
Version 1.2.41

December 23, 2013

2

Contents

1 General Information 5

2 HOTINT Developers Manual 11

2.1 General Information . 12

2.1.1 Program Structure . 12

2.1.2 Entry Points - Where to start from? . 17

2.1.3 Description of the multibody/mechatronic system in HOTINT 19

2.1.4 Algorithmic structure of the integrator 23

2.1.5 Dense and sparse matrices . 25

2.1.6 Integration Window . 26

2.1.7 Vectors, Matrices, Nonlinear Solver . 26

2.1.8 Graphical commands (optional): . 28

2.1.9 Autogenerated parts of HOTINT . 29

2.2 The Multibody System Kernel . 34

2.2.1 Several main points have been focused in the multibody kernel: 34

2.2.2 Main structure of the multibody kernel 34

2.2.3 Multibody system: mbs.h . 35

2.3 Sensors . 37

2.3.1 Sensors and Measuring . 37

2.3.2 Deflection Sensor . 42

2.4 Loads . 44

2.4.1 Loads . 44

2.4.2 Add momentum to finite element . 44

2.5 Elements . 45

2.5.1 Base class Element: element.h . 46

2.5.2 Bodies . 67

2.5.3 The base class Constraint . 67

2.5.4 Rigid3D . 71

2.5.5 Geometric Elements . 74

2.5.6 Finite elements . 74

2.5.7 CMSElement + GCMSElement . 78

2.5.8 Control elements (time continuous and discrete elements) 83

2.6 Import and export of data and interfaces to other software 84

2.6.1 FEMesh . 84

2.6.2 Generate cylinders, rings and discs . 92

2.7 Models . 95

2.7.1 How to add objects to the mbs . 95

2.7.2 Possibilities for error handling . 97

3

4 CONTENTS

3 HOTINT Guidelines 99
3.1 How to get HOTINT running from the Source Code 100

3.1.1 Requirements . 100
3.1.2 Unpack HOTINT . 100
3.1.3 When using Visual Studio 2008 . 100
3.1.4 When using Visual Studio 2010 . 100

3.2 Coding Conventions . 101
3.2.1 Comments . 101
3.2.2 How to structure new HOTINT code? 105
3.2.3 Efficiency . 108

3.3 If problems appear . 110
3.3.1 If problems appear in HOTINT . 110
3.3.2 Solutions for problems, which might be caused by yourself (programming

errors): . 110
3.3.3 Tips for debugging . 110
3.3.4 Known frequent problems . 111

3.4 How to create an installer . 113
3.4.1 How to create an installer and set up your system for the first time in

VisualStudio . 113
3.4.2 How to create an installer for a specific project 119

3.5 How to include Intel MKL . 120
3.6 How to include Pardiso (Solver) . 121
3.7 How to include BLAS/LAPACK . 122
3.8 Useful Visual Studio settings . 123

3.8.1 Save and Build before start . 123
3.8.2 Expansion of class instances (variables) in the watch window 124

3.9 AutoComplete and Highlight HOTINT syntax in notepad++ 124
3.10 How to add your Element to the Script Language 125

3.10.1 Changes in the h-file of your element . 125
3.10.2 Use the EDC-converter: . 128
3.10.3 Test your element: . 128
3.10.4 error handling . 128
3.10.5 The results . 128

3.11 How to add Sensors/Nodes/Materials/BeamProperties/ to the Script Language . 129
3.11.1 Test your element: . 129

3.12 How to start a HOTINT computation from command line or Matlab 130

Bibliography 131

Chapter 1

General Information

Introduction

Development history and background information

The code HOTINT has been initiated by Johannes Gerstmayr in 1997 and, until now, gone
over the following steps:

• solution methods and basic linear algebra routines for static solver (diploma thesis of the
main developer, 1997)

• addition of time integration methods for the accurate solution of large-scale flexible and
discontinuous multibody systems (up to 2004)

• integration with graphical interface in 2003 (with Yury Vetyukov)

• implementation of various structural finite elements, such as flexible beam and plate elements
based on the absolute nodal coordinate formulation

• implementation of the floating frame of reference concept, as well as the component mode
synthesis

• HOTINT made available to and further developed by Linz Center of Mechatronics (since
2007)

• HOTINT made available to and further developed by Austrian Center of Competence in
Mechatronics (from 2008 to 2013)

• User version of HOTINT V1.1 available as freeware (2013)

• A open source version of HOTINT is available (end of 2013)

Current State of HOTINT

HOTINT mainly consists of the multibody kernel, the solver and linear algebra kernel, and the
graphics and user interface, and currently comprises several hundred thousand lines of code. It
has been particularly developed for the use of arbitrary classes of fully implicit Runge Kutta
(IRK) methods. The IRK-tableaus can be defined in an external text-file and are given for
several methods for 1 to 10 stages. The code makes advantage of the very high order reached
through the use of fully implicit methods, which makes it especially then fast, when higher

5

6 CHAPTER 1. GENERAL INFORMATION

accuracy is needed.
In the current version, the K-form of IRK-equations has been implemented for the fast inte-
gration of 2nd order (mechanical) systems. Instead of trying to invert the mass matrix, which
leads to large terms in the case of symbolic inversion, or instead of trying to add the system
as a constraint equation (this has been done by some people who implemented their system
into existing codes), you can now provide the mass matrix and the right hand side separately
and the solver only solves one large system, but does not need the accelerations to be written
explicitly as function of the remaining unknowns.

Summarizing, advanced methods from flexible multibody dynamics cover

• the efficient geometrical description for moving rigid bodies and bodies with superimposed
small deformation,

• the application of special finite element methods, which are well suited for simulating large
deformations of structural elements,

• high-order implicit time-integration schemes, in order to enforce stability for the numerical
solution,

• a sophisticated treatment of algebraic equations for the arbitrary coupling of bodies, and for
the incorporation of certain (boundary) conditions,

• and finally the reduction of the system size by a component mode synthesis (CMS).

General Information

Chief developer

Johannes Gerstmayr

Further developers

Larissa Aigner, Markus Dibold, Alexander Dorninger, Peter Gruber, Alexander Humer, Rafael
Ludwig, Karin Nachbagauer, Astrid Pechstein, Daniel Reischl, Martin Saxinger, Markus Schörgen-
humer, Michael Stangl, Yury Vetyukov

Contact

support@hotint.org

Linz Center of Mechatronics GmbH
Altenbergerstr. 69, 4040 Linz, AUSTRIA
http://www.lcm.at

Thanks

The help and support from the contributors of the Institute of Technical Mechanics and Insti-
tute of Numerical Mathematics at the Johannes Kepler University of Linz is greatly appreciated.

7

I would like to acknowledge the important grant of the FWF (”Fond zur Förderung Wis-
senschaftlicher Forschung” - the Austrian National Science Fund) within the project P15195-
N03 and the APART project of the Austrian Academy of Sciences.

Parts of this software have been developed in the project ”Nachhaltig ressourcenschonende
elektrische Antriebe durch höchste Energie- und Material-Effizienz” (sustainable and resource
saving electrical drives through high energy and material efficiency) which is part of the Eu-
ropean Union program ”Regionale Wettbewerbsfähigkeit OÖ 2007-2013 (Regio 13)” sponsored
by the European Regional Development Fund (ERDF) and the Province of Upper Austria.

Parts of this software have been developed with the support of the Comet K2 Austrian Center
of Competence in Mechatronics (ACCM).

Link

http://www.hotint.org

8 CHAPTER 1. GENERAL INFORMATION

Copyright and licence

HotInt 1.0
======

Copyright (c) 2012 Johannes Gerstmayr, Linz Center of Mechatronics GmbH, Austrian Center of Competence
in Mechatronics GmbH, Institute of Technical Mechanics at the Johannes Kepler Universitaet Linz, Austria.
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that
the following conditions are met:

- Redistributions of source code must retain the above copyright notice, this list of conditions and the fol-
lowing disclaimer.

- Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer listed in this license in the documentation and/or other materials provided with the distri-
bution.

- Neither the name of the copyright holders nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

The copyright holders provide no reassurances that the source code provided does not infringe any patent,
copyright, or any other intellectual property rights of third parties. The copyright holders disclaim any liability
to any recipient for claims brought against recipient by any third party for infringement of that parties intel-
lectual property rights.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ”AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IM-
PLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAM-
AGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SER-
VICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

This program contains LAPACK 3.3.0 and SuperLU 4.3, covered under the following licenses:

LAPACK 3.3.0
======

Copyright (c) 1992-2011 The University of Tennessee and The University of Tennessee Research Foundation.
All rights reserved.

Copyright (c) 2000-2011 The University of California Berkeley. All rights reserved.
Copyright (c) 2006-2011 The University of Colorado Denver. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that

the following conditions are met:

- Redistributions of source code must retain the above copyright notice, this list of conditions and the fol-

lowing disclaimer.

9

- Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the

following disclaimer listed in this license in the documentation and/or other materials provided with the distri-

bution.

- Neither the name of the copyright holders nor the names of its contributors may be used to endorse or

promote products derived from this software without specific prior written permission.

The copyright holders provide no reassurances that the source code provided does not infringe any patent,

copyright, or any other intellectual property rights of third parties. The copyright holders disclaim any liability

to any recipient for claims brought against recipient by any third party for infringement of that parties intel-

lectual property rights.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ”AS IS”

AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IM-

PLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE

FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAM-

AGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SER-

VICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED

AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS

SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

SuperLU 4.3

=======

Copyright (c) 2003, The Regents of the University of California, through Lawrence Berkeley National Lab-

oratory (subject to receipt of any required approvals from U.S. Dept. of Energy)

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that

the following conditions are met:

(1) Redistributions of source code must retain the above copyright notice, this list of conditions and the follow-

ing disclaimer.

(2) Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the

following disclaimer in the documentation and/or other materials provided with the distribution.

(3) Neither the name of Lawrence Berkeley National Laboratory, U.S. Dept. of Energy nor the names of its

contributors may be used to endorse or promote products derived from this software without specific prior

written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ”AS IS”

AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IM-

PLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE

FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAM-

10 CHAPTER 1. GENERAL INFORMATION

AGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SER-

VICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED

AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS

SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Chapter 2

HOTINT Developers Manual

11

12 CHAPTER 2. HOTINT DEVELOPERS MANUAL

2.1 General Information

2.1.1 Program Structure

2.1.1.1 The basic modules of HOTINT

Figure 2.1: Interfaces between the kernel, the client and the graphical user interface

HOTINT is composed of the following 3 main modules:

1. kernel module leading to WorkingModule.dll

2. client module leading to MBSElementsAndModels.dll

3. GUI module (by now only MS Windows is supported) leading to hotint.exe

Additionally there exist common services (collected in the static libraries UtilityLib, Parser and
SuperLU), which are linked statically to both WorkingModule and MBSElementsAndModels.

2.1.1.1.1 Kernel - WorkingModule.dll In the kernel, the multibody system is handled.
Here the system matrices are assembled and stored, and the system equations are solved. The
communication with the GUI module is also done by the kernel.
The module consists of the parts (projects in visual studio)

• WorkingModule

– WCDInterface (in WinCompDriverInterface.h): contains the interface of the module
(start/end computation, SetElement, ...)

– WorkingModuleBaseClass: the base class for the computation, derived from WCDIn-
terface

• MBSKernelLib

– NumNLSolver

– NumNLSys - Numerical nonlinear solver - derived from MBS and WorkingModuleBase-
Class

– TimeInt - derived from NumNLSys

2.1. GENERAL INFORMATION 13

– MultiBodySystem - derived from TimeInt

– Eigenmodes solver

• Parser

• SuperLU

• UtilityLib

– Mathematical routines (linear algebra)

– String manipulation functions

– IO routines

2.1.1.1.2 Client - MBSElementsAndModels.dll In the client, the special information
and code of the objects is provided. Each object (element, load, material, ...) adds some terms
to the system equations and provides other informations (e.g. for drawing) for the multibody
system.
The module consists of the (projects in visual studio):

• MBSElementsAndModels (core of the client module)

– MBSModelLibrary, described in more detail below

– MBSObjectFactory, for creation of objects from the kernel, described in more detail
below

– includes all interfaces needed for elements and models (in the folder MBS Interface)

• ElementsLib (collection of all elements/objects available for defining models) contains

– all elements (rigids, beams, CMS, ...)

– all connectors (joints, control, ...)

– IntegrationRule.h, for defining custom integration rules for specific elements

• ModelsLib

– cpp-models defined in own files (my model.cpp), which shall be included in all models.h
of this project

– source files may be attached to this project, but shall be excluded from build!

• ServiceObjectsLib (collection of all service objects (objects apart from elements and connec-
tors) available for defining models)

– GeomElements

– Material

– Loads

– Nodes

– Sensors

– Simulink2HotintConversion

– TCP/IP-Routines

14 CHAPTER 2. HOTINT DEVELOPERS MANUAL

• FEMesh

– FEMesh

– FEMesh aux

– FEMesh generator

• Parser

• SuperLU

• UtilityLib

– Mathematical routines (linear algebra)

– String manipulation functions

– IO routines

2.1.1.1.3 GUI module (hotint.exe) This module contains the HOTINT GUI.

• WCDriver

– CWCDriver3DApp (in WCDriver3D.cpp): First class that will be created when you
start HOTINT.

– CWCDriver3DDlg (in WCDriver3DDlg.cpp): Creates the GUI and manages the user
input (e.g. if a button is clicked).

– WCDriver3D.rc: Resource file in which all dialogs can be found. Here one can add or
modify a dialog or a dialog element.

– every dialog

2.1.1.1.4 Common headers Collected in the project folder MBSElementsAndModels/MBS Interface
are common headers, which are needed in more than one particular module.

NumSolverInterface

• GetNewtonIts()

• NumDiffepsi()

• UseSparseSolver()

• SymmetricJacobian()

HOTINTOptions defined in the (autogenerated) file options class auto.h with the sub-
classes

• LoggingOptionsClass

• GeneralOptionsClass

• ViewingOptionsClass

• PostProcOptionsClass

2.1. GENERAL INFORMATION 15

• GraphicsOptionsClass

• PlotToolOptionsClass

• PreProcOptionsClass

SolverSettings defined in the (autogenerated) file solversettings auto.h

RenderContext Interface to OpenGL.

ControlWindowContext Interface for drawing in the control window.

StepSettings

2.1.1.2 Interaction between client and kernel module

In Fig. 2.2 the interaction between client and kernel module is outlined.

Figure 2.2: Interaction between kernel (multi-body-system) and client (elements and models)

16 CHAPTER 2. HOTINT DEVELOPERS MANUAL

2.1.1.2.1 Models Library The models library contains all models available for being exi-
cuted by the user via the GUI.

How source code models are added to the models library

• A new source code model is defined in form of a Generate- and a Init-function (in a cpp-file
in ModelsLib\ which shall be included in ModelsLib\all models.h).

• Call of ModelFunctionAutoregistration(*pFn,*pFnInit) creates an instance

ModelDataWrapperOldFnPointers model(..., (*pFn), (*pFnInit),...);

and adds it to the model library: modelLibrary.AddModel(model);

How script models are added to the models library

How models from the models library are called by the kernel In the kernel, i.e., in
MultiBodySystem::Initialize in initialize system.cpp, the Generate-function of a selected
(ith) cpp-model is finally called:

GetModelsLibrary()->GetModelInterface(i)->CreateMBSModel(this);

where *this is an instance of class MultiBodySystem.

2.1.1.2.2 Object Factory

2.1.1.2.3 MBS The abstract class MBS provides access on multibody system functionality
(defined in the kernel module) from within the client module. While functions are declared on
both sides (since mbs interface.h is included in client and kernel module), their definitions are
solely part of the kernel module (in the inherited class MultiBodySystem).
Most of the functions of class MBS are declared in sub-structures:

• MBSSolutionAccessInterface: GetXact, GetDrawValue,...

• MBSObjectsAccessInterface: AddElement, GetElement,...

• MBS3DDrawingInterface: MyDrawLine, SetColor,...

• MBS2DDrawingInterface: AddDrawComponent Line,..

• MBSOptionsInterface: GetIOption, GetOptions, EDC2SolverOptions,...

• MBSUOInterface: UO(int message level)

– struct UserOutputInterface is defined in seperate file useroutputinterface.h

• MBSModelDataInterface: ReadModelData, GetModelDataContainer,..

• MBSParserInterface: ExpressionToDouble, File2EDC, ComputeInertia,...

while some of the functions are contained in class MBS itself:

• GetTime, GetDrawTime,...

2.1. GENERAL INFORMATION 17

• Assemble, ClearSystem,...

• some functions due to ancf..2d (GetDrawResolution, FEColor,...)

• some functions due to contact2D/3D and control (GetStepRecommendation, ForceJacobian-
Recomputation,...)

2.1.2 Entry Points - Where to start from?

In HOTINT there are several entry points, that is functions that get called from outside of
HOTINT.
It is important to know which function is called from which entrypoint, since the different
entrypoints may be called from different threads.

2.1.2.1 CWCDriver3DApp::InitInstance()

InitInstance will create a CWCDriver3DDlg which will draw all windows and which will initialize
everything.

2.1.2.2 WCDriver3DDlg::OnButtonGo

Will be called when the Start button is clicked.
Attention when stopping a (user defined) calculation (intentionally or if an error occures): All
files that have been opened have to be closed.

18 CHAPTER 2. HOTINT DEVELOPERS MANUAL

2.1.2.3 CGLDrawWnd::Redraw()

Will be called from Windows. This function calls then RenderScene which will call MultiBodySystem::
DrawSystem, which then calls the DrawElement() function of every element in the model. The
order in which the elements are drawn is

1. Loads

2. Nodes

3. Sensors

4. Constraints

5. Bodies

The order in which the elements are drawn is crucial if transparency is set to on.
The drawing routines are thus called from another entrypoint than the calculation routines.
Hence it is important that the drawing routines and the calculation routines are independent
from each other, and do not use the same variables. The drawing of the IOWindow and the
Plottool Window works very similar.

2.1. GENERAL INFORMATION 19

2.1.3 Description of the multibody/mechatronic system in HOTINT

The idea is that you define your problem by deriving a class from the time integration class
(which needs to be able to call the functions of your differential equations). While the program
works almost automatically, you need to provide some functions which tell the program what
it should do with your equations.

2.1.3.1 Commands used for description of differential algebraic system:

Parameters for the following Functions are all the same: void EvalF(const Vector& x, Vector&

f, double t);

Here, x is a Vector of the length of your state vector, which must be of the form x =
[xu xv xx xz], where xu and xv are position and velocity coordinates of the second order
differential equations, xx stands for variables of the first order differential equ. and xz repre-
sents algebraic variables. The initial conditions and the evaluation of the below listet functions
must be always sorted according to the vector x. For the development of a model, I recommend
to first define the vector of your degrees of freedom, e.g. if you have the system (this example
includes 2nd-order, 1st-order and algebraic equations but has no physical meaning!!!)

M1ẍ1 = −K1x1 − C1λF1 · x3
M2ẍ2 = −K2x2 + C2λF2

ẋ3 = RI · x1 +RP · (ẋ1)
x21 + x22 − L = 0 (2.1)

Then your vector shall be sorted as

x = [x1 x2 ẋ1 ẋ2 x3 λ] (2.2)

what means, that x1 and x2 are your 2nd order position variables, xu, ẋ1 and ẋ2 are the 2nd
order velocity variables, xv, x3 is the first order variable, xx and λ is the algebraic variable, xz,
because there exists no differential equation for it! The description for the useage of Vector

follows in Section 2.1.7.

