of the closer interval case, since we
have

x =

(
fc −

1

2

)
· 2e · 10k = (2fc − 1) · 2e−1 · 10k

for the normal interval case but we have

x =

(
fc −

1

4

)
· 2e · 10k = (4fc − 1) · 2e−2 · 10k

for the shorter interval case.
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Dragonbox (avg: 15.56, std: 4.04, med: 15.00)
Ryu (avg: 19.77, std: 5.16, med: 18.80)
Grisu-Exact (avg: 18.56, std: 4.56, med: 17.80)
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Dragonbox (avg: 23.72, std: 6.48, med: 22.50)
Ryu (avg: 28.28, std: 6.19, med: 26.90)
Grisu-Exact (avg: 27.17, std: 7.45, med: 24.90)

Figure 8. Performances of Dragonbox, Ryū, and Grisu-Exact for uniform random floating-point numbers (top: binary32,
bottom: binary64)

• If x(i) is an odd number, then we have z(f) < δ(f), so
we conclude that 10−k+κ+1s is the unique element in
I ∩ 10−k0+1Z.

• Otherwise, we conclude that I ∩ 10−k0+1Z is empty.
8. When we have concluded that 10−k+κ+1s is the unique

element in I ∩ 10−k0+1Z, then we might need to remove
trailing zeros from s. Find the greatest integer d such that
10d divides s. Then we conclude that

s

10d
× 10−k+κ+1+d

is the answer we are looking for.

9. When we have concluded that I ∩ 10−k0+1Z is empty,
then (10s + t) × 10−k+κ is the answer we are looking
for, where t :=

⌊
r

10κ

⌋
.

B. Left-Closed Directed Rounding Case
In this section, we describe the algorithm for the case when
the interval I is given as

I = [w,w+).

In this case, the strategy is to take consider mirror image of
the algorithm explained in Section A. This is a little bit more
complex that the right-closed directed rounding case, but a
good thing is that we do not have the shorter interval case;
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Figure 9. Performances of Dragonbox and Schubfach without trailing zero removal for random floating-point numbers with
given number of digits; solid lines are averages, dashed lines are medians, and shaded regions show 30%, 50%, and 70%
percentiles. (top: binary32, bottom: binary64)

we always have ∆ = 2e and w+ = (fc + 1) · 2e. Here is the
skeleton:

Algorithm B.1 (Skeleton of Dragonbox, Left-Closed Di-
rected Rounding Case).

1. Compute k = −blog10 ∆c + κ as described in Section
4.5.

2. Compute x(i), as described in Section 4.2. Note that we
can still apply the completely same routine to x rather
than z.

3. Check if x is an integer; define

x̃(i) =

{
x(i) if x is an integer
x(i) + 1 if x is not an integer

.

Note that x̃(i) is nothing but the ceiling of x. To check if
x = y is an integer, we can apply the method described
in Section 4.6, more specifically, Lemma 4.5.

4. Compute the unique integers s̃, r̃ satisfying

x̃(i) = 10κ+1s̃− r̃, 0 ≤ r̃ < 10κ+1.
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Dragonbox (w/o trailing zero removal) (avg: 15.09, std: 5.27, med: 14.40)
Schubfach (avg: 17.25, std: 5.53, med: 16.10)
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Dragonbox (w/o trailing zero removal) (avg: 23.06, std: 7.10, med: 21.60)
Schubfach (avg: 23.91, std: 7.03, med: 22.30)

Figure 10. Performances of Dragonbox and Schubfach without trailing zero removal for uniformly random floating-point
numbers (top: binary32, bottom: binary64)

This requires a little modification to the plain division:

s̃ =


⌊
x̃(i)

10κ+1

⌋
if 10κ+1 divides x̃(i)⌊

x̃(i)

10κ+1

⌋
+ 1 otherwise

.

(This is again nothing but the ceiling.) The optimization
described in Section 4.7 still applies.

5. Compute δ(i) as described in Section 4.4.
6. Check if the inequality r > δ(i) holds. If that is the case,

then we conclude that I ∩ 10−k0+1Z is empty.
7. Otherwise, check if the inequality r < δ(i) holds. If

that is the case, then we conclude that 10−k+κ+1s̃ is the
unique element in I ∩ 10−k0+1Z.

8. Otherwise, we have r = δ(i). Then, compute the parity
of z(i), as described in Section 4.3. Again, no further
modification is needed and we can just apply what is
described in 4.3 to z(i) as well.

• If z(i) is an odd number, then I ∩ 10−k0+1Z is empty.
• If z(i) is an even number, then check if z is an integer.

Again, we can apply Lemma 4.5 here. If that is the
case, then we conclude that I ∩ 10−k0+1Z is empty.
Otherwise, we conclude that 10−k+κ+1s̃ is the unique
element in I ∩ 10−k0+1Z.

9. When we have concluded that 10−k+κ+1s̃ is the unique
element in I ∩ 10−k0+1Z, then we might need to remove
trailing zeros from s̃. Find the greatest integer d such that

26 2020/12/26



10d divides s̃. Then we conclude that

s̃

10d
× 10−k+κ+1+d

is the answer we are looking for.
10. When we have concluded that I ∩ 10−k0+1Z is empty,

then (10s̃ − t) × 10−k+κ is the answer we are looking
for, where t :=

⌊
r̃

10κ

⌋
.

To elaborate more on the step 8, let us define

x̃(f) := x̃(i) − x,

then 0 ≤ x̃(f) < 1. Then

z(i) + z(f) = x+ δ = x̃(i) + δ(i) + (δ(f) − x̃(f)).

Now, if δ(i) = r̃, then

z(i) + z(f) = 10κ+1s̃+ (δ(f) − x̃(f)),

thus z(i) is an odd number if and only if x̃(f) > δ(f). In this
case, we have that s̃ is not in 10k0−1I , so I ∩ 10−k0+1Z is
empty.

When z(i) is an even number, then x̃(f) ≤ δ(f). In this
case, we have s̃ ∈ 10k0−1I if and only if x̃(f) > δ(f), so we
need to check if x̃(f) = δ(f), which is the case if and only if
z is an integer.
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