20 CHAPTER 2. HOTINT DEVELOPERS MANUAL

• void EvalF(...) ... Evaluate first-order differential equations: ẋ = F1(x, t); for every first
order equation, the value of the evaluation of F1 must be returned in Vector& f;

• void EvalM(...) ... Evaluate mass matrix of second order differential equations: Mẍ =
F2(x, t)

• void EvalF2(...)... Evaluate rhs of second order differential equations (external, elastic and
gyroscopic forces, damping

• void EvalG(...)... Evaluate algebraic equations: G(x, t) = 0

2.1.3.2 Necessary Procedures which must be provided:

• double GetFirstOrderSize() const return first order size;

... provide the size (number of) first order equations

• double GetSecondOrderSize() const return second order size;

... provide the size (number of) second order equations

• double GetImplicitSize() const return implicit size;

... provide the size (number of) implicit or algebraic equations

2.1.3.3 Optional Commands and Parameters:

• virtual double GetError() const;

...This function should be adapted to the needs of your problem. This function shall compute
the function (e.g. a norm) of your degrees of freedom, where you want to apply the error
control (only adaptive step size). If you are e.g. only interested in certain quantities like
the deformation of a certain point, but you are not interested e.g. in the velocities of
another point (which might cause very small time integration steps), you should just return
the quantities which should undergo the error control. Furthermore, if you would like to
use a norm of all degrees of freedom, you should normalize your quantities as much as
possible, otherwise a very small deformation will not be penalized, while a large Lagrange-
multiplicator will be penalized extremely high.

• void WriteSol();

...This function is called at every output request; you can store your solution at this point
for the desired degrees of freedom your own format.

• double PostNewtonStep(double t); and void PostprocessingStep();

...If you want to solve a problem with severe nonlinearities (or even jumps) like in contact
or friction, you can use this procedures in order to switch between two states (e.g. between
free motion and contact, or stick and slip, switch between plastic and elastic behaviour, ...).
The function NonlinStep is called after the step is computed. You can e.g. then decide,
if for example in contact penetration occurs and you have to switch from free motion to
contact (you need to introduce switching variables). You have to return the error (which
could be e.g. penetration depth) of the nonlinear functions. If the error is large than the
nonlinerror, the integration step will be repeated taking into account the changes you made.
If you just want to switch your configuration without repeating, just return 0. If you have no
nonlinearities, simply return 0. The function FixNonlinStep will be called after the timestep
has been integrated (with nonlinearity) and the nonlinear error is within the given tolerance.

2.1. GENERAL INFORMATION 21

Then you can reset e.g. your switching variables or you can store your plastic variables as
new initial plastic variables.

• DiscontinuousAccuracy() and MaxDiscontinuousIt():
The maximum number of iterations for the NonlinStep is MaxDiscontinuousIt() and the
desired accuracy is DiscontinuousAccuracy(). This is meant that you for example model a
contact problem, and you return the error of the contact step, e.g. penetration or negative
contact force. Allowing small errors for these parameters makes it possible for a problem
with many discontinuities to converge without making the timestep extremly small.

• SaveState and RestoreState

...If you make use of the NonlinStep and you add switching variables, you have to store
this values (into a copy of variables) or restore them in the Restore-function. E.g. if you
use a contact variable, which indicates you, whether you are in contact or free motion
state, say iscontact, you need to introduce the variables iscontact and iscontact copy

in your TestInt class; Then you modify your functions to SaveState() {iscontact copy

= iscontact;} and RestorState() {iscontact = iscontact copy;}. These functions are
called, if a timestep is repeated during step changes and error estimation. The function
is not needed for constant stepsize.

• Newton method: There are several parameters for specifying the behaviour and accuracy
of the Newton method. Changing them or adapting them to a specific problem might help
to improve convergence:

– NLS ModifiedNewton()=...: Set to 0 or 1 in order to activate the modified Newton
method. Generally, a problem should always converge for the modified Newton method,
because it changes to the full Newton method as soon as it starts to fail for the modified
method. However, you might with to analyse your problem, or it might be just better
for some problems to immediately try the full Newton method.

– NLS RelativeAccuracy()=...: Sets the relative accuracy (rtol) of your Newton method.
The Newton method iterates until it fulfills Ri(F) < rtol · R0(F) where Ri(F) is the
the actual residual and R0(F) is the the initial residual when starting the method. For
some problems the desired accuracy might not be reachable (default: 10−10), therefore
you should change this value, if the method does not converge!

– NLS NumDiffepsi()=...: This is the parameter for the numerical differentiation in the
computation of the Jacobian. You should normally set this between 10−6 and 10−10.
The smaller this value gets, the more accurate the differentiation becomes, but the
higher the rounding error becomes (which has its extremum at 10−17 where you get
probably 100% error. If you use larger values (10−6 to 10−4), you more and more
smooth your Jacobian, which means that small perturbations in your sysetm are not
taken into account in the Jacobian. You should keep in mind that parameter does not
have influence to the accuracy of the solution you get from the Newton method. It
only influences the convergence speed, which might be sometimes faster, if you smooth
a little, or sometimes better if you try to compute your Jacobian more accurately.

– NLS MaxModNewtonSteps()=...: This sets the maximum number of modified Newton
steps. At the moment. If the number of modified Newton steps is reached with-
out convergence or the contractivity becomes very bad, the Newton solver restarts
solving the nonlinear problem with once computing a Jacobian and iterating until
MaxRestartNewtonSteps(). When still having no convergence, it will try the full Newton
method with in total MaxFullNewtonSteps().

22 CHAPTER 2. HOTINT DEVELOPERS MANUAL

– NLS SymmetricJacobian()=...: Set to 1, if you would like to compute the Jacobian by a
symmetric difference quotient, or to 0, if you want to solve it with a right-side difference
quotient. The symmetric difference quotient is approximately 2 times slower, but might
be better for certain problems.

• Output: you can activate or deactivate the call of the function write sol by setting the pa-
rameter writeresults. The actual state of the system can be gained from GetSolVector() (at
the end of the step), the actual computed time comes with GetTime() and the actual stepsize
was GetStepSize(). Additional functions are the actual computational time GetCompTime(),
the number of time steps GetTIit(), the number of computed Jacobians GetJacCount(), the
number of step size changes GetStepChanges().

• Data Storage: you can activate or deactivate the data storage function by setting the
parameter storedata. The data can be only stored when it is painted, so be sure to set the
parameter withgraphics to 2. The parameters for storedata are

– -2: store at every time step

– -1: store at every max-timestep

– 0: never store

– +x.x: store every x.x time; note that it is only stored if drawn.

• Drawing: The parameter withgraphics lets you influence how often your model is redrawn.
This might help, to increase the speed of your simulation. The Values are:

– 0: never draw

– 1: draw every 25 milliseconds (of real time)

– 2: draw every frame (use this for data storage)

– 3: draw every 100 milliseconds (of real time)

– 4: draw every 10 steps

2.1.3.4 Start of integration

• void PerformComputation(); ... This Procedure is called when you press the Start button.
You have to call the function TIInit(), which initializes the time-integrator. This is not
done automatically, because you might wish to run your simulation for several times and
maybe do not wish to initialize it all the time. It initializes integration parameters with
default values. After calling TIInit(), you should set your specific integration parameters
(method, accuracy, time-span) and start the integration → call Integrate(...).

• void Initialize(); ... Set initial conditions with SetStartVector(const Vector& x0), and
initialize special parameters for integration or numerical solver. This function is furthermore
called prior to the computation, such that your model can be drawn with initial condi-
tions before pressing the start button. Everything should be set in Initialize() so that the
DrawScene function can be performed after the startup of the program.

2.1. GENERAL INFORMATION 23

• virtual int Integrate(mystr name, int maxstages, double endtime, double

maxstepsize, int adaptivestepsize, double initstepsize, double minstepsize,

double relaccuracy, double absaccuracy); ... Start the integration of your specific system,
parameters are:

– name: name of method (Gauss, RadauIIA, RadauIA or method defined by you).

– maxstages: number of stages used for integration.

– endtime: time-span which you would like to solve

– adaptivestepsize: set to 1 if you want to adaptively integrate; if set to 0, the maxstepsize
is used as a constant step size without error control for the time integration; all further
parameters only concern adaptive stepsize integration

– initstepsize: initial stepsize for adaptive stepsize integration

– minstepsize: minimum of allowed stepsize

– relaccuracy: relative accuracy for error control (not active now)

– absaccuracy: absolute accuracy for error control. Note that this accuracy is for each
time step and it is checked due to comparison with two smaller timesteps. For stan-
dard mechanical problems which are not chaotic (e.g. double pendulum) or contact
or generally discontinuous problems the solution of the final timestep might be much
less accurate than the specified tolerance for every timestep. The error for the final
timestep is found by comparison of two computations with different tolerances.

Note that it is important that the file tableau.txt which contains the IRK-coefficients must
be in the same directory as your program file (in the example it is Release/WCDriver3D.exe).

2.1.4 Algorithmic structure of the integrator

• This Section describes, what the Integrator does. The algorithms should not be changed and
might be fully reorganized in future versions! For a description of the solution procedure,
see the paper of Gerstmayr and Stangl, APM [3], found on the web-page of HOTINT (see
above).

• The algorithms are located in: timeint.cpp, timeint.h

• Integrate: Integrate a certain time-interval

– call function Initialize in order to set initial conditions. The initial conditions of the
algebraic variables (Lagrange parameters) do not influence the solution, they might
only influence your drawing of the system in the first step (e.g. if you draw forces).

– choose method and stages

– set all integration parameters

– Convert initial conditions to integration variables

– initialize all graphical and drawing activities during integration

24 CHAPTER 2. HOTINT DEVELOPERS MANUAL

• do until endtime is reached: Call FullAdaptiveStep (for adaptive step size) or FullStep (for
constant step size)

• FullAdaptiveStep:

– choose stepsize (Check for next desired output-time position, at max-step size or end-
time).

– compute one nonlinear and discontiuous step: NonlinSubStep; store values; reset;

– compute two nonlinear and discontiuous half steps: 2 × NonlinSubStep;

– estimate error from two solutions

– if error is within tolerance, eventually suggest bigger step size for next step and call
finish step: FinishStep;

– if error is not within tolerance, suggest smaller stepsize (computed from error, actual
step size and desired tolerance), repeat step.

• FullStep: constant stepsize without error checking

– compute one nonlinear and discontiuous step: NonlinSubStep;

– finish step: FinishStep;

• Do one nonlinear and discontiuous step: NonlinSubStep

– Do one IRK step: GeneralIStep

– Correct nonlinearities or discontinuities: NonlinStep

– if DiscontinuousAccuracy() not fullfilled by NonlinStep, go to GeneralIStep again.

– if converged, call FixNonlinStep and return.

– if not converged, tell FullAdaptiveStep that timestep shall be repeated with smaller
step size.

• GeneralIStep: Performs a general IRK with the chosen method and number of stages, defined
by tableau specified in the file ”tableau.txt”. Note, that you can basically write your own
tableau.txt file, but you should know that the solver always considers the method to be
implicit and that it will not speed up the solution if you e.g. include DIRK or SDIRK
methods. The function currently does not work with Lobatto methods or any method where
c1 = 0 (this includes explicit methods). The function GeneralIStep does the following
operations:

– Set the initial conditions for the solution of the nonlinear IRK-equations for one timestep,
based on the results last time step. Two formulations of the nonlinear equations are pos-
sible: The so-called g-form and the K-form, where the K-form is default and perform
significantely better than the implemented version in the g-form, especially for second
order systems. The Newton solver is initialized and NLSolve is called to solve the IRK
equations. The Newton solver uses needs a Jacobian and the nonlinear IRK-function,
which is given by NLF.

– The results for the stages are used to compute the full step and set the initial conditions
for the next step.

2.1. GENERAL INFORMATION 25

• NLF: Nonlinear IRK-equations. This function is called for the computation of the residual of
the nonlinear IRK-equations and for the computation of the full Jacobian. It puts together
in a quite complicated way the IRK-equations out of the given equations of motion. The
operations are performed such that no new Vectors are generated and copying is kept at a
minimum.

• Jacobian: There are two ways to compute the Jacobian: Either it is computed by numerical
differentiation of the function NLF, which is quite expensive. Otherwise, an approximate Ja-
cobian can be computed, which uses the same Jacobian for every stage of the Runge-Kutta
method, as described in the Radau5 code of Hairer and Wanner. However, it furthermore
makes it possible to neglect some parts in the second order system which should improve
the speed for very complicated mass matrices. The approximate Jacobian is built on the
Jacobian of the Mass matrix JacobianM, of the right hand side of the second order sys-
tem JacobianF2, the Jacobian of the first order system JacobianF, and the Jacobian of the
Constraint equations JacobianG.

• variable order strategy: not included in this version

2.1.5 Dense and sparse matrices

The time integration can be performed in two modes, the mode with full matrices and a sparse
mode. The mode using full matrices is slower, but more general and it can be used with the full
Newton method in every step. The mode using sparse matrices can be much faster for larger
systems, however, it only approximates the Jacobian for the Newton iterations.

reduce step size
or use full Newton

nonlinear system of equations

chose timestep

Choose time integration class and order

(modified) Newton method

tolerance for Newton solver reached?

assumption of discontinuous variables right?

assume new discontinuous variables

tolerance for discontinuities reached?

tolerance for time-integration reached?

?

?

?

?

?

?

?

?

reduce step size

next time step

YES

NO

NO

NO

YES

YES

NO

YES

NOT CONVERGED

Figure 2.3: Structure of the dynamic solver in HOTINT.

26 CHAPTER 2. HOTINT DEVELOPERS MANUAL

2.1.6 Integration Window

Once you started your integration with the graphical window, you mainly have two parts. To
the left you can see the text which you output during your simulation with the uo operator.
On the right you can see the drawing window.
You can rotate, move or zoom by means of the right mouse button, respectively the left mouse
button, respectively the mouse wheel and moving around. Alternatively it is possible to use
only the right key and press the shift or ctrl key for zooming respectively moving.
Pressing the Start button will execute the Procedure PerformComputation. After that, the
Symbol changes to Stop which will be active until your simulation has been finished, which
means that the command pCFB->FinishedComputation(); has been called.
The Data manager lets you store the results of your simulation, replay a simulation or save to
or load from the harddisk, special functions need to be provided for the use of this function.
You can store all your graphical settings by means of save configuration.
With Read text you can read the text in a separate window which is not updated.
Next, there are some buttons concerning the 3D-view of the system. On the right side, there
is a button for saving frames (for animations). If you want to record a video follow the steps
presented in the HOTINT Guidelines.

2.1.7 Vectors, Matrices, Nonlinear Solver

Almost all linear algebra and nonlinear solver classes, functions, etc. are placed in the files
femath.cpp and femath.h (finite-element-mathematics). There are 3DVectors, general Vectors
and Matrices including (Gaussian-based solvers) and a nonlinear solver. You should not touch
these files, because they might be improved or changed in future implementations. You might
need some of the functions or classes for developing your model and for drawing.
The nonlinear solver computes the full inverse of the Jacobian and needs at least N3 operations,
if N is the number of unknowns. This might be a little annoying for very large systems
(N > 500, therefore it will be replaced by a LU-decomposition in the future and sparse matrices
are considered to be implemented.

• Vector: class for a arbitrary length vector; The vector allocates its memory by itself. This
operation is slow on most computers, so be sure that Vectors are not generated in each step
of your integration. If you need Vectors or Matrices, just place them in the class variables
so that they are generated only once. Default and copy Contructor, assign operator exist.

– Vector(int n) gives you a vector of length n, initialized with zeros

– operator(int i) or operator[int i]: This operators, such as v(i); give you access to
the i-th entry of your vector, either by value or reference. The indexes for Vector of
length n are from 1 to n for both operators () and [].

– Norm(), MaxNorm(), MinNorm(): give you the quadratic norm (vTv), Min or Max norm
of the vector.

– operator +, -, =, ==, +=, -=, *=, *: Vector and Vector-Matrix operators are de-
fined according to linear algebra standards.

– GetLen, Length : give you the length n of the vector.

– SetAll(double x): Sets all values of the vector to x.

2.1. GENERAL INFORMATION 27

– SetLen(int i): Change the length of a vector to length i.

– FillWithZeros(): Sets all element to zero.

• Matrix: class for a arbitrary size full matrix; The matrix allocates its memory by itself. This
operation is slow on most computers, so be sure that matrices are not generated in each step
of your integration. If you need Vectors or Matrices, just place them in the class variables
so that they are generated only once. Default, copy constructor and assign operator exist.

– Matrix(int rows, int cols): generate Matrix with # rows rows and # columns cols.
Entries filled with zero.

– operator(int row, int col): Access to Element row row, column col of your matrix.
Indexing gos from 1 . . . rows and 1 . . . cols.

– operator +, -, =, ==, +=, -=, *=, *: Vector and Vector-Matrix operators are de-
fined according to linear algebra standards.

– GetTp(): returns a new Matrix which is the transposed original one.

– TpYs(): transposes the Matrix

– Det(): Returns the determinate of the Matrix, works only for diagonal matrices, size
<= 3.

– FillWithZeros(): Sets all element to zero.

– MaxNorm(), MinNorm(): Minimum and Maximum norm.

• Vector3D: This is a Vector with only 3 components. The components are stored on the stack,
therefore creating and deleting of a Vector3D is fast. This class has access functions similar
to Vector.

– Vector3D(double x, double y, double z: Create a 3D-Vector with components x, y
and z.

– operator(int i): The () operator such as v(i) gives you access to the i-th entry of
your vector, either by value or reference. The range for a Vector3D of length n with
operator() is from 1 to n.

– operator[int i]: The [] operator such as v[i] gives you access to the (i+ 1)-th entry
of your vector, either by value or reference. The range for a Vector3D of length n with
operator[] is from 0 to n− 1.

– Norm(), MaxNorm(), MinNorm(): give you the quadratic norm (vTv), Minimum or Max-
imum norm of the vector.

– operator +, -, =, ==, +=, -=, *=, *: Vector and Vector-Matrix operators are de-
fined according to linear algebra standards.

– GetLen, Length : give you the length (number of entries) n of the vector, which is always
3.

28 CHAPTER 2. HOTINT DEVELOPERS MANUAL

– X(), Y(), Z(): Access to the 3 components of the vector, useful for graphics.

– Normalize(): divides all components by the geometrical length (Norm()) of the vector.

– Cross(Vector v2): Computes the cross-product of the this-vector with vector v2.

2.1.8 Graphical commands (optional):

HOTINT provides some graphical commands, which are directly included into timeint.cpp and
implemented in ti misc.cpp. This graphical commands will help you to set up any multibody
system very easily and verify results or make impressive animations. The graphics is based
on OpenGL and draws everything in 3D. However, some functions help you, to draw 2D or
beam-type models very easily!

• void DrawSystem();: Here, you should place your drawing functions. This function is called
according to the updates of the system, the time integration and your settings

• Always use GetDrawVector() to get the actual solution vector for drawing. This vector is
provided from the graphical driver and can give you the solution which you have once stored
in a file. GetDrawTime() should be used as the actual time for drawing.

• There are some helpful functions (based on OpenGL) implemented in HOTINT:

– virtual void MyDrawLineH(const Vector3D& p1, const Vector3D&p2,

const Vector3D& vy2, double t, double h, int drawouterface=1):
draws a line which is considered to lie in the xy-plane. p1 and p2 are the endpoints of the
line (the z-coordinate must be equal for both points). The vector vy2 should indicate
the direction of the normal of the face at point p2. The parameters t and h indicate
the depth and height of the line. The reason for vy2 is, that you might want to draw
a line which is put together from several segments (as in a deformed beam). Then you
set drawoutersurface to 0 and define vy2 as the direction of the right-hand (following)
line-segment. Then your 3D drawing of a beam or circle will be more continuous than
otherwise.

– virtual void MyDrawLine(const Vector3D& p1, const Vector3D&p2, double t, double

h, int drawouterface=1): draws a line. works like MyDrawLineH, but vy2 is defined as
p2-p1.

– void DrawHex(const Vector3D& p1,const Vector3D& p2,const Vector3D& p3,

const Vector3D& p4, const Vector3D& p5,const Vector3D& p6,const

Vector3D& p7,const Vector3D& p8, int drawouterfaces=1):
draws a hexahedron (cube) with endpoints p1 - p8.

– DrawZyl(const Vector3D& pz1,const Vector3D& pz2, double rz, int tile=8):
Draws a zylinder with axis-end points pz1 and pz2, radius rz and the tiling (over the
circumference) is tile. Use tile=20 or above for smooth graphics, or 8 and less for slow
graphics processors.

– DrawSphere(const Vector3D& p1, double r, int tile=8, double fill=1):
Draws a shpere, midpoint p1, radius r, tiling tile. The fill parameter indicates, how
much is painted from the sphere: 1 ... full sphere, 0.5 ... half-sphere, etc.

– SetColor(const Vector3D& col): Set the RGB-values of the actual drawing color. Pre-
defined colors are:

2.1. GENERAL INFORMATION 29

∗ colred, colred1, colblue, colblue1, colblue2, colgreen, colbrown,

colgrey 1, colgrey2, colgrey3, colgrey4

For more drawing functions see ti misc.cpp.

• There are some additional commands provided by the graphical driver WCDriver3D:

– GetRC()->PrintTextStruct(int nLineNo, int nXPos, const char * text):
prints a Text text at the nLineNoth line of your 3D-window, nXPos defines the alignment
(-1 ... left, 0 ... center, +1 ... right alignment). The function RenderContext* GetRC()

returns the interface structure of the graphical driver.

2.1.9 Autogenerated parts of HOTINT

Several parts of HOTINT are generated automatically by the use of tools. These autogenerated
parts should not be changed directly, since the changes would be overwritten the next time the
tools for autogeneration are started. In the following these concepts are described in detail:

1. tex-files for the documentation of each object

2. reference manual of the documentation itself

3. GetElementDataAuto and SetElementDataAuto

4. ReadSingleElementDataAuto and WriteSingleElementDataAuto

5. GetAvailableSpecialValuesAuto

6. MBSObjectFactory::AddElement

7. MBSObjectFactory::AddObjectInfos Auto()

All of the information, that is used to autogenerate code in HOTINT is stored in the h-files
of the objects. Figure 2.1.9 gives a short overview about the flow of information and the
autogenerated files.

30 CHAPTER 2. HOTINT DEVELOPERS MANUAL

2.1.9.1 tex-files for the documentation of each object

By running the converter (bat-file in EDC onverter \release) a seperate tex-file for each object is
generated. The files are stored in ”documentation\EDCauto documentation\classDescriptions”.
Additionally the file ”bibliography.tex” is generated in this step.
The converter uses the information specified in section 3.10.

2.1.9.2 reference manual of the documentation itself

The reference manual of the (user) documentation is generated automatically by loading the
model ”ModelsLib\models auto documentation.cpp”. This model generates the following files:

2.1. GENERAL INFORMATION 31

1. objectdescription.tex

2. optionsdescription.tex

3. commanddescription.tex

To generate these files, each object is added to the mbs with the default constructor and then
the ElementData is obtained. In a next step, for elements, a list of possible constraints is
generated.

The file objectdescription.tex additionally includes the autogenerated tex-files of each object.

2.1.9.3 GetElementDataAuto and SetElementDataAuto

By running the converter (bat-file in EDC converter\release) the file ”ElementsLib\ElementEDCauto.cpp”
is generated. In this file, beside others, the functions

• GetElementDataAuto

• SetElementDataAuto

are generated.

This functions get the data of the user (hid-file or GUI) and set the variables of the object
(SetElementData), or vice versa (GetElementData).

These autogenerated functions for each object are just a part of the following larger concept:

The function GetElementData (without Auto!) calls the function GetElementData of the
parent class, until the cascade reaches Element::GetElementData.

In Element::GetElementData the first time the function GetElementDataAuto is called. This
autogenerated functions again first calls the parent class and then execute the object specific
code.

The order of the code is therefore:

1. autogenerated function of the parent class(es)

2. autogenerated function of the object itself

3. the rest of the function GetElementData (without Auto!) of the parent class(es)

4. the rest of the function GetElementData (without Auto!) of the object itself

For SetElementDataAuto, the concept and order is exactly the same!

Compare figure 2.1.9.3

32 CHAPTER 2. HOTINT DEVELOPERS MANUAL

2.1.9.4 MBSObjectFactory::AddElement

By running the converter (bat-file in EDC converter\release) the file ”ElementsLib\ElementEDCauto.cpp”
is generated.

In this file, the function MBSObjectFactory::AddElement provides the functionality to add an
element to the mbs.

This is used for the script-language and the GUI.

2.1. GENERAL INFORMATION 33

2.1.9.5 MBSObjectFactory::AddObjectInfos Auto()

By running the converter (bat-file in EDC converter\release) the file ”ElementsLib\ElementEDCauto.cpp”
is generated.
In this file, the function MBSObjectFactory::AddObjectInfos Auto() adds some basic informa-
tion about the element to the object factory.
This may be used for some online help in the future.

34 CHAPTER 2. HOTINT DEVELOPERS MANUAL

2.2 The Multibody System Kernel

A general framework for systems consisting of first and second order differential equations and
algebraic equations has been set up. The present code is based on a redundant coordinate for-
mulation for the modeling of the motion and deformation of bodies. This means that e.g. every
rigid body has its own six degrees of freedom (DOF), no matter how this body is constrained
by other bodies or even if it is fixed to the ground. The main reason for this formulation is
the simple extensibility of the code regarding the development of new elements, constraints,
forces, etc. . The numerical efficiency is gained by adapted solvers for the sparse structure of
the system equations, which leads to a similar effort as in recursive and minimal coordinate
approaches.

2.2.1 Several main points have been focused in the multibody ker-
nel:

• The application of implicit time integration algorithms shall be efficient

• The code shall be capable of structural and solid finite elements

• The code shall be extendable and open for new elements (e.g. non-mechanical, variable
mass, variable topology, etc.)

Some things you should know:

• Dimensions: dimensions are chosen by user, but should use standard international units:
kg/m/s.

• Numbering: All lists, arrays or other ordering numbers start with 1 if not specified differently.
Some of the arrays and vectors have two possibilities: index from 1 to n with operator(),
and index from 0 to n− 1 with operator[].

• Elements: Bodies and connectors are elements. If you search for bodies or connectors (e.g.
for editing) in the HOTINT program, you should look for elements.

2.2.2 Main structure of the multibody kernel

There were some main points to be fulfilled with the present multibody kernel:

• The formulation shall be easily accessible and maintainable via C++ functions

• The formulation shall be easily accessible and maintainable via the Windows user interface.

In the current implementation there is one base multibody system object which contains all
information about the system. On top of this structure, there is a dynamic and static solver
class, i.e. an implicit time integration method and an incremental nonlinear solver. The
solver requires the multibody system to provide residuals and derivatives of the differential and
algebraic equations based on assumed values.

2.2. THE MULTIBODY SYSTEM KERNEL 35

2.2.2.1 Solution vector

The multibody system and solver always have two solution vectors. One containing either the
initial vector or the actual solution (this is the solution vector) and another one that is used for
the graphics drawing which is called drawing solution vector. The latter vector is utilized to
independently draw the solution of a certain computed time instantly during the computation
(e.g. if the computation lasts very long or is of indefinite length). The solution vector is split
into a ”position level” (not necessarily a real position) and ”velocity level” part for the case
of the second order differential variables. Assume that there are n second order differential
equation variables, then the solution vector will contain first n position level coordinates and
after that n velocity level coordinates. The local coordinates of a body (e.g. accessible via the
sensor) are ordered in a similar way. The local second order differential variables of a body
contain first m position level coordinates and after that another m velocity level coordinates.

2.2.2.2 Structure of the multibody system

The multibody system consists of the following components:

• Elements

• Nodes

• Loads

• Sensors

• Geometric elements

Multibody Kernel

Dynamics Solver
(Time Integration)

Static Solver

Windows Interface
(Graphics / User)

Graphics Display
3D Rendering (OpenGL)

User Input

Load / Save Data

Solver Options

User Interface
Options

Graphics Options

Elements

Loads

Nodes Sensors
Geometric
Elements

User Output

Figure 2.4: Multibody system core and windows interface.

2.2.3 Multibody system: mbs.h

The class MBS is based on the time integration HOTINT. MBS provides all information about
equations, nonlinearities and the structure, which HOTINT needs. MBS contains basically only
objects of the type Element. An Element must provide the amount of virtual work to each gen-
eralized coordinate, the number of unknowns (can be zero) for algebraic, first and second order

36 CHAPTER 2. HOTINT DEVELOPERS MANUAL

differential equations, as well as information about nonlinearities and about the dependency
on generalized coordinates (GC). Elements are added to the system MBS, and after finishing,
the call Assemble() will provide global GC to the local Element GC. Forces which act onto the
element are only known to the element itself. Constraints are Elements as well, but provide
only algebraic constraints. For the computation of the Jacobian, it is very important, that
every element (including contraints) knows its dependency on the global degrees of freedom.
For USERS: the MBS class members are not intended to be changed, except for the Generate....()
functions. They could be changed by deriving a class MyMBS from class MBS and overriding or
extending some member functions. The functionality of the multibody code should be mainly
extended by adding new elements to the system, which are derived from the class Element.

2.3. SENSORS 37

2.3 Sensors

2.3.1 Sensors and Measuring

Sensors are used to measure certain quantities of the multibody system at the cur-rent state
of the computation. The output of a sensor is usually written to output files at certain time
steps (See Computation Settings dialog). The solution file ’sol.txt’ contains the output of all
sensors, each sensor in a row, versus the time (first row). Apart from output and controllers,
sensors do not influence the computation. While local DOF sensors can be used to measure
the coordinates of any element (e.g. of a constraint), the position, angle, distance and deflec-
tion sensors can only be applied to elements of the type body. Note that local second order
differential variables of a body contain first [1 . . .m] position level coordinates and another
[m + 1 . . . 2m] velocity level coordinates. Sensors can not have own generalized coordinates
(unknowns).

The following flags define the type and properties of the sensor. Only certain (natural) combi-
nations of the sensor are possible:

• TSempty: no sensor

• TSElement: Element sensor, usually measures properties of an element at a certain position
given in poslist

• TSNode: Nodal sensor, measures properties of nodes (displacement, position, velocity, etc.)

• TSPos: Measure position quantities

• TSVel: Measure velocity quantities

• TSAngle: Measure angles

• TSX: Measure x-component of a quantity

• TSY: Measure y-component of a quantity

• TSZ: Measure z-component of a quantity

• TSDist: Measure the distance of two points

• TSDeflection: Measure the deflection of a line represented by 3 points and one normal vector
to the deflection

• TSDOF: Measure a degree of freedom

• TSplanar: The sensor is planar

• TSAuxElem: The sensor measure quantities of auxiliary elements

• TSAccelDOF: Measure the acceleration of degrees of freedom

• TSMultSensor: The sensor is composed of several sensors

• TSLocalAxis: Measure quantities with respect to co-rotated body axes

38 CHAPTER 2. HOTINT DEVELOPERS MANUAL

Examples for possible sensor flags:

• TSElement+TSPos+TSX: Measure the x-component of a position within an element

• TSNode+TSVel+TSY: Measure the y-component of a velocity of an element

• TSElement+TSAngle+TSX+TSLocalAxis: Measure the rotation at a point of an element with
respect to the local x-axis

• TSElement+TSDeflection: Measure the deflection of defined by three positions of one or
several elements and one direction defining the normal to the deflection plane

• TSElement+TSPos+TSplanar+TSX: Measure the x-component of the position within a planar
element

• TSDOF: Measure a certain degree of freedom of an element

For the case of Multiple Sensors, a sensor returns values which follow from an algebraic manip-
ulation of the results of several sensors:

• TSMAverage: Average of all sensors

• TSMSum: Sum of all sensors

• TSMMult: Multiply all results of sensors

• TSMDiv: Return sensor1/(sensor2*sensor3*...)

• TSMNorm: Return quadratic norm of all sensors

• TSMDifference: Return sensor1-(sensor2+sensor3+...)

2.3.1.1 Class MBS Sensor

• MBSSensor(): elementlist(), nodelist(), poslist(), poslist2D(), actvalues() :
Standard constructor

• MBSSensor(MBS* mbsi, TMBSSensor typeI, int element, int node): elementlist(), nodelist(),

poslist(), poslist2D(), actvalues():
Constructor for sensor of typeI, with one element or one node; node can also represent some
component (e.g. the specific type of DOF in a TSDOF sensor)

• MBSSensor(MBS* mbsi, TMBSSensor typeI, int element, Vector3D& pos): elementlist(),

nodelist(), poslist(), poslist2D(), actvalues():
Constructor for sensor of typeI, with one element and one position

• MBSSensor(MBS* mbsi, TMBSSensor typeI, int element, Vector3D& pos1, Vector3D& pos2):

elementlist(), nodelist(), poslist(), poslist2D(), actvalues():
Constructor for sensor of typeI, with one element and two positions

• MBSSensor(MBS* mbsi, TMBSSensor typeI, TArray<int>& elements, TArray<int>& nodes):

elementlist(), nodelist(), poslist(), poslist2D(), actvalues():
Constructor for sensor of typeI, with list of elements and list of nodes

2.3. SENSORS 39

• MBSSensor(MBS* mbsi, TMBSSensor typeI, TArray<int>& elements, TArray<Vector3D>& positions):

elementlist(), nodelist(), poslist(), poslist2D(), actvalues():
Constructor for sensor of typeI, with list of elements and list of positions

• MBSSensor(MBS* mbsi, TMBSSensor typeI, int element, Vector2D& pos): elementlist(),

nodelist(), poslist(), poslist2D(), actvalues():
Constructor for sensor of typeI, with one element and one 2D position

• MBSSensor(MBS* mbsi, TMBSSensor typeI, TArray<int>& elements, TArray<Vector2D>& positions):

elementlist(), nodelist(), poslist(), poslist2D(), actvalues():
Constructor for sensor of typeI, with list of elements and list of 2D positions

• MBSSensor(const MBSSensor& s):
Copy constructor

• MBSSensor& operator=(const MBSSensor& s) :
Operator =

• virtual MBSSensor* GetCopy():
Return a pointer to a copy of *this

• virtual void CopyFrom(const MBSSensor& s):
Copy all data from sensor s

• virtual ~MBSSensor():
Destructor

• virtual void Init():
Initialize Sensor

• virtual int CheckConsistency(mystr& errorstr):
Check consistency of sensor (e.g. if elements and nodes exist, etc.)

• virtual void GetElementData(ElementDataContainer& edc):
Write element data of sensor into edc

• virtual int SetElementData(const ElementDataContainer& edc):
Read element data of sensor from edc

• virtual mystr GetTypeName() const:
Return type name of sensor

• virtual void SetSensorName(const mystr& name) :
Assign a name to the sensor

• virtual mystr GetSensorName() const:
Return the name of the sensor

• virtual void SetSensorNumber(int num):
Set the internal number of the sensor

• virtual int GetSensorNumber() const :
Return the internal number of the sensor

40 CHAPTER 2. HOTINT DEVELOPERS MANUAL

• virtual int NElements() const:
Return the number of elements attached to the sensor

• virtual int GetElNum(int i) const:
Return the element number of element i

• virtual int& GetElNum(int i):
Return a reference to the element number of element i

• virtual void SetDrawingDim const:
Set the drawing dimensions of the sensor

• virtual const Vector3D& GetDrawingDim(Vector3D size detail dummy):
Return the drawing dimensions of the sensor

• virtual void SetPrecision(int prec) :
Set the output precision of the sensor in digits

• virtual int GetPrecision() const:
Return the output precision of the sensor in digits

• virtual void SetFactor(double fact):
Set a factor which is applied to the result of the sensor

• virtual double GetFactor() const:
Return the factor which is applied to the result of the sensor

• virtual void SetOffset(double off):
Set an offset which is applied to the result of the sensor

• virtual double GetOffset() const:
Return the offset which is applied to the result of the sensor

• virtual void SetVisible(int vis):
Set this flag to 1 in case the sensor should be visible; otherwise 0

• virtual int GetVisible() const:
Returns the actual status of the visible flag

• virtual void SetWriteResults(int writeresultsI = 1):
Set this flag to 1 if the output of the sensor should be written:

– writeresults = 0: no results written

– writeresults = 1: results are written into the general solution file

– writeresults = 2: results are written the specific solution file of the sensor

– writeresults = 3: results are written into both files

• virtual int GetWriteResults() const:
Return the actual status of the writeresults flag

• virtual void SetOutputFile(ofstream* file):
Assign the output stream which represents the specific output file of the sensor

2.3. SENSORS 41

• virtual ofstream* GetOutputFile():
Return output file stream

• virtual const MBS* GetMBS() const:
Return const pointer to MBS system

• virtual MBS* GetMBS():
Return pointer to MBS system

• virtual double GetValue() const:
Return the value, actually measured by the sensor

• virtual void Draw():
Draw the actual configuration of the sensor

2.3.1.2 Data in class MBSSensor

• TMBSSensor type:
Type of the sensor

• mystr sensorname:
String for the sensor

• TArray<int> elementlist:
List of elements that correspond to the sensor

• TArray<int> nodelist:
List of nodes that correspond to the sensor

• TArray<Vector3D> poslist:
List of positions according to the elements of the sensor

• TArray<Vector2D> poslist2D:
List of 2D positions according to the elements of the sensor

• int precision:
Output precision of the sensor values

• ofstream* fileout; //only set if writeresults==2 or 3:
Output file stream of the sensor

• int sensornumber:
Number of the sensor in the multibody system

• double factor:
Factor which is applied to the output values of the sensor; output value = value*factor+offset

• double offset:
Offset which is applied to the output values of the sensor; output value = value*factor+offset

• int writeresults:
Flag, which defines if output is written, see SetWriteResults()

• int visible:
Flag for visibility of sensor, see SetVisible()

42 CHAPTER 2. HOTINT DEVELOPERS MANUAL

Figure 2.5: Deflection Sensor

• Vector3D draw dim:
Drawing dimensions of the sensor: draw dim.X() = radius of sphere of sensor, draw dim.Y()

= resolution (tiling) of sphere

• TArray<double> actvalues:
Temporary storage of actual values of sensor

2.3.2 Deflection Sensor

The deflection sensor measures the distance of a point p to a line. The line is defined by two
points lp1 and lp2.
With this sensor it is possible to measure the deflection of a beam for example.
Additionally it is necessary to provide a vector n perpendicular to the plane (p,lp1,lp2) to define
the sign of the output. The vector n is just used for this aspect and does not influence the
absolute value of the output.

2.3.2.1 tested call for CMS-Element:

MBSSensor s defl(mbs, (TMBSSensor)(TSElement+ TSNode+ TSDeflection), elemlist,... ...

nodelist, poslist);

elemlist: 3 times the same (int) element number of the cms-element
nodelist: global node numbers of lp1, lp2, p
poslist: vector to define the sign of the output

2.3.2.2 tested calls for HexahedralGeneric:

MBSSensor s defl(mbs, (TMBSSensor)(TSElement+TSDeflection), elemlist, poslist);

elemlist: element numbers of lp1, lp2, p
poslist: 4 entries:
- coordinates of the 3 points
- vector to define the sign of the output
MBSSensor s defl(mbs, (TMBSSensor)(TSElement+ TSNode+ TSDeflection), elemlist,... nodelist,

poslist);

elemlist: element numbers of lp1, lp2, p
nodelist local node numbers of lp1, lp2, p

2.3. SENSORS 43

poslist: vector to define the sign of the output

44 CHAPTER 2. HOTINT DEVELOPERS MANUAL

Figure 2.6: 2 rotating forces to apply momentum.

2.4 Loads

2.4.1 Loads

Loads are used to add forces at the right hand side of the second order differential equations
that describe the dynamics of a body. Loads are directly linked to bodies and they do not have
own generalized coordinates (unknowns). However, loads can depend on the body coordinates
or body deformation (e.g. in the case of pressure). The loads can have a time-dependency
which is evaluated in every step of the com-putation. Loads can only be applied to bodies that
provide according information of the work of external linear, angular or integrated loads.

2.4.2 Add momentum to finite element

If you want to apply a momentum to a body modelled with finite elements, in general it is not
possible to apply the momentum to the finite element directly. In this section some possibilities
are presented, how to apply a moment to FE.

2.4.2.1 Attach small rigid body

If you attach a (small) rigid body to the body modelled with finite elements, then you can
apply the momentum to the rigid body. The rigid body will then drive the finite elements.

• generate FEMesh and add points + elements to mbs

• generate Rigid3D and add to mbs

• constrain FE to Rigid3D, with SphericalJoint

• use MBSLoad::SetMomentVector3D to apply momentum to Rigid3D

2.4.2.2 SetRotatingForce

• use MBSLoad::SetRotatingForce to apply rotating forces directly to FE

• (at least) 2 rotating (nodal) forces are applied to apply a resulting momentum

• 2 nodes are necessary to define the axis

• up to now just tested for CMS and not for FE!

2.5. ELEMENTS 45

2.5 Elements

46 CHAPTER 2. HOTINT DEVELOPERS MANUAL

2.5.1 Base class Element: element.h

Elements are separated into connections (constraints, including springs), 2D bodies and 3D
bodies. Bodies (Body3D, Body2D) are then devided into rigid bodies and flexible bodies.

In order to distinguish member functions which use computation coordinates (GetXact) and
drawing coordinates (GetDrawValue), it is assumed in general that all functions are implemented
for computation coordinates, except for functions which have explicitly a Draw in the name or
a D at the end of the name. Furthermore, it is assumed in general that functions for position,
velocity, etc. are implemented for the spatial (3D) case. If not, these functions have the specifier
2D at the end of the name. As example:

• virtual Vector3D GetRefPos() const: Get reference position for 3D case, computation co-
ordinates

• virtual Vector2D GetRefPos2D() const: Get reference position for 2D case, computation
coordinates

• virtual Vector3D GetRefPosD() const: Get reference position for 3D case, drawing coor-
dinates

• virtual Vector2D GetRefPos2DD() const: Get reference position for 2D case, drawing co-
ordinates

2.5.1.1 General class members for access and modification in class Element; func-
tions with * can/should be changed in a derived element (many of these
functions can take default values)

• Element():
Empty constructor

• Element(MBS* mbsi): *
Empty constructor, with initialization of MBS pointer

• Element(const Element& e):
Copy constructor

• Element& operator=(const Element& e):
Copy operator

• virtual Element* GetCopy():
Standard function which generates a copy of the element

• virtual ~Element():
Destructor: all data which has been allocated with new within the element needs to be
deleted (except GetCopy)

• virtual void CopyFrom(const Element& e): *
Copy data from the element e: only the function CopyFrom needs to be implemented in
elements derived from class Element, in order to provide the copy function for any element.
All other functions (Copy constructor, Copy operator, and GetCopy) use CopyFrom!

2.5. ELEMENTS 47

• virtual void ElementDefaultConstructorInitialization():
Assigns default values to the element variables. This function is called by the constructors.

• virtual void Initialize(): *
This function is called each time before the computation is started with new initial conditions.
Use this function e.g. in order to precompute some vectors or matrices. The initial conditions
are already known at this stage.

• virtual const MBS* GetMBS() const:
Get the const pointer to the MBS object

• virtual MBS* GetMBS():
Get the pointer to the MBS object

• virtual UserOutputInterface& UO():
This is the access to the Windows interface for text output in the console window. UO() can
be used as stream operator in order to make outputs, e.g.: UO() << "Number of elements =

" << NE() << "\n";

• virtual int MaxIndex() const:
This function returns the maximum index as given in MBS

• virtual double GetConstraintDrift(double t) const:
Returns the maximum absolute constraint drift of all constraints connected to this element

• virtual int GetOwnNum() const:
Returns the element number as stored in MBS

• virtual void SetOwnNum(int i):
Set the element number according to MBS (automatically done when adding an element to
MBS)

• virtual void SetElementName(const char* name):
Set an individual name for the element

• virtual const mystr& GetElementName() const:
Get the const element name string

• virtual mystr& GetElementName():
Get the non-const element name string

• virtual const char* GetElementSpec() const: *
Get the element specification as a string (Body, Constraint, etc.)

• virtual void SetType(TMBSElement te):
Set a specific type for the element (TElement, TConstraint, TBody, TFFRF, TCMS, TCMSflag,

TController)

• virtual int IsType(TMBSElement te) const:
Check if element is of type ’te’

• virtual TMBSElement GetType() const:
Get the element type

48 CHAPTER 2. HOTINT DEVELOPERS MANUAL

• virtual void AddType(TMBSElement te):
Add a type flag ’te’ to the element (with boolean OR)

• virtual int IsRigid() const:
Check if element is a rigid body

• virtual int IsFiniteElement() const:
Check if element is a finite element

• virtual int PerformNodeCheck() const:
Check whether all node numbers of the element are consistent

• virtual int CheckConsistency(mystr& errorstr): *
Check for general consistency of the element (node numbers, constraint numbers, etc.)

• virtual void GetElementData(ElementDataContainer& edc):
Communication function for the Windows Interface (retrieves all element data)

• virtual int SetElementData(const ElementDataContainer& edc):
Communication function for the Windows Interface (provides all element data)

• virtual void GetElementDataAuto(ElementDataContainer& edc):
Communication function for the Windows Interface (retrieves all element data); function is
generated automatically by the EDC-converter (in ElementEDCauto.cpp)

• virtual int SetElementDataAuto(const ElementDataContainer& edc):
Communication function for the Windows Interface (provides all element data); function is
generated automatically by the EDC-converter (in ElementEDCauto.cpp)

• virtual int ReadSingleElementData(ReadWriteElementDataVariableType& RWdata):
Retrieve value of element variable/function named RWdata.variable name which specified
components

• virtual int WriteSingleElementData(const ReadWriteElementDataVariableType& RWdata):
Write value of element variable/function named RWdata.variable name which specified com-
ponents

• virtual int GetAvailableSpecialValues(TArrayDynamic<ReadWriteElementDataVariableType>&

available variables):
Adds the available special values that can be retrieved from this element to the array avail-
able variables

• virtual int ReadSingleElementDataAuto(ReadWriteElementDataVariableType& RWdata):
Autogenerated version of ReadSingleElementData (implemented in ElementEDCauto.cpp)

• virtual int WriteSingleElementDataAuto(const ReadWriteElementDataVariableType& RWdata):
Autogenerated version of WriteSingleElementData (implemented in ElementEDCauto.cpp)

• virtual int GetAvailableSpecialValuesAuto(TArrayDynamic<ReadWriteElementDataVariableType>&

available variables):
Autogenerated version of GetAvailableSpecialValue (implemented in ElementEDCauto.cpp)

2.5. ELEMENTS 49

• virtual void GetAvailableFieldVariables(TArray<FieldVariableDescriptor>& variables):
Adds to the list variables all field variables that can be provided by the element (e.g. po-
sition, velocity, ...)

• virtual double GetFieldVariableValue(const FieldVariableDescriptor& fvd, const Vector3D&

local position, bool flagD):
Returns the value of the field variable specified in fvd at the elements local position local position.
If the flag flagD is true, then the value is used for drawing. The list of all available elements
can be retrieved by GetAvailableFieldVariables.

• virtual double GetFieldVariableValue(const FieldVariableDescriptor& fvd, const Vector2D&

local position, bool flagD):
See 3D version

• virtual double GetFieldVariableValue(const FieldVariableDescriptor& fvd, const double&

local position, bool flagD):
1D version, see the 3D version

• virtual double GetFieldVariableValue(const FieldVariableDescriptor& fvd, int local node number,

bool flagD):
Returns the value of the field variable specified in fvd at position of the node with local
number local node number. If the flag flagD is true, then the value is used for drawing.

• virtual int SOS() const: *
Second Order Size provided by the element. This is the size of mass and stiffness matrices
of the element, or the size of the residual vector

• virtual int SOSowned() const: *
Second Order Size of new equations and variables provided by the element which are owned
(caused) by one element (not borrowed e.g. from another element or node)

• virtual int ES() const: *
Explicit (=first order) Size of the equations provided by the element. This is equal to the
number of first order variables of the element

• virtual int IS() const: *
Implicit (=algebraic) Size of the equations provided by the element. This is equal to the
number of algebraic variables of the element

• virtual int SS() const:
System Size of the element = 2SOS+ES+IS

• virtual int DataS() const:
number of data variables (e.g. plastic strains), for which there are no separate equations

• virtual int IS RS() const:
Basically this is the implicit size, however, the components may be resorted (for band width
optimization)

• virtual int SOSowned RS() const:
Basically this is SOSowned, however, some components may not be resorted (for band width
optimization)

50 CHAPTER 2. HOTINT DEVELOPERS MANUAL

• virtual int FlexDOF() const:
The number of flexible degrees of freedom (for finite elements or CMS elements)

• virtual void StartTimeStep(): *
This function is called at the beginning of the time step (e.g. in order to set some variables,
read input, etc.)

• virtual void EndTimeStep(): *
This function is called at the very end of the time step (e.g. in order to set something for
the next time step)

• virtual int Dim() const: *
Set to 2 for planar elements, and 3 for spatial elements

• virtual int IsRigid() const: *
Equals one if the body is rigid, otherwise zero

• virtual const double& GetXact(int i) const:
Returns the const global coordinate with index i of MBS

• virtual double& GetXact(int i):
Returns the non-const global coordinate with index i of MBS

• virtual void SetInitConditions(const Vector& x0):
Sets the vector of initial conditions of the element. x0 must coincide with the length of the
element’s initial conditions

• virtual const Vector& GetXInit() const:
Returns the vector of initial conditions

• virtual const double& GetXInit(int i) const:
Returns the ith initial condition

• virtual void SetDataInit(const Vector& data initI):
This function sets the initial data variables

• virtual const Vector& GetDataInit() const:
Returns the initial data of the element

• virtual double GetOutput(double t, int i=1) const:
Returns the output of an element (e.g. of an IOElement)

• virtual void Update():
Compute things which should be actualized after every change of the MBS state vector xact,
not used so far

• virtual int ElementBandwidth() const:
Return the element bandwidth (the standard value is equal to SS)

• virtual int LTG(int iloc) const:
Returns the local-to-global coordinate index mapping. The local index i of the element
coordinate i has the global index LTG(i)

2.5. ELEMENTS 51

• virtual int& LTG(int iloc):
Returns a non-const reference to local-to-global index mapping (LTG)

• virtual int LTGdata(int iloc) const Returns the local to global index mapping of the
data variables. The local index i of the element data variable i has the global index LTG(i)

• virtual int& LTGdata(int iloc) Returns a reference to the local to global index mapping
of the data variables. The local index i of the element data variable i has the global index
LTG(i)

• virtual const TArray<int>& GetLTGArray() const:
Returns the whole array to the local-to-global (LTG) index mapping of the element, see LTG

• virtual const TArray<int>& GetLTGdataArray() const Returns the whole array to the local-
to-global (LTGdata) index mapping of the elements data, see LTG

• virtual void AddLTG(int gi):
Add an additional local-to-global (LTG) index to the element

• virtual void AddLTGdata(int gi):
Add an additional local-to-global (LTGdata) data index to the element

• virtual int LTGlength() const:
Returns the length of the array of local-to-global (LTG) index mappings

• virtual void LTGreset():
Resets the array of local-to-global (LTG) index mappings

• virtual void LTGdataReset():
Resets the array of local-to-global (LTGdata) data index mappings

• virtual void LinkLoads():
Assign element numbers to loads

• virtual void LinkToElements():
For special finite elements, the local-to-global (LTG) index mappings can be done by hand;
usually done automatically by MBS

• virtual void BuildDependencies():
Set dependencies; This defines the coordinates which influence the system matrices and the
residual vector of the element; usually done automatically!

• virtual int IsDependent(int i) const:
Returns 1, if the element is depening on the global DOF i, otherwise zero

• virtual const double XG dc(int iloc, TComputeDrawInitFlag flag) const:
Const access to the system coordinate of actual state; flag can be TCD compute to get the
actual computation value (same as XG(iloc)), TCD draw for the drawing value of the variable
(same as XGD(iloc)), TCD reference configuration for the value of the coordinate in the
reference configuration and TCD initial values for the coordinates initial value (same as
GetXInit(iloc))

• virtual const double& XG(int iloc) const:
Const access to the actual value of the local coordinate number iloc

52 CHAPTER 2. HOTINT DEVELOPERS MANUAL

• virtual double& XG(int iloc):
Non-const access to the actual value of the local coordinate number iloc

• virtual const double& XGP(int iloc) const:
Const access to the actual value of the time derivative of the local coordinate number iloc

• virtual double& XGP(int iloc):
Non-const access to the actual value of the time derivative of the local coordinate number
iloc

• virtual double XGPP(int iloc) const:
Returns the second time derivative of the local coordinate number iloc

• virtual const double& XGG(int iglob) const:
Const access to the actual value of the time derivative of the global coordinate number iglob

• virtual double& XGG(int iglob):
Non-const access to the actual value of the time derivative of the global coordinate number
iglob

• virtual const double& XData(int iloc) const:
Const access to the actual value of the data variable with local index iloc

• virtual double& XData(int iloc):
Non-const access to the actual value of the data variable with local index iloc

• virtual const double& XGD(int iloc) const:
Const access to the drawing value of the local coordinate number iloc

• virtual double& XGD(int iloc):
Non-const access to the drawing value of the local coordinate number iloc

• virtual const double& XDataD(int iloc) const:
Const access to the drawing value of the data variable with local index iloc

• virtual double& XDataD(int iloc):
Non-const access to the drawing values value of the data variable with local index iloc

• virtual const double& XGPD(int iloc) const:
Const access to the drawing value of the time derivative of the local coordinate number iloc

• virtual const double& GetDrawValue(int iloc) const:
Const access to the drawing value of the GLOBAL coordinate number iloc

• virtual TKinematicsAccessFunctions GetKinematicsAccessFunctions(int mode = 1) const:
Returns the kinematic functions (e.g. position, velocity, rotation matrix) that are provided
by the element.

• virtual void PreAssemble():
This function can be implemented by elements, which wish to perform some actions just
before the system is assembled

• virtual const int& GetMaterialNum() const:
Const access to the number of the material used by the element

2.5. ELEMENTS 53

• virtual int& GetMaterialNum():
Non-const access to the number of the material used by the element

• virtual void SetMaterialNum(int mnum):
Set the material for the element to the material with number mnum

• virtual void AddMaterial(const Material& m):
Adds the material to the (global) list of materials and makes it the material used by the
element

• virtual const Material& GetMaterial() const:
Const access to the material used by the element

• virtual Material& GetMaterial():
Non-const access to the material used by the element

2.5.1.2 Main functions for computation of the element:

• virtual void PrecomputeEvalFunctions():
Precomputations for EvalF, EvalF2, EvalM, and also for EvalG and AddElementCqTLambda in
case of constraints

• virtual void EvalF(Vector& f, double t): *
This function is needed for the modeling of first-order differential equations on element level.
The vector f in function EvalF returns the right-hand-side of the differential equation

ẋ = f(xact, t) (2.3)

The actual coordinates are stored in the vector xact. The size of the vector f corresponds to
the value given in the function ES(), the components of f correspond to local indices. The
local values of xact can be accessed with XG(), XGP(), etc.

• virtual void EvalG(Vector& f, double t): *
This function is needed for the modeling of algebraic equations on element level. The vector
f in function EvalG returns the left-hand-side of the differential equation

g(xact, t) = 0 (2.4)

The actual coordinates are stored in the vector xact. The size of the vector g corresponds to
the value given in the function IS(), the components of g correspond to local indices. The
local values of xact can be accessed with XG(), XGP(), etc.

• virtual void EvalM(Matrix& m, double t): *
This function is needed for the modeling of second order differential equations on element
level. The matrix m in function EvalM returns the matrix M of the differential equation

Mü = f2(xact, t) (2.5)

The actual coordinates are stored in the vector xact. The size of the matrix M corresponds
to SOS()×SOS(), the components of M correspond to local (element) indices. The local
values of xact can be accessed with XG(), XGP(), etc.

54 CHAPTER 2. HOTINT DEVELOPERS MANUAL

• virtual void EvalF2(Vector& f, double t): *
This function is needed for the modeling of second order differential equations on element
level. The vector f in function EvalF2 returns the right-hand-side of the differential equation

Mü = f2(xact, t) (2.6)

The actual coordinates are stored in the vector xact. The size of the vector f2 corresponds
to SOS(), the components of f2 correspond to local (element) indices. The local values of
xact can be accessed with XG(), XGP(), etc.

• virtual void EvalMinvF2(Vector& f, double t):

• virtual void JacobianF2(double t, Matrix& m, IVector& colref): *
This function provides the element jacobian for second order differential equations,

JF2 =
∂f2
xloc

(2.7)

where xloc represent the local (element) coordinates. In classical finite elements, the Jacobian
JF2 represents the tangential element stiffness matrix.

• virtual void JacobianG(double t, Matrix& m, IVector& colref): *
This function provides the element jacobian for algebraic equations,

JG =
∂g

xloc
(2.8)

where xloc represent the local (element) coordinates. In classical constraint formulation, the
Jacobian JG represents the constrain jacobian, usually denoted by dC/dq.

• virtual double PostNewtonStep(double t): *
This function is suited for nonlinear (discontinuous) iterations. This function is called after
each computation of a time step. This function checks for events such as switch of contact
behavior or friction, elastic-plastic material behavior, switching of springs, etc. The usage
of this function instead of a switching directly within the nonlinear equations of the element
greatly improves the Newton convergence of the problem.
The function returns an error estimate. If the error estimate is smaller than SolverSettings.discontinuousaccuracy,
the step is accepted

• virtual void PostprocessingStep(): *
After some nonlinear (discontinuous) iterations,

• virtual double GetError():
This function shall return a certain characteristic norm of the state of the element which is
used for the estimation of the error in the time integration. The default value is the sum of
squares of position and velocity degrees of freedom.

• virtual void SetGlobalInitConditions(Vector& x glob):
This function is called such that every element writes its initial condition into the global
vector of initial conditions. This is done automatically.

• virtual void SetGlobalInitData(Vector& data glob):
This function writes the it’s initial data into the global vector data glob

2.5. ELEMENTS 55

• virtual double GetKineticEnergy():
Compute the actual kinetic energy of the element; only for special applications, otherwise
not needed

• virtual double GetPotentialEnergy():
Compute the actual potential (stored) energy of the element; only for special applications,
otherwise not needed

• virtual const double& Rho() const:
Const access to the density of the element

• virtual double& Rho():
Non-const access to the density of the element

• virtual const double& Em() const:
Const access to the elastic modulus of the element

• virtual double& Em():
Non-const access to the elastic modulus of the element

• virtual const double& Nu() const:
Const access to the Poisson’s ratio of the element

• virtual double& Nu():
Non-const access to the Poisson’s ratio of the element

• virtual double GetMass() const:
Return the mass of the element. Not every element may use the density (e.g. constraints
and actuators). Usually, it is assumed that the mass m, densitiy ρ and volume V follow the
relation m = ρV .

• virtual double GetVolume() const:
Return the volume of the element. Usually the volume is computed from mass and density.

• virtual double GetMassDamping() const:
Return the factor for mass-proportional damping.

• virtual void SetMassDamping(double d):
Set the factor for mass-proportional damping

• virtual int FastStiffnessMatrix() const:
Switch flag: Equals 1 if the function StiffnessMatrix(Matrix& m) is implemented, otherwise
zero

• virtual void StiffnessMatrix(Matrix& m):
Fill in the actual tangential stiffness matrix of the element, fill in SOS() × SOS() components,
the matrix m might be larger

• virtual void GyroscopicMatrix(SparseMatrix& gy)const:
Returns the gyroscopic matrix (for rotordynamic elements)

• virtual int TransformJacApply() const:
For ACF formulation, usually not needed

56 CHAPTER 2. HOTINT DEVELOPERS MANUAL

• virtual void ApplyTransform(const Vector& v, Vector& Av, int mode):
For ACF formulation, usually not needed

• virtual void SetUseSparseM(int i=1):
Switch flag: Set to 1, if the function AddMSparse() for the sparse computation of the mass
matrix is implemented

• virtual void SetUseSparseK(int i=1):
Switch flag: Set to 1, if the function AddKSparse() for the sparse computation the stiffness
matrix is implemented

• virtual int UseSparseM() const:
Switch flag: Returns 1, if the function AddMSparse() for the sparse computation of the mass
matrix is implemented

• virtual int UseSparseK() const:
Switch flag: Returns 1, if the function AddKSparse() for the sparse computation of the
stiffness matrix is implemented

• virtual void AddMSparse(SparseMatrix& m, double t):
Function which adds sparse matrix to system mass matrix, must be implemented if UseSparseM()==1

• virtual void AddKSparse(SparseMatrix& m, double t):
Function which adds sparse tangential stiffness matrix to system stiffness matrix, must be
implemented if UseSparseK()==1

• virtual void AddDSparse(SparseMatrix& m, double t):
Function which adds sparse damping matrix to system damping matrix, should be imple-
mented if UseSparseMK()==1

• virtual void ComputationFinished():
Function is called when computation is finished (e.g. in order to free memory, write results,
close connections, etc.)

• virtual int GetNOutputs() const:
Returns the number of outputs of the element

• virtual void SetOutputName(int output nr, mystr& str):
Sets the name of the output with index output nr

• virtual void InsertConNode(int list idx, int input nr, Vector2D& node):
Inserts a connection node to the element at the position node; only used for IOElements

• virtual void DeleteConNode(int list idx):
Deletes a connection node; only used for IOElements

• co virtual void MoveConNode2D(int list idx, double delta x, double delta y):
Move a connection node (in the 2D Window); only used for IOElements

• co virtual void MoveElement(double delta x, double delta y, double delta z):
Move an element; only used for IOElements

2.5. ELEMENTS 57

2.5.1.3 Access functions for position, velocity, rotation, etc.

The following functions are used for elements of type Body2D or Body3D only.

• virtual Matrix3D GetRotMatrix() const:
Returns the rotation matrix of the whole body (for rigid bodies)

• virtual Matrix3D GetRotMatrixP() const:
Returns the time derivative of the rotation matrix of the whole body (for rigid bodies)

• virtual Matrix3D GetRotMatrix(const Vector3D& ploc) const:
Returns the rotation matrix of the at a certain local position ploc

• virtual Matrix3D GetRotMatrixD() const:
Returns the rotation matrix of the whole body (for rigid bodies) computed from drawing
coordinates

• virtual Matrix3D GetRotMatrixInit():
Returns the rotation matrix of the whole body (for rigid bodies) at the initial state.

• virtual Vector3D GetRefPos() const: *
Return actual position of the reference point for 3D case with computation coordinates

• virtual Vector3D GetRefPosInit() const: *
Return initial position of the reference point for 3D case with computation coordinates

• virtual Vector3D GetRefVel() const: *
Return actual velocity of reference point for 3D case with computation coordinates

• virtual Vector3D GetRefConfPos(const Vector3D& p loc) const:
Return initial position of the local point p loc

• virtual Vector3D GetPos(const Vector3D& ploc) const: *
Return actual position of a local point ploc for 3D case with computation coordinates

• virtual Vector3D GetVel(const Vector3D& ploc) const: *
Return actual velocity of a local point ploc for 3D case with computation coordinates

• virtual Vector3D GetDisplacement(const Vector3D& ploc) const:
Return actual displacement of the local point ploc from its initial position

• virtual Vector3D GetAcceleration(const Vector3D& ploc) const:
Return (global) acceleration of the local point ploc

• virtual Vector3D GetRefPosD() const: *
Return position of the reference point for 3D case with drawing coordinates

• virtual Vector3D GetRefVelD() const: *
Return velocity of the reference point for 3D case with drawing coordinates

• virtual Vector3D GetPosD(const Vector3D& ploc) const: *
Return position of a local point ploc for 3D case with drawing coordinates

• virtual Vector3D GetVelD(const Vector3D& ploc) const: *
Return velocity of a local point ploc for 3D case with drawing coordinates

58 CHAPTER 2. HOTINT DEVELOPERS MANUAL

• virtual Vector3D GetDisplacementD(const Vector3D& ploc) const:
Return the displacement of the local point ploc from its initial position with drawing coor-
dinates

• virtual Vector2D GetRefPos2D() const: *
See 3D case

• virtual Vector2D GetRefPosInit2D() const:
See 3D case

• virtual Vector2D GetRefVel2D() const: *
See 3D case

• virtual Vector2D GetPos2D(const Vector2D& ploc) const: *
See 3D case

• virtual Vector2D GetVel2D(const Vector2D& ploc) const: *
See 3D case

• virtual Vector2D GetDisplacement2D(const Vector2D& ploc) const: *
See 3D case

• virtual Vector2D GetRefPos2DD() const: *
See 3D case

• virtual Vector2D GetRefVel2DD() const: *
See 3D case

• virtual Vector2D GetPos2DD(const Vector2D& ploc) const: *
See 3D case

• virtual Vector2D GetVel2DD(const Vector2D& ploc) const: *
See 3D case

• virtual Vector2D GetDisplacement2DD(const Vector2D& ploc) const: *
See 3D case

• virtual Vector3D GetAngularMomentum() Returns the angular momentum of the body at
the origin of the reference coordinates

• virtual Vector3D GetAngularMomentum(const Vector3D& p ref) const Returns the angu-
lar momentum of the body at the reference position p ref

• virtual Vector3D GetDOFPosD(int idof) const:
Returns the drawing position of the idofth degree of freedom

• virtual Vector3D GetDOFDirD(int idof) const:
Returns the drawing direction of action of the idofth degree of freedom

2.5. ELEMENTS 59

2.5.1.4 Access functions for nodes and nodal positions

The following functions are especially important for solid finite elements. Nodes are stored
globally in the MBS system, which contain references to global coordinates (DOF) in the
multibody system. The finite elements usually only store local to global node number reference
lists.

• virtual int NNodes() const:
Return the number of nodes of the element

• virtual const int& NodeNum(int i) const:
Return const reference to global node number with local index i

• virtual int& NodeNum(int i):
Return non-const reference to global node number with local index i

• virtual const Node& GetNode(int i) const:
Return const reference to Node with local index i

• virtual Vector3D GetNodeLocPos(int i) const:
Return local nodal position in element coordinates of Node with local index i

• virtual Vector3D GetNodePos(int i) const:
Return actual (global) nodal position of Node with local index i

• virtual Vector3D GetNodePosD(int i) const:
Return drawing (global) nodal position of Node with local index i

• virtual Vector3D GetNodeVel(int i) const:
Return actual (global) nodal velocity of Node with local index i

• virtual Vector3D GetNodeVelD(int i) const:
Return drawing (global) nodal velocity of Node with local index i

• virtual Vector2D GetNodeLocPos2D(int i) const:
Return actual (global) nodal position of 2D Node with local index i

• virtual Vector2D GetNodePos2D(int i) const:
Return local nodal position in element coordinates of 2D Node with local index i

• virtual Vector2D GetNodePos2DD(int i) const:
Return drawing (global) nodal position of 2D Node with local index i

• virtual Vector2D GetNodeVel2D(int i) const:
Return actual (global) nodal velocity of 2D Node with local index i

2.5.1.5 Loads and constraints

• virtual void GetH(Matrix& H): *
Compute the integral over the element of the derivative of the displacement u or position p
with respect to the element coordinates q and the element jacobian J:

H =

∫
Velem

∂u

∂q
det(J) dVelem (2.9)

60 CHAPTER 2. HOTINT DEVELOPERS MANUAL

For finite elements with shape matrix S, and displacements u = Sq, it simply reads

H =

∫
Velem

S det(J) dVelem (2.10)

• virtual void AddLoad(const MBSLoad& li):
Add a load of type MBSload to element

• virtual int NLoads() const:
Return the number of loads of the element

• virtual const MBSLoad& GetLoad(int i) const:
Return a const reference to a specific load of the element

• virtual MBSLoad& GetLoad(int i):
Return a non-const reference to a specific load of the element

• virtual void DeleteLoad(int i):
Delete a load of the element

• virtual int GetLoadNr(int i):
Return the global node number of the local node with index i

• virtual TArray<int> GetLoadNrs():
Return a list of all global load numbers acting on this element

• virtual void SetLoadNrs(TArray<int> load nrs):
Set the list of loads acting on the element

• virtual void AddConstraint(Constraint* c, int lind):
Add a constraint to the element; This function is called from the system when assembling
the MBS system. Do not call this function by hand!

• virtual void RemoveConstraints():
Remove a constraint from the element. This function is used by the Windows Interface to
remove constraints

• virtual int NC() const:
Return the number of constraints

• virtual Constraint* GetConstraint(int i) const:
Return a pointer to the constraint with local index i

• virtual void ExternalSetRefCoord(double val):
Assigns an external input value to an element data

• virtual void GetDuxDq(Vector& dudq): *
Return the derivative of the x-component of the displacement u with respect to the element

coordinates q, GetDuxDq =
∂ux
∂q

• virtual void GetDuyDq(Vector& dudq): *
Return the derivative of the y-component of the displacement u with respect to the element

coordinates q, GetDuyDq =
∂uy
∂q

2.5. ELEMENTS 61

• virtual void GetDuzDq(Vector& dudq): *
Return the derivative of the z-component of the displacement u with respect to the element

coordinates q, GetDuzDq =
∂uz
∂q

• virtual void GetDrotxDq(Vector& dudq):
not used!

• virtual void GetDrotyDq(Vector& dudq):
not used!

• virtual void GetDrotzDq(Vector& dudq):
not used!

• virtual void GetIntDuDq(Matrix& dudq): *
This is equal to virtual void GetH(Matrix& H!!!

• virtual void GetIntRhoDuDq(Matrix& rhodudq):
This is equal to GetIntDuDq(Matrix& dudq) times Rho()

• virtual void GetIntDkappaDq2D(Vector& dudq):
Returns

∫
∂κ
∂q

(needed for ANCFCable2D)

• virtual void GetIntDuDqFCentrifugal(Matrix& dudq, const Vector3D& omega, const Vector3D&

r0):
Returns the centrifugal load for flexible bodies

• virtual void AddSurfacePressure(Vector& f, double pressure, int dir):
For ANCFplate elements only, to add surface pressure; Do not use

• virtual int AddSensor(int sensornum):
Adds a sensor to the element

• virtual int NSensors() const :
Returns the number of sensors attached to the element

• virtual int GetSensorNum(int i) const:
Returns the global sensor number of the sensor attached to the element with index i

• virtual void SetSensorNum(int i, int sensnum):
Sets the sensor with global index sensnum to the local index i

• virtual const Sensor& GetSensor(int i) const:
Const access to the sensor with local index i

• virtual Sensor& GetSensor(int i):
Non-const access to the sensor with local index i

• virtual double GetSpecialSensorValue(int nr, double time) const: *
Deprecated function! Use ReadSingleElementData instead

• virtual void AddElement(int en):
Add the element with global index en to the list of depending elements

62 CHAPTER 2. HOTINT DEVELOPERS MANUAL

• virtual int NE() const:
Returns the number of depending elements

• virtual int GetElnum(int i) const:
Returns the global element number of the dependent element with index i

• virtual void SetElnum(int i, int elnum):
Sets in the list of dependent elements the element with global element number elemnum to
index i

• virtual const Element& GetElem(int i) const:
Const access to the dependent element with local index i

• virtual Element& GetElem(int i):
Non-const access to the dependent element with local index i

• virtual void GetDirectFeedThroughElements(TArray<int>& elnums) const:
Add all elements which are depending on this element by direct feed through the list elnums

• virtual int RespondToKey(int key):
Gets called if a key was pressed. Should return 1 if the element reacted to the key and 0
otherwise.

• virtual void Increase():
Increases a counter in the element (used by IOResponseElement)

• virtual void Decrease():
Decreases a counter in the element (used by IOResponseElement)

• virtual void GetGlobalConstrainedDOFs(TArray<int>& dofs) const:
For constrained elements this function adds the global indices of constrained degrees of
freedoms to the list dofs; this function is used by the eigenmodes solver

2.5.1.6 Drawing functions and geometric elements

• virtual void DrawElementPreProc():
Gets called before the drawing routines are started; gets also called if the element is not
drawn (e.g. because an alternative shape is used)

• virtual void DrawElement(): *
Draws the element

• virtual void DrawElement2D():
Draws the element in the 2D window (IOBlocks window)

• virtual void DrawElementLocalFrame() Draws the elements local frame

• virtual void DrawElementVelocityVector():
Draws a vector from the element visualizing its current velocity

• virtual const int& DrawElementFlag() const Const access to the flag that indicates if the
element should be drawn

2.5. ELEMENTS 63

• virtual int& DrawElementFlag() Non-const access to the flag that indicates if the element
should be drawn

• virtual const Vector3D& GetSize() const:
Return the (characteristic) size of the element. Every element has a characteristic size. This
may be the size of the bounding box or for beams the length, width and height.

• virtual void SetAltShape(int truefalse):
Set 0, the body is drawn according to its default shape (e.g. a cube for rigid bodies); set 1,
the body is drawn with the given GeomElements

• virtual int GetAltShape() const:
Returns 0, the body is drawn according to its default shape (e.g. a cube for rigid bodies);
returns 1, the body is drawn with the given GeomElements

• virtual int NGeomElements():
Returns the number of GeomElements

• virtual int AddGeomElement(int i):
Add (in fact link) an existing GeomElement to the element; if a GeomElement is added to an
element, the local coordinates of the element are used for drawing the GeomElement

• virtual const int& GetGeomElementNum(int i) const:
Return the const reference to the global number of the GeomElement with local index i

• virtual int& GetGeomElementNum(int i):
Return the non-const reference to the global number of the GeomElement with local index i

• virtual void DeleteGeomElement(int i):
Delete a GeomElement from the element

• virtual GeomElement* GetGeomElement(int i):
Return the pointer to the GeomElement with local index i

• virtual int Add(const GeomElement& de):
Add a new GeomElement to the element. The GeomElement is added to the MBS system and
the index of this GeomElement is stored in the element

• virtual Box3D GetBoundingBox() const:
Return the bounding box of the element (for the actual configuration), taking into account
the altshape value. The bounding box represents the maximum and minimum x, y and z
coordinates of the element, given in global coordinates of the MBS system

• virtual Box3D GetBoundingBoxD() const:
Return the bounding box of the element (for the drawing configuration)

• virtual Box3D GetElementBox() const: *
Return the bounding box of the element with default shape (for the actual configuration)

• virtual Box3D GetElementBoxD() const: *
Return the bounding box of the element with default shape (for the actual configuration)

• virtual Box2D GetBoundingBox2D() const:
See 3D function

64 CHAPTER 2. HOTINT DEVELOPERS MANUAL

• virtual Box2D GetBoundingBox2DD() const:
See 3D function

• virtual Box2D GetElementBox2D() const:
See 3D function

• virtual Box2D GetElementBox2DD() const:
See 3D function

• virtual void DrawElementAdd():
Draw elements with alternative shape. Called by system, don’t use!

• virtual const Vector3D& GetCol() const:
Return the color of the element

• virtual Vector3D& GetCol():
Non-const access to the color of the element

• virtual Vector3D GetSurfaceNormalD(int dir):
Get normal to a specified surface in order to plot surface pressure

2.5.1.7 Class members for FFRF elements

• virtual void GetI1(Vector& I1):
Integral needed for FFRF formulation, see [8]

• virtual double GetIkl(int k, int l):
Integral needed for FFRF formulation, see [8]

• virtual void GetIbarkl(int k, int l, Vector& I1):
Integral needed for FFRF formulation, see [8]

• virtual void GetSbar(Matrix& Sbar):
Integral needed for FFRF formulation, see [8]

• virtual void GetSbarkl(int k, int l, Matrix& Sbar):
Integral needed for FFRF formulation, see [8]

• virtual void EvalMff(Matrix& m, double t):
Evaluate the part of the mass matrix for flexible DOF, needed for FFRF formulation, see [8]

• virtual int NCMSNodes() const:
needed for FFRF formulation, see [8]

2.5.1.8 Data of class Element (protected)

• mutable MBS* mbs:
Pointer to MBS system

• Vector x init:
Vector of element initial coordinates

• Vector data init:
Vector of element initial data variables values

2.5. ELEMENTS 65

• mystr elementname:
Name of the element

• TArray<int> ltg:
Array which stores the local-to-global mapping of coordinate indices

• TArray<int> ltgdata:
Array which stores the local-to-global mapping of data vector indices

• int elnum:
Element number as stored in the MBS system

• TMBSElement type:
Type of the element (TElement, TConstraint, TBody, TFFRF, TCMS, TCMSflag, TController)

• TArray<int> loads:
Array of indices of loads that are applied to the element

• TArray<Constraint*> constraints:
Array of constraints, that are linked to the element (list generated by Assemble() procedure
in MBS)

• TArray<Constraint*> constraints nodouble:
Special array of constraints, where there are no double constraint indices. This list resolves
some problems which occur with contact constraints, where a contact element can constrain
an element at several different positions. This list does not contain any two equal element
numbers as compared to constraints

• TArray<int> constraintindices:
Array that stores the local index of this element in the local element list of the constraint

• TArray<char> dependencies:
Array of dependencies: the length of this array is equal to the system size (SS()) of the MBS
system. If the element is depending on a specific global coordinate i, then dependencies(i)==(char)1,
otherwise 0

• TArray<int> sensors:
Array of indices of sensors that are attached to the element

• TArray<int> elements:
Array if indices of elements depending on this element (mainly for constraints)

• int materialnum:
Material number which contains the main material properties

• double rho:
Stores the density of the element

• double mass:
Stores the mass of the element

• double damping m:
Stores the mass proportional damping of the element

66 CHAPTER 2. HOTINT DEVELOPERS MANUAL

• Vector3D col:
Stores the color of the element (RGB)

• TArray<int> drawelements:
Array which stores the global GeomElement numbers for the element

• int altshape:
Equal to 1, if the element is represented by GeomElements, otherwise 0

• int draw element:
Flag to draw element (1 - draw element, 0 - don’t draw element)

2.5. ELEMENTS 67

2.5.2 Bodies

Bodies are specific elements which represent rigid or deformable mechanical bodies, with a
certain mass and extension. Forces and constraints can be applied to bodies, and the position
of a specific local point of the body is defined by means of the displacement of the body reference
and the deformation or orientation of the body. A body might have no extension (point mass:
Mass3D). Finite elements are nodal based elements, where the position and velocity of a point
on the body depends on the interpolation of the (global) nodal displacement and velocity.
Bodies must at least provide information about position of the center of mass and its rotation
(except Mass3D). All informations must be available for computation time and for drawing time
(additional letter ”D”).

2.5.3 The base class Constraint

2.5.3.1 Data

• TArray<int> elements:
Element numbers (refer to elements stored in MBS), which are attached to the constraint

• Vector3D draw dim:
Drawing dimensions of the constraint; depends on the type of the constraint

2.5.3.2 Methods

Constraints must provide the residual of the algebraic equation (and possible its first deriva-
tives to be applicable to an index 2 reduction), as well as the terms for the ”virtual work of
constraints” (virtual void AddElementCqTLambda(int locelemind, Vector& f)). Here, the
element with the local element index of the constraint locelemind asks for the element-specific
CT
q λ term, which will be added to the vector f, which is related to the local element generalized

coordinates.

• virtual void EvalG(Vector& f, double t): *
This function is needed for the modeling of algebraic equations on element level. The vector
f in function EvalG returns the left-hand-side of the differential equation

g(xact, t) = 0 (2.11)

The actual coordinates are stored in the vector xact. The size of the vector g corresponds to
the value given in the function IS(), the components of g correspond to local indices. The
local values of xact can be accessed with XG(), XGP(), etc. The function EvalG usually differs
for a certain maximum index of the integrator: If the integrator is capable of index 3, the
constraints are formulated on the position level, while if the integrator is capable of index 2,
the constraints are given on the velocity level. The function sometimes switches between an
implementation of a ground joint (only one element) or a joint which connects two elements

• virtual void JacobianG(double t, Matrix& m, IVector& colref): *
This function provides the element jacobian for algebraic equations,

JG =
∂g

xloc
(2.12)

where xloc represent the local (element) coordinates. In classical constraint formulation, the
Jacobian JG represents the constrain jacobian, usually denoted by dC/dq.

68 CHAPTER 2. HOTINT DEVELOPERS MANUAL

• virtual void AddElementCqTLambda(int locelemind, Vector& f): *
This function adds the vector

f = −∂C

q
λ (2.13)

to the right hand side of the differential equations. This term represents the constraint
Jacobian times the Lagrange multipliers; all terms are computed on the element level.

• virtual double PostNewtonStep(double t): *
This function is suited for nonlinear (discontinuous) iterations. This function is called after
each Newton method at a time / load step. This function checks for events such as switch of
contact behavior or friction, elastic-plastic material behavior, switching of springs, etc. The
usage of this function instead of a switching directly within the nonlinear equations of the
element greatly improves the Newton convergence of the problem.
The function returns an error estimate. If the sum (over all elements of the multibody sys-
tem) of those error estimates is larger than the parameter SolverSettings.discontinuousaccuracy,
then the time / load step is restarted.

• virtual void FixNonlinStep(): *
After some nonlinear (discontinuous) iterations,

• virtual int IsGroundJoint() const:
Return 1, if the element is a ground joint

• virtual void AddElement(int en):
Add an element to the constraint; usually done by the assembly procedure

• virtual const Element& GetElem(int i) const:
Return the const reference to an element that is attached to the constraint

• virtual int NE nodouble() const:
Number of elements which are attached to the constraint, counting every element only once
(e.g. if an element is attached at several points in the case of contact)

• virtual const Element& GetElem nodouble(int i) const:
Return the const reference to an element that is attached to the constraint, using the list
with no double entries

• virtual Element& GetElem nodouble(int i):
Return the non-const reference to an element that is attached to the constraint, using the
list with no double entries

• virtual const Body2D& GetBody2D(int i) const:
Return the const reference to an element which is converted into a Body2D

• virtual Body2D& GetBody2D(int i):
Return the non-const reference to an element which is converted into a Body2D

• virtual const Body3D& GetBody3D(int i) const:
Return the const reference to an element which is converted into a Body3D

• virtual Body3D& GetBody3D(int i):
Return the non-const reference to an element which is converted into a Body3D

2.5. ELEMENTS 69

2.5.3.3 Concepts for creating a new specialized Constraint

#ifndef __MY_CONSTRAINT

#define __MY_CONSTRAINT

class MyConstraint : public Constraint

{

public:

MyConstraint(MBS* mbs) : Constraint(mbs)

{

ElementDefaultConstructorInitialization();

}

MyConstraint(const MyConstraint& e) : Constraint(e.mbs)

{

CopyFrom(e);

}

virtual void ElementDefaultConstructorInitialization()

{

// just set some legal values

}

virtual int CheckConsistency(mystr& errorstr)

{

int rv = Constraint::CheckConsistency(errorstr);

if (rv) return rv;

... /*specify error scenarios*/

return rv; //rv==0 : OK, rv==1 : can’t compute, rv==2 : can’t draw and compute

}

virtual void CopyFrom(const MyConstraint& rhs)

{

Constraint::CopyFrom(rhs);

/*copy own members*/

}

virtual Element* GetCopy()

{

Element* ec = new MyConstraint(*this);

return ec;

}

virtual const char* GetElementSpec() const

{

return "MyConstraint";

}

virtual int IS() const /*number of constraint equations*/

{

int implicit_size;

return implicit_size;

}

void SetMyConstraint(/*some relevant constraint parameters*/)

{

// set members of this constraint

70 CHAPTER 2. HOTINT DEVELOPERS MANUAL

// define, if penalty formulation shall be used

SetPenaltyFormulation(/*0|1*/);

//collect elements for which this constraint takes effect

for (...)

{

AddElement(global_element_index);

}

}

virtual void EvalG(Vector &C, double t)

/*evaluation of C(q) for constraint equations C(q)=0, where q are generalized

coordinates of the unconstrained multibody system, and C is vector of size IS()*/

{

if (UsePenaltyFormulation()) return; // in this case only EvalF2() is relevant

if (MaxIndex()==3)

// determines kind of index reduction for constraints in time integration scheme

// (maxindex=3 --> position constraints, maxindex=2 --> velocity constraints)

{

C = ...;

}

else

{

C = ...;

}

}

virtual void AddElementCqTLambda(double t, int locelemind, Vector& f)

/*evaluation of d/dq c(q)^T lambda (according to Lagrangian constraint formalism).

you probably have to call dposdq or similar of each element on which this constraint acts.*/

{

if (UsePenaltyFormulation()) return; /*in this case only EvalF2() is relevant*/

f += ...; // add dCdqTLambda /*sign often depends on local element index (see int locelemind)*/

}

virtual Vector3D GetRefPosD() const

{

return GetBody3D(1).GetPosD(Vector3D(0.)); /*or similar*/

}

virtual void DrawElement()

{

Constraint::DrawElement();

...

}

protected:

/*members*/

};

#endif //__MY_CONSTRAINT

2.5.3.4 Connecting multi-point constraints with elements

Multi point constraints, e.g. AverageConstraint or contact!, require an enhanceded commu-
nication with multiple elements.

2.5. ELEMENTS 71

• class AverageConstraint : public BasePointJoint

• BasePointJoint has TArray<int> elements nodouble

• BasePointJoint::GetElem nodouble(int i) returns GetMBS()->GetElement(elements nodouble(i))

• AverageConstraint::LinkToElements() tells elements, which constraint acts on them. The
cases Lagrange and Penalty are distinguished, and implemented in the routines LinkToElementsLagrange
and LinkToElementsPenalty

• AverageConstraint::LinkToElementsLagrange() does

for (int i = 1; i <= NE_nodouble (); i++)

{

GetElem_nodouble(i).AddConstraint(this , i);

}

• Element has IVector constraints and IVector constraintindices

• Element::AddConstraints(Constraint* c, int lind) does

...

constraints.Add(c);

constraintindices.Add(lind);

...

• Element::EvalF2(Vector& f, double t) does

...

for (int i=1; i <= constraints.Length (); i++)

{

constraints(i)->AddElementCqTLambda(t, constraintindices(i), f);

}

...

2.5.4 Rigid3D

The following description provides some information on the implementation of the Rigid3D

element, which represents a general 3D rigid body. The element is derived from Body3D, which
includes some general functions that are necessary in all rigid or flexible spatial bodies.
Euler parameters are usually denoted with beta. Time derivatives usually have an additional
”p”. Some important functions for the transformation between Euler angles and Euler param-
eters are implemented in linalg3D.h.

• Rigid3D(MBS* mbsi):Body3D(mbsi):
Basic constructor

• Rigid3D(const Rigid3D& e):Body3D(e.mbs):
Copy constructor

72 CHAPTER 2. HOTINT DEVELOPERS MANUAL

• Rigid3D(MBS* mbsi, const Vector& x0, const Vector& phi0, double rhoi, double Vi, const

Vector3D& Ip, const Vector3D& si, const Vector3D& coli):
Constructor, initialization with density, volume, moments of inertias; product moments of
inertia are set zero

• Rigid3D(MBS* mbsi, const Vector& x0, const Vector& phi0, double rhoi, double Vi, const

Matrix3D& Ip, const Vector3D& si, const Vector3D& coli):
Constructor, initialization with density, volume, moments and product moments of inertias

• Rigid3D(MBS* mbsi, const Vector& x0, const Vector& phi0, double rhoi, const Vector3D&

si, const Vector3D& coli):
Constructor, initialization with density and size of a cubic body (size.X() × size.Y() ×
size.Z())

• void ComputeInitialConditions(const Vector3D& xp, const Vector3D& vp, const Vector3D&

phi, const Vector3D& phip, Vector& xinit):
Compute initial conditions from initial position xp, velocity vp, Euler angles phi, and angular
velocities phip (everything in global coordinates)

• virtual const Matrix3D& GetRotInertia() const return Iphi;:
Return the inertia tensor

• virtual Vector3D GetAngularVel(const Vector3D& p loc) const:
Return the angular velocity vector, p loc is unused

• virtual Matrix3D GetG() const:
Return the G-matrix as defined in the book of Shabana [8]

• virtual Matrix3D GetGT() const:
Return the transpose of the G-matrix as defined in [8]

• virtual Matrix3D GetGbar() const:
Return the Ḡ-matrix as defined in [8]

• virtual Matrix3D GetGbarT() const:
Return the transpose of the Ḡ-matrix as defined in [8]

• virtual Matrix3D GetGbarp() const:
Return the time derivative of the G-matrix as defined in [8]

• virtual void AddEPCqTterms(Vector& f):
Add the vector

∂C

∂q
, where C(q) =

3∑
i=0

θ2i − 1 = 0 (2.14)

which represents the derivative of the constraint C(q) of the Euler parameters θi with respect
to the element parameters q

• virtual Matrix3D GetRotMatrix() const:
Return the actual rotation matrix for the body

• virtual Matrix3D GetRotMatrixP() const:
Return the time derivative of the actual rotation matrix for the body

2.5. ELEMENTS 73

• virtual Matrix3D GetRotMatrixD() const:
Return the rotation matrix of the body for the drawing configuration

• virtual Matrix3D GetRotMatrixPD() const:
Return time derivative of the rotation matrix of the body for the drawing configuration

• virtual Matrix3D ComputeRotMatrix(const double& beta0, const double& beta1, const double&

beta2, const double& beta3) const:
Compute a rotation matrix from the four Euler parameters beta0 . . . beta3

• virtual Matrix3D ComputeRotMatrixP(const double& beta0, const double& beta1, const

double& beta2, const double& beta3, const double& betap0, const double& betap1, const

double& betap2, const double& betap3) const:
Compute the time derivative of the rotation matrix from the four Euler parameters beta0

. . . beta3 and its time derivatives betap0 . . . betap3

• virtual void ApplyDprefdq(Vector& f, const Vector3D& x):
Compute the derivative of the reference point pref with respect to the element coordinates
q times a vector x

f =
∂pref
∂q

x (2.15)

• virtual void ApplyDrotrefdq(Vector& f, const Vector3D& x):
Compute the derivative of the reference rotation matrix Aref with respect to the element
coordinates q times a vector x

f =
∂Aref

q
x (2.16)

• virtual void GetDuxDq(Vector& dudq):

Derivative of displacement ux with respect to the element coordinates q: dudq =
∂ux
∂q

• virtual void GetDuyDq(Vector& dudq):

Derivative of displacement uy with respect to the element coordinates q: dudq =
∂uy
∂q

• virtual void GetDuzDq(Vector& dudq):

Derivative of displacement uy with respect to the element coordinates q: dudq =
∂uz
∂q

• virtual void GetH3T(const Vector3D& vloc, Matrix3D& d):
Compute

d = GT skew(Avloc) (2.17)

where A is the rotation matrix of the body, vloc is a local vector of the body, and skew is
the operator which maps a vector to a skew-symmetric matrix

• virtual void GetdRotvdqT(const Vector3D& vloc, const Vector3D& ploc, Matrix& d):
Compute the derivative of the rotated vector Av of a local point ploc of the body with
respect to the element coordinates q

d =
∂(Av)

∂q
(2.18)

74 CHAPTER 2. HOTINT DEVELOPERS MANUAL

• virtual void GetdPosdqT(const Vector3D& ploc, Matrix& d):
Compute the derivative of the global position of a local point ploc of the body with respect
to the element coordinates q

d =
∂p

∂q
(2.19)

• virtual void GetdAngVeldqpT(const Vector3D& ploc, Matrix& d):
Compute the derivative of the angular velocity vector of a local point ploc of the body with
respect to the element coordinates q

d =
∂ω

∂q
(2.20)

• virtual void GetdPosdx(const Vector3D& ploc, Vector3D& dpdx):
Compute the derivative of the global position of a local point ploc of the body with respect
to the local x-coordinate; Used for beam elements

dpdx =
∂p

∂x
(2.21)

2.5.4.1 Data in class Rigid3D

• Matrix3D Iphi:
Matrix containing moments and products of inertia

• Vector betap:
temporary vector for time-derivative of Euler parameters

2.5.5 Geometric Elements

Geometric elements are used to represent a realistic shape of complex bodies in the multibody
simulation. Usually, a geometric element is either used to define objects in the background
or it is attached to a (rigid) body. Geometric elements can be either defined with geometric
primitives or by triangular meshes (see the Section about GeomMesh). The only influence to the
computation by GeomElements is present by the automatic computation of mass, volume and
inertia from the GeomElements. Usually, the complexity of GeomElements does not influence
the computational time (CPU time), except for the drawing and loading/saving of multibody
models. In the case of big GeomMesh models, it is recommended that the redrawing time is
set to a high value, e.g. set the redrawing to every 20 seconds.

2.5.6 Finite elements

A distinguished feature of the present software is that traditional rigid multibody models can
be augmented by flexible bodies by means of finite element method.
The base class for the 2D/3D finite elements is FiniteElementGeneric. It is a template class,
which takes as an argument the BodyXD class of the corresponding dimensionality. The func-
tionality of FiniteElementGeneric provides a common platform for all 2D/3D finite elements.
Many of the virtual functions are overwritten in the derived classes. Two important points in
the functionality of this class are that it manages

• the array of indices of the nodes, which belong to the element,

• the integration rules, used for the integration of various entities over the volume (or area) of
the element (see section 2.5.6.3).

2.5. ELEMENTS 75

2.5.6.1 Finite elements in three dimensions: general description

The basic class for the three-dimensional finite elements is declared as
class FiniteElement3D : public FiniteElementGeneric<Body3D>.
This class has the following basic functionality:

• deals with the faces and the topology of a 3D element;

• computes entries in the stiffness and mass matrices;

• computes right-hand side in the equations of motion;

• performs post-processing functions (computes e.g. stresses);

• provides drawing functions for three-dimensional presentation of the geometry of the element
and for the distribution of values for visual post-processing;

The class FiniteElement3D is abstract: it cannot be used by itself, as the particular element
type, shape functions etc. are concretized in the derived classes.

From FiniteElement3D inherits the class FiniteElement3DFFRF, which provides interaction with
other frameworks, in which the elements are unified into a Component Mode Synthesis (CMS)
or Floating Frame of Reference Formulation (FFRF).

The particular finite element types are derived either from FiniteElement3D or from FiniteElement3DFFRF

with the help of templates:

• Tetrahedral, TetrahedralFFRF – for 4-node and 8-node tetrahedral elements and

• Hexahedral, HexahedralFFRF – for 8-node and 20-node “brick” elements.

The latter two classes define the topology of a particular element (via the helper class Face),
its shape functions with their necessary derivatives. The sets of Gauss points for different
integration rules, which should be used for the computation of mass and stiffness matrices, are
defined in the source file IntegrationRule.cpp, see section 2.5.6.3.

There exist different scenarios of usage of finite elements:

• The elements can be created either “by hand”, or in the framework of a finite element mesh,
implemented in the class FEMesh3D (which is derived from FEMesh).

• The elements can be used

– on their own, which is equivalent to the Absolute Nodal Coordinate Formulation (ANCF);

– in the framework of FFRF (information, required for the computation, is provided by
a helper class FFRFData);

– in the framework of CMS; in this latter case the elements do not appear themselves as a
part of a multibody system, but rather they are included in some other “super-element”
CMSElement.

Elements require nodes to be present in the multibody system, which are encapsulated by the
class Node; possible constraints of the nodal degrees of freedom can be achieved by using the
class NodalConstraint.

76 CHAPTER 2. HOTINT DEVELOPERS MANUAL

2.5.6.2 ANCF finite elements

Using finite elements in the framework of Absolute Nodal Coordinate Formulation requires the
following steps:

• Nodes need to be created at their initial positions and added to the storage in the multibody
system by calling MBS::AddNode().

• Materials need to be created and added to the multibody system.

• Elements are created with references to the indices of the created nodes. The function void

Hexahedral::SetHexahedral(int bodyindi, const TArray<int>& nodelist, int material num,

const Vector3D& coli, int CMSelementi) should be used in the case of a hexahedral ele-
ment with the following parameters:

– bodyind – index of the current solid;

– nodelist – indices of the nodes, returned by MBS::AddNode(), in the right order; 8 or
20 indices are required by a hexahedral element, 4 or 8 by a tetrahedral;

– material num – index, returned by MBS::AddMaterial();

– coli – color;

– CMSelementi should be omitted in the case of an ANCF element.

2.5.6.3 Integration rules

All finite element classes require appropriate quadrature rules, with which various fields are
integrated over the volume of the element. The currently utilized concept of centralized handling
of integration rules is based on the following key points:

• Each finite element may require various integration rules with different integration orders
and/or other properties (integration rules for the stiffness matrix and internal forces, for the
mass matrix, for the external forces (H-matrix), etc.).

• An integration rule is defined by a list of integration points with their coordinates, weights
and possibly some additional data (matrices of derivatives of the shape functions, which
may be pre-computed for the integration points to speed-up the computation); see the class
IntegrationRule in IntegrationRule.h/cpp.

• For the sake of the optimal memory usage, the required integration rules and the corre-
sponding infrastructure are stored and managed by a centralized library, encapsulated in
IntegrationRulesLibrary. An instance of the object is a member of MBS.

• A particular integration rule is identified by the following set of parameters, which is in the
following called settings (see IntegrationRule::IntegrationRuleSettings):

– Type of the finite element (see TFiniteElementType).

– Interpolation order of the finite element (which is neither the order of the integration
rule nor the number of points in each direction).

– Type of the integrated entity (stiffness matrix, mass matrix, H-matrix, see IntegratedValueType).

– The type of geometric nonlinearity, used in the particular simulation.

2.5. ELEMENTS 77

Finite element
(Hexahedral)

Library with all integration rules

rule settings

rule settings

..............

rule settings

rule settings

..............

Hexahedral
elements

Tetrahedral
elements

..............

stiffness settings *

..............

mass settings *

Figure 2.7: Access to the relevant integration rules for a finite element

– Possible additional flags, which may have a meaning of the reduced integration rule,
locking compensation, etc.

• “Linkage” of the finite elements with the relevant integration rules from the library (see
Fig. 2.7) is done during the assembling of the model (see FiniteElementGeneric::PreAssemble()).
The standard implementation in FiniteElementGeneric includes pointers to three integration
rules, which are initialized in FiniteElementGeneric::PreAssemble() during the evaluation
of MBS::Assemble(). The consequence is that some functions should not be called during the
model creation, as e.g. Element::DataS() may at this stage be undefined for elements with
plastic variables.

• When an element requires a particular integration rule, then a rule with a matching set of
settings is sought in the library (see IntegrationRulesLibrary::GetIntegrationRule()). If
the rule is not found, the library calls the element back, asking to create the rule. It means
that the elements are responsible for the initialization of the relevant integration rules: each
finite element must provide an implementation of the interface
IntegrationRule::IntegrationRuleProvider.

• Actual usage of integration rules in the form of sequential processing in a for-loop is conve-
nient with the help of iterators, see IntegrationPointsIterator.

• Often particular information, which is element specific, needs to be associated with each
integration point. Two solutions are then possible.

– If the data needs to be stored in XData (e.g. plastic strains or other variables, which vary
with the time as the solution progresses), then the association needs to be performed
by the indices of the points (IntegrationPointsIterator::Index()).

– Gradients, inversed jacobians, etc., which are just pre-computed, can be stored in an ad-
ditional array of objects of a particular type, see FiniteElementGeneric::IntegrationPointStiffnessMatrixLocalData.
The mapping from integration points to the corresponding array entries is again per-
formed with the help of the index. Several definitions of the class IntPointsStiffnessIterator,
which are specific for particular finite element types, help accessing the local data while
the integration points are processed.

78 CHAPTER 2. HOTINT DEVELOPERS MANUAL

2.5.6.4 Field variables: post-processing and contour plotting

Contour plotting of various field variables like stress components, displacements, etc. during
post-processing is especially important for the finite elements. This is achieved by means of
a unified mechanism, the central point of which is the structure FieldVariableDescriptor.
Another benefit of this unification is that all the values, which are available for post-processing,
can be attached to a sensor.
The points are the following.

• The definition of a variable, which is to be painted, is presented in the form of the structure
FieldVariableDescriptor. The source code is documented in detail, here are the most
important facts:

– Each variable has its type. There is a list of standard types defined (FieldVariableType),
to each type corresponds a text string (FieldVariableDescriptor::GetTextualIdentifier()).
There exists a possibility to define a non-standard (problem specific) variable.

– A variable may have one or two component indices; setting the first index to FVCI magnitude,
we obtain the norm of a vector or a tensor.

– For all standard variable types their dimensionality can be obtained.

• Each element, which should be able to expose values of the field variables for post-processing,
should reimplement the following functions:

– GetAvailableFieldVariables will be called at the end of MBS::Assemble(). Each ele-
ment, which is able to compute some field values, should provide a list of of the available
variables. Adding a variable type with the whole range of component indices can be eas-
ily done with the helper function AddTypeIntoArray, defined in FieldVariableDescriptor.
The set of added variables may depend on the state of the element (e.g. inelastic strains
should be added only when the selected material is actually inelastic). All collected lists
will be merged into a single list in MBS, which will then populate combo-boxes in the
user interface dialog ”FE options”.

– GetFieldVariableValue will be used to actually compute the value of a variable of
a given point of the element (there are 2D and 3D versions of the function; flagD

indicates whether the function is called from a drawing routing DrawElement or from
a sensor). The helper function FieldVariableDescriptor::GetComponent simplifies the
computation.

2.5.7 CMSElement + GCMSElement

In this section the CMSElement and the GCMSElement are described. Although the theory of
this two approaches differs, the usage in HOTINT is very similar.
Flags that are set in HOTINT:

• TCMSflag: set if the Element is a BaseCMSElement

• TCMS: set if the Element is a finite element belonging to a BaseCMSElement (i.e. CMS
OR GCMS)

• TGCMS: set if the Element is a finite element belonging to a GCMSElement

2.5. ELEMENTS 79

2.5.7.1 Theory of CMS

The position vector of a point P is given by

r
(i)
P = r

(i)
R + A(i)(x̄(i) + ū

(i)
F). (2.22)

The degrees of freedom for the position vector are collected in the coordinate vector q(i). In
the floating frame of reference formulation (FFRF) as introduced e.g. by Shabana [8], the
coordinate vector q(i) is split into three parts, 1

q(i) =
[
(q

(i)
R)T (q

(i)
θ)T (q

(i)
F)T

]T
. (2.23)

The last part q
(i)
F contains the flexible degrees of freedom, which are assumed to correspond to

some underlying finite element discretization. The flexible part of displacement is linked to the
flexible degrees of freedom q

(i)
F via the shape function matrix,

ū
(i)
F = N̄(i)q

(i)
F . (2.24)

In the floating frame formulation, the equations of motion can be derived from Lagrange’s
equations and lead to [8]

Mq̈ + Kq + CT
qλ = Qe + Qv. (2.25)

In flexible multibody systems, the component mode synthesis (CMS) is a standard approach to
reduce the number of flexible degrees of freedom by taking into account only the most important
deformation modes.
Craig and Bampton [9] proposed a sophisticated set of modal shape functions, which included
dynamic modes gained from eigen-analysis as well as static modes obeying displacement bound-
ary conditions. A reduced set of coordinates qCMS

F is linked to the original flexible coordinates
qF via the transformation matrix Φmod by

qF = Φmodq
CMS
F . (2.26)

The modal transformation matrix or also modal reduction matrix Φmod contains the chosen
deformation modes column-wise, where the number of modes NCMS is much smaller than the
original number of flexible coordinates NF . The implemenation in HOTINT uses the free-free
Eigenmodes of the finite element model as deformation modes. If you want to use additional
or different modes (static modes, boundary nodes, eigenmodes for a constrained structure,. . .)
see the following section.
The equations of motion (2.25) obtained for the FFRF can be transformed to a reduced setting
in a rather straightforward manner. The constant flexible sub-blocks MFF and KFF of mass
and stiffness matrix are transformed to reduced matrices MCMS

FF and KCMS
FF by application of

the transformation matrix Φmod. Depending on the chosen mode shapes, they are diagonal or
fully populated.
After the reduction is done in a preprocessing step, the reduced matrices are used to compute
the actual components of mass matrix and quadratic velocity vector in the FFRF-CMS setting.
Note that the computational complexity is then independent of the size of the underlying finite
element model.

Basic steps:

1Concerning the implementation, the order of the degrees of freedom in the vector q is different as stated in
Eq. 2.23. The implemented order is: qF , qR, qθ, which is important e.g. if you want to constrain a particular
degree of freedom.

80 CHAPTER 2. HOTINT DEVELOPERS MANUAL

• create/load mesh

• compute/load eigenmodes

• compute Φmod, MCMS
FF , KCMS

FF and reduced inertia tensors

degrees of freedom: RigidDOF + DOF for modes
e.g. for 2 modes and Bryant angles: 6 + 2 = 8

2.5.7.2 using the CMSElement

Using the CMSElement in HOTINT requires following steps:

• create FEMesh3D

– load nodes + elements from files or generate it by using Generate-functions

– Transform the Mesh if necessary

– AddMaterialsToMBS

• initialize the CMSElement

– CMSElement〈FFRFRIGID〉 cmsinit1(mbs)

– depending on the typdef of FFRFRIGID you can choose between Rigid3D and Rigid3DKardan

– inital position, rotation, etc.: cmsinit1.SetCMSElement(...

– damping: cmsinit1.SetDiagonalInternalDamping(damp)

• add loads to CMSElement, e.g.: cmsinit1.AddLoad(loadmoment)

• set options for eigenmode computation

– cmsinit1.SetSolverParameters(...

– cmsinit1.SetEigenmodesFromFile(EigenmodeFile1);

• add CMSElement to mbs: int elnum cms1 = mbs→AddElement(&cmsinit1);

• set reference to CMSElement

– CMSElement〈FFFRFRIGID〉* cmsel1 = (CMSElement〈FFRFRIGID〉*)
(&(mbs→GetElement)(elnum cms1));

– necessary to access the CMSElement after adding (a copy of the element) to mesh

• add mesh to CMSElement: cmsel1→AddFEMesh(mesh3d 1);

– nodes and elements of mesh are not added to mbs!

– in mbs there is just the reference frame element

• add constraints

• do modal analysis: cmsel1→DoModalAnalysis(fixednodes);

2.5. ELEMENTS 81

• assemble the model: mbs→Assemble();

Some more informations concerning SetCMSElement:
SetGCMSElement(const Vector3D& p, const Vector3D& v, Vector3D phi, Vector3D phip,

const int nimodesi, const Vector3D& sizei, const Vector3D& coli)

• p: initial position of the reference point (origin), in global xyz-coordinates

• v: initial velocity of the reference point (origin), in global xyz-coordinates

• phi: initial rotation of the reference frame, reference point is origin, and parameters are zxz

• phip: initial angular velocity of the reference frame, reference point is origin, and parameters
are global xyz-coordinates (=omega Vector)

If Bryant (Kardan) angles are chosen:
SetCMSElementKardan(const Vector3D& p, const Vector3D& v, Vector3D phi,

Vector3D phip, const int nimodesi, const Vector3D& sizei, const Vector3D& coli,

Rigid3DKardan::RotationsSequence rs)

• p: initial position of the reference point (origin), in global xyz-coordinates

• v: initial velocity of the reference point (origin), in global xyz-coordinates

• phi: initial rotation of the reference frame, reference point is origin, and parameters are zxz

• phip: initial angular velocity of the reference frame, reference point is origin, and parameters
are global xyz-coordinates (=omega Vector)

• RotationsSequence: just used during computation, the input format of the initial conditions
is not influenced by this option.

2.5.7.3 how to constrain a CMSElement

Many of the constraints in HOTINT are based on local coordinates and can therefore not be
used for a CMSElement. In this section successfully tested constraints are presented:

• NodalConstraintCMS: It is recommended to use this constraint if possible. Up to now just
constraints of the type element-ground are realized.

• NodalConstraint: This is the base class of NodalConstraintCMS and some of the constructors
also work with CMSElement. With this constraint it is possible to implement kinematic pairs
of the type element-element. Only use constructors, which are using node-numbers and not
local coordinates!

• CoordConstraint: This constraint is usefull to fix the reference frame w.r.t. the global
coordinate system. Be aware of the fact, that the order of the d.o.f.s is differet than stated
in Eq. 2.23.

82 CHAPTER 2. HOTINT DEVELOPERS MANUAL

2.5.7.4 theory of GCMS

The modal reduction can also be conducted for the absolute coordinate formulation, which
leads to a ACF-based CMS or generalized component mode synthesis (GCMS) method [10].
For a given set of local modal shape functions, modally reduced basis functions with respect to
the global frame are developed. These shape functions represent rigid body translation, rota-
tion and small co-rotated flexible deformation, and are collected in the shape function matrix
NGCMS(x). Corresponding degrees of freedom qGCMS directly define the global displacement u
via a linear relationship

u(x) = NGCMS(x)qGCMS. (2.27)

As in the FFRF-based CMS, the degree of freedom vector qGCMS consists of three parts corre-
sponding to translation, rotation and flexible deformation

qGCMS = [(qGCMSt)T (qGCMSr)T (qGCMSf)T]T (2.28)

with a total number of coordinates NGCMS = 12 + 9 ·NM .

In contrast to the FFRF-based CMS, in the GCMS each degree of freedom corresponds directly
to one basis function, as the linear relationship (2.27) indicates.

In computations, it is necessary to evaluate the rigid body part of displacement ur +ut and the
flexible part uf separately. Note that these parts do not correspond to the degrees of freedom
qGCMSt ,qGCMSr and qGCMSf directly, since the rotation degrees of freedom qr also contain stretch
and shear deformations.

degrees of freedom: DOF for Modes but no seperate RigidDOF
e.g. for 2 modes and Bryant angles: 12 + 9 · 2 = 30

2.5.7.5 using the GCMSElement

In general, the usage of the GCMSElement (generalized CMSElement) in HOTINT requires
the same steps as described before for the CMSElement. There is just one difference during
initialization:

• create FEMesh3D

• initialize the GCMSElement

– GCMSElement〈FFRFRIGID〉 gcmsinit1(mbs)

– inital position, rotation, etc.: gcmsinit1.SetGCMSElement(...

– set 3 reference nodes: gcmsinit1.RefNode1() = node nr;

• ...

The three reference nodes define a coordinate system and should therefore be chosen according
to the following rules:

2.5. ELEMENTS 83

- not all nodes on one line !

- RefNode1 and RefNode2 as far away from each other as possible

- line(RefNode1, RefNode2) and line(RefNode1, RefNode3) should be perpendicular

Some more informations concerning SetGCMSElement:
SetGCMSElement(const Vector3D& p, const Vector3D& v, Vector3D phi,

Vector3D phip, const int nimodesi, const Vector3D& sizei, const Vector3D& coli)

• p: initial position of origin, in global xyz-coordinates

• v: initial velocity of RefNode1, in global xyz-coordinates

• phi: initial rotation of the reference frame, reference point is RefNode1, and parameters are
zxz

• phip: initial angular velocity of the reference frame, reference point is RefNode1, and pa-
rameters are global xyz-coordinates (=omega Vector)

If you prefer to define the initial conditions for a reference point P instead for RefNode1, there
is following possibility. It is not necessary that P is a nodal position!
SetGCMSElement(const Vector3D& p, const Vector3D& v refP, Vector3D phi,

Vector3D phip refP, const Vector3D& ref node1TOref pos, const int nimodesi,

const Vector3D& sizei, const Vector3D& coli)

• p: initial position of origin, in global xyz-coordinates

• v: initial velocity of reference point P, in global xyz-coordinates

• phi: initial rotation of the reference frame, reference point is RefNode1, and parameters are
zxz

• phip: initial angular velocity of the reference frame, reference point is reference point P, and
parameters are global xyz-coordinates (=omega Vector)

• ref node1TOref pos: vector from RefNode1 to reference point P

2.5.8 Control elements (time continuous and discrete elements)

InputOutputElements are used for modelling of directed graphs (like controller circuits). Their
inputs are Sensors or other InputOutputElements. In order to test the functionality of the
system, the outputs can be watched with Sensors. In the class InputOutputElement, the funda-
mental code of such a graph objects are defined. The time continuous elements are derived from
this class. In order to simulate time discrete behaviour, the class InputOutputElementDiscrete is
derived from InputOutputElement and contains some functioniality for handling the constant
time step size. The discrete elements like discrete z-Transfer Functions or discrete controllers
should be derived from this class.

84 CHAPTER 2. HOTINT DEVELOPERS MANUAL

2.6 Import and export of data and interfaces to other

software

2.6.1 FEMesh

The main purposes of the FEMesh class are

• provide routines to import meshes from external sources (NetGen, Ansys,...)

• create simple meshes from building bliocks

• manipulation of nodes and elements

• application of constraints and loads

• forward the mesh to the MBS

2.6.1.1 data content of the FEMesh

The FEMesh class contains data considering

• geometry on finite element level (Nodes, FEElements)

• geomety on macroscopic scale (bodies, areas, material sections,...)

• boundary conditions (loads, constraints)

• materials

Explanation of used terms:

Mesh: An ensemble of nodes and elements

Node: Defines the position of a vertex or intermediate point of a finite element. It is possible
that two nodes occupy the same position if they differ in domain number.

Element: A finite element of the mesh, defined primarily by its Nodes. Various types of
basic elements are implemented in the FEMesh class. Functionalities of the Element in the
FEMesh class include returning its faces and .

Face: A side of an single finite element, stored as a list of nodenumbers. e.g. a hexahedral
element has 6 faces with 4 nodes each, while a triangle element has 3 faces with 2 nodes
each.

Surfaceelement: a side of an single finite element, stored as a FEElement. e.g. a hexahedral
element has 6 quad elements. All outer elements of an assembly can be computed by the
mesh

2.6. IMPORT AND EXPORT OF DATA AND INTERFACES TO OTHER SOFTWARE 85

Figure 2.8: example for an FEMesh, components highlighted

86 CHAPTER 2. HOTINT DEVELOPERS MANUAL

Surfaceparents: list of element numbers and side numbers to map surface elements to ele-
ments

Area: Set of Faces. Areas may be defined at any time and are stored. The block generation
functions of FEMesh can automatically create areas for the sides of the block or base and
shell areas of a cylinder. It is also possible to compute areas where material changes (within
a domain).

Domain: A single component of the assembly. The mesh of a domain is always continuous.
provided at runtime

Material section: Elements with the same material - regardless of their domain. provided
at runtime

Load: A Load boundary condition defined on the FEMesh. There are several different types
of loads available.

Constraint: A Constratint bondary condition defined on the FEMesh. There ars several
different types of constraints available.

2.6.1.2 Import functions

One major purpose of the FEMesh class is to import meshes from external programs. For some
programs custom export routines were written as well.

For the import routines a file format is defined. The files themselves can be created ”‘manually”’
or from export routines in the external programs.

• text file format

The data is divided into several blocks representing the data structure of the FEMesh class.
Each data block starts with an identifier in [brackets] in the first line. The second line always
contains the number of datalines that follow and additional parameters if necessary. From line
3 of each block the actual data begins, usually with a constant number of colums in each line.
A single data block can not be spread over different text files but each block can be placed in
different file.

Nodes LoadNodes

contains a list of nodes, the nodes are automatically added with domainnumber 1.
identifier: [NODES]
parameters: number of nodes
data line: node number |t x-position | y-position | z-position

Elements LoadElements

contains a list of elements, the number of nodes per elements must be known.
identifier: [ELEMENTS]
parameters: number of elements | number of columns reserved for nodes

2.6. IMPORT AND EXPORT OF DATA AND INTERFACES TO OTHER SOFTWARE 87

example:
[NODES]
3
1 0.0 0.0 0.0
2 0.0 1.0 0.0
3 1.0 0.0 0.0

data line: element number | element dimension | element order | used nodes | node1 | ... |
nodeN | material number

The routines for Nodes and Elements have very rigid format restrictions. In principle the
parsing of a single dataline can be branched to use alternate formats.

Materials LoadMaterials

contains a list of materials, uses 2 data lines per material. This allows, in principle, to import
all kinds of non-elastic materials with the same routine.
identifier: [MATERIALS]
parameters: number of materials
data line 1: number of material parameters | identifier property 1 | ... | identifier property
N
data line 2: value property 1 | ... | value property N

implemented identifiers as of December 23, 2013: [density], [youngs modulus], [poisson ratio],
[drawing color].

Loads LoadLoads STA

contains a list of loads and constraints to apply to the model, will be split into separate lists
with more
identifier: [LOADS]
parameters: number of loads | identifier units
data line: identifier load type | load target | load vector

implemented identifiers as of December 23, 2013: [AreaSurfaceLoad], [AreaConstraint],
[NodalConstraint], [BodyLoad], [FaceLoad], [FaceConstraint], [AreaContact]

• Netgen

Files saved with the NETGEN neutral file format can be loaded with LoadNetgenMesh3D.

2.6.1.3 Export functions

• export funcitons in Hotint

The mesh can be exported in a plain text format with the function ExportAsText.

• export funcitons in Ansys

An Ansys mesh can be exported into three separate text files with the macros ”‘NODES.mac”’,
”‘ELEMENTS.mac”’ and ”‘MATERIALS.mac”’. Each of these files contains one block of data,
it would also be possible to have all blocks in only one file.

88 CHAPTER 2. HOTINT DEVELOPERS MANUAL

2.6.1.4 group selection in FEMesh - Filter functions and selections

The integral parts of the FEMesh are Nodes, Elements and with less significance Faces. For
manipulations of the mesh filter functions are provided.

Filters considering position naturally work on the Nodes. Filters considering material or domain
work on Elements. A mappping between Nodes and Elements is stored in the FEMesh class
such that for a set of nodes a corresponding set of Elements can be computed quickly and vice
versa.

Faces as such are list of nodes with a built-in mapping to the corresponding finite element. For
performance reasons it makes sense to store the faces rather than compute them every time
they are needed.

Filter functions are normally called with an array for the return values as first parameter and
an array defining a subset as optional last parameter.

filter functions - geometry: These functions work with a cell-search method to exclude part
of the nodes from search if possible. The Searchtree must be up to date, this can be done by
calling the FEMesh function InitializeNodeSearchTree() ().

GetNodesInBox: all nodes inside a box, box edges parallel to axis

GetNodesOnPlane: all nodes on a plane (plane defined by plane equation (~(n),c))

GetNodeAtPos: single node at given position - use subset to filter for a special domain.

GetNodesOnCircle: all nodes on a circle (circle defined by center point, symmetry axis and
radius)

GetNodesMinRespVect: all nodes with a minumum distance to a plane (plane defined by

plane equation (~(n),c))

filter functions - element properties: These functions basically run through the elementlist
and check the property.

GetElementsWithMaterial: all elements with given material number == material section

GetElementsOfBodies: all elements with given domain number == domain

filter functions - stored mappings: For more complicated filter a quick mapping between
from Nodes to Elements is stored in the FEMesh class as array of arrays. The function
ComputeNodesToElements() builds the list nodes to elements that contains for each node a
list of elements this node is part of. In the opposite direction each element has a list of nodes
anyway.

filter functions - composition With the basic filter operations from above, the Faces and
Areas as third entities, and set operations on the arrays it is possible to create more specific
filter functions by composition. For example to get all nodes of body 3 that are on outer faces
and on finite elements with material type 2 the correct procedure is:

2.6. IMPORT AND EXPORT OF DATA AND INTERFACES TO OTHER SOFTWARE 89

1. elements of body 3

2. nodes of these elements

3. list of outer faces

4. nodes on outer faces

5. elements with material 2

6. nodes of these elements

7. Intersection of the 3 nodes arrays

available filter functions:

• dummy

selections

2.6.1.5 Loads in FEMesh

The FEMesh class allows to place Loads. There are several types of Loads available, they are
stored in an array of FEMesh Load (or derived class) objects. This strategy allows to expand
the list of implemented loads at any time.

commom properties of all loads: (data members of base class FEMesh Load)

type: type specifier. Derived classes automatically set the type.

element: number of the item the load is applied to. Item can be Finite Element, Area, Face,
... depending on the type of the Load

loadvector: 3D Vector defining the load strength and direction.

implemented types of loads + examples: (derived classes)

Face Load: applies a pressure force to a face by placing equal loads the nodes of that face.
FEMesh FaceLoad(4, Vector3D(0., 0., 1.));

a load of 1N/mm2 in positive z-direction applied to face 4

Area Load: applies a pressure force to a set of faces, each face is weighted with its actual
size. FEMesh AreaLoad(1, Vector3D (3., 4., 0.));

a load of a total 5N/mm2 applied to area 1

Body Load: applies a force on a finite element. can be set to gravity load with a flag.
FEMesh BodyLoad(2, Vector3D (0., -9.81, 0.), 1);

a gravity load with gravity constant of 9.81N in negative y-direction applied to body 2

90 CHAPTER 2. HOTINT DEVELOPERS MANUAL

2.6.1.6 Constraints in FEMesh

The FEMesh class also allows to place Constraints. Again, several types of Constraints are
available, they are stored in an array of FEMesh Constraint (or derived class) objects. This
strategy allows to expand the list of implemented constraints at any time.

commom properties of all constraints: (data members of base class FEMesh Constraint)

type: type specifier. Derived classes automatically set the type.

element: number of the item the constraint is applied to. Item can be Finite Element, Area,
Face, ... depending on the type of the Constraint

axis: the axis that is constrained /niy allow multiple

penalty: flag if constraint uses penalty formulation

stiffness: spring stiffness for the constraint in penalty formulation

damping: damoing of the constraint in penalty formulation

implemented types of constaints + examples: (derived classes)

Nodal Constraint: constraint for a single node
FEMesh NodeConstraint(482, 1, 0, Vector3D(0.), Vector3D(0.));

lagrangian constraint for node 482 in x-direction

Face Constraint: constrtaint for a single face
FEMesh FaceConstraint(3, 3, 1, Vector3D(1e10.), Vector3D(0.));

penalty constraint for face 3 in z-direction with 1e10 spring stiffness

Area Constraint: constraint for a single area
FEMesh AreaConstraint(1, 2, 1, Vector3D(1e12.), Vector3D(0.));

penalty constraint for area 1 in y-direction with 1e12 spring stiffness

Area Contact: constrain all nodes of one area to another area (not necessarily to nodes
there) with spherical joints
additional parameter: target area replaces axis as 2nd parameter
FEMesh AreaContact(17, 4, 1, Vector3D(1e10.), Vector3D(0.));

penalty constraints for all nodes of area 17 to corresponding positions of area 4

The FEMesh provides some routines to quickly create meshes of basic geometrical objects.

2.6.1.7 Generate Blocks of finite elements

A block of hexahedral finite elements can be created in some variations. The Block is always
alligned along the cartesean axes, rotations and translations can be applied after creation.

2.6. IMPORT AND EXPORT OF DATA AND INTERFACES TO OTHER SOFTWARE 91

Figure 2.9: Meshed cube

The full function call is:
GenerateHexahedralBlock(

Box3D block, int3 divisions xyz, int bodynr, int matnr, Vector3D color,

IVector& blockelements, IVector& blocknodes, TArray<IVector*>& blockfaces,

IVector& constraintfaces constainttypes, IVector& constraintfaces directions,

MBSLoad& bodyload, int bodyloadactive,

IVector& loadfaces active, Vector& loadfaces loadstrength,

int order)

The parameters of the function call are:

geometry and properties

Box3D block: size and position of the block

int3 divisions: divisions for the three main directions

int bodynr: domain number for the block (applied to all nodes created)

int matnr: material number forthe block (applied to all elements)

Vector3D color: color of the block (color of all elements)

return values

IVector& blockelements: returns numbers of all newly created elements

92 CHAPTER 2. HOTINT DEVELOPERS MANUAL

IVector& blocknodes: returns numbers of all nodes of the block

Array<IVector*>& blockfaces: returns the facenumbers of the 6 outer surfaces of the
block

boundary conditions

IVector& constraintfaces constainttypes: constraint types for the 6 outer surfaces of the
block

IVector& constraintfaces directions: directions that are constrained - for each outer sur-
face individually

MBSLoad& bodyload: a body load to apply on all elements

int bodyloadactive: switch for the body loads

IVector& loadfaces active: switches for 6 area loads perpendicular on the 6 outer surfaces

Vector& loadfaces loadstrength: strengths for these 6 loads

simplified function calls:

• GenerateHexahedralBlock(

Box3D block, int3 divisions xyz, int bodynr, int matnr, Vector3D color)

• GenerateHexahedralBlock(

Box3D block, int3 divisions xyz, int bodynr, int matnr, Vector3D color,

IVector& blockelements, IVector& blocknodes, TArray<IVector*>& blockfaces)

2.6.2 Generate cylinders, rings and discs

There are several options to generate the mesh of a cylinder, ring (cylinder with hole in the
center) or disc (cylinder with small height). All the options, presented in this section, lead to
a mesh that consists of hexahedral elements only. The axis of the generated object is equal to
the z-axis, see Fig. 2.10.

2.6.2.1 GenerateDisc

This is the most general constructor in this section. The mesh of a cylindrical disc (with or
without a hole in the center) is generated, see Fig. 2.11.

GenerateDisc(radius, radius hole, height, divisions angle, divisions radial,

divisions height, pos, bodynr, matnr, color, blockelements, blocknodes)

following options are available:

2.6. IMPORT AND EXPORT OF DATA AND INTERFACES TO OTHER SOFTWARE 93

Figure 2.10: Mesh of a cylinder.

• geometric values are double values

• radius + height: radius and heigth of the cylindrical disc

• radius hole: radius of the hole, if set to zero, than a disc without a hole is generated

• divisions are integer values, greater than or equal to 1

• divisions angle: 45 degrees are divided into divisions angle parts

• divisions radial: the number of rings of which the disc is composed, the radius of the rings
is growing arithmetic.

• divisions height: the number of discs of which the cylinder is composed

• pos: center point of the area with the smallest z-value

• the others: see the general description of FEMesh

2.6.2.2 Other constructors

These constructors are used to implement GenerateDisc and can also be used directly:

GenerateCylinder(radius, small radius, height, divisions angle,

divisions height, ...)

A cylinder is generated according to the first line of the left part of Fig. 2.11. small radius
defines the size of the square in the center of the circle.

GenerateHollowCylinder(radius, radius hole, height, divisions angle,

divisions height, ...)

94 CHAPTER 2. HOTINT DEVELOPERS MANUAL

Figure 2.11: influence of divisions angle (vertical) and divisions radial (horizontal) on the mesh;
left: radius hole = 0; right: radius hole = radius /2

A cylinder with a hole in the center is generated. The mesh is equal to the outer ring of the
meshes presented in the last line of the left part of Fig. 2.11. The factor divisions angle is equal
for the inner and outer circle.

GenerateHollowCylinderDoubleDiv(radius, radius hole, height,

divisions angle, divisions height, ...)

A cylinder with a hole in the center is generated. The mesh is equal to the rings presented in
the first column of the right part of Fig. 2.11. The factor divisions angle of the outer circle is
two times the factor of the inner circle.

2.6.2.3 correct procedure to add a FEMesh to MBS

1. Add Materials The Materials used in the finite elements must be in the FEMesh material
list.

2. Add Nodes

3. Add Elements

4. Add Loads and Constraints

2.7. MODELS 95

Figure 2.12: How to add an object (element, node,..) to the mbs

2.7 Models

This section describes

• how to add objects (elements,nodes,..) to the mbs and which functions are called when the
mbs is assembled/initialized

• possibilities for error handling in the previous step

2.7.1 How to add objects to the mbs

In HOTINT there are at the moment 4 possibilities to add objects to the MBS:

1. Use the dialogs in the graphical user interface (GUI)

2. Load a mbs from a file with the button ”Open MBS”

3. Define the objects with the constructors of the objects in the cpp-file

4. Use the function ”ReadModelData” in the cpp-file

In figure 2.7.1 these options are shown.

2.7.1.1 Use the dialogs in the graphical user interface (GUI)

When the specific button (e.g. AddElement) is pressed, an object with default values is created.
These default element data is presented to the user in a dialog. The data for this dialog is
obtained from the object with the function GetElementData.

The user can edit the data in the GUI.

After pressing the button ”OK”, the data is written to the object with the function SetElementData.

Afterwards, the functions Assemble and Initialize are called directly from CWCDriver3DDlg.

The function ModelChanged is called at last, in order to update the graphical output.

2.7.1.2 Load a mbs from a file with the button ”Open MBS”

When the button ”Open MBS” is pressed, the user can search for a file.

The filename and directory are stored in the EDC GeneralOptions.ModelFile.hotint input data filename.

96 CHAPTER 2. HOTINT DEVELOPERS MANUAL

Afterwards, the function Initialize is called directly from the CWCDriver3DDlg. Initialize

calls the function ReadModelData and afterwards Assemble if a hotint input data filename is
specified.

The function ModelChanged is called at last directly from CWCDriver3DDlg, in order to update
the graphical output.

2.7.1.3 Define the objects with the constructors of the objects in the cpp-file

It is possible to define the elements directly in the cpp-file of the model. These models can
be selected with the button ”Select Model”. If the name of the model is already saved in the
config-file, the same procedure is performed, as if the user would have chosen it.

The cpp-file is called from the function Initialize if no hotint input data filename is defined.

After calling the constructor and additional optional Set-Functions, the object is added to the
mbs e.g. with AddElement(..).

After all objects are added, the mbs is assembled with the function Assemble, which is also
called directly from the cpp-file of the model.

Initialization of the mbs and the objects is done directly in Initialize.

The function ModelChanged is called at last directly from CWCDriver3DDlg, in order to update
the graphical output.

2.7.1.4 Use the function ”ReadModelData” in the cpp-file

It is possible to combine the options described above: If you define your model in a cpp-file
you can call at any position in the model the function ReadModelData.

If the file that is read with ReadModelData includes commands of the script language, these
are processed imediately. If objects are added (e.g. with AddElement,AddNode,...), the following
steps are performed:

• the object is created with default values

• the default values are replaced by the values defined in the EDC

• the object is added to the mbs

It is possible to add/edit/delete other objects of the mbs before and after ReadModelData is
called.

The function Assemble has to be called in the cpp-file of the model.

2.7. MODELS 97

2.7.2 Possibilities for error handling

In order to avoid errors due to inconsistent objects or mbs the following guidelines should be
followed:

• Each object must have a constructor without any arguments except of MBS*

• In this constructor a function called ObjectDefaultConstructor should be called. This func-
tion sets all the default values.

• Use Default ParserObjectValues as far as possible in the ObjectDefaultConstructor.

• Each object can have various additional SetFunctions to change the values set by the Object-
DefaultConstructor in a cpp-file. These Set-Functions are not available in script language
or in the GUI!

• Script language and GUI are using GetElementData and SetElementData instead of the Set-
Functions to change the element data.

• It is possible to implement additional functions that are called at the end of SetElementData,
this also works if SetElementDataAuto is used.

• When Assemble is called, for all elements (including constraints!) the function PreAssemble

is called, which can not be used for additional error handling, because it is a void function.

• After PreAssemble the ltg-lists and dependencies are built

• In Initialize (only available for elements and constraints) additional initialization can be
done.

• After Initialization the object is drawn for the first time.

• Initialize is called again after the button ”Start” is pressed

• The last function called before ComputeSystem is CheckSystemConsistency which is divided
in

– CheckConsistencyLTG

– CheckConsistencyElements which calls CheckConsistency

– CheckConsistencySensors which calls IsConsistent

– CheckConsistencyNodes which calls PerformNodeCheck

– CheckConsistencyMaterials which calls CheckConsistency

If an error is detected here, the computation does not start.

98 CHAPTER 2. HOTINT DEVELOPERS MANUAL

Chapter 3

HOTINT Guidelines

Johannes Gerstmayr

December 23, 2013

99

100 CHAPTER 3. HOTINT GUIDELINES

3.1 How to get HOTINT running from the Source Code

3.1.1 Requirements

• Microsoft Visual Studio (preferred version 2008)

3.1.2 Unpack HOTINT

1. Unpack the zip file to a directory (preferred D:\cpp\).

3.1.3 When using Visual Studio 2008

3. Rename WCDriver3D/WCDriver3D mbs - Template 2008.sln to WCDriver3D/WCDriver3D mbs.sln

4. Start Visual Studio by double click on WCDriver3D/WCDriver3D mbs.sln.

5. Rightclick the project WCDriver, click Eigenschaften, and make sure, the proper working
directory path is set (see figure 3.1) for all configurations:

• Befehl: "..\hotint$(PlatformName)\$(ConfigurationName)\$(TargetFileName)"

• Arbeitsverzeichnis: "..\hotint$(PlatformName)\$(ConfigurationName)"

6. compile (debug & release). You should now be able to run HOTINT.

3.1.4 When using Visual Studio 2010

3. Rename WCDriver3D/WCDriver3D mbs - Template 2010.sln to WCDriver3D/WCDriver3D mbs.sln

4. Start Visual Studio by double click on WCDriver3D/WCDriver3D mbs.sln.

5. Rightclick the project WCDriver, click Eigenschaften, and make sure, the proper working
directory path is set for all configurations:

• Befehl: ..\HotInt$(Platform)\$(Configuration)\hotint.exe

• Arbeitsverzeichnis: ..\HotInt$(Platform)\$(Configuration)

6. compile (debug & release). You should now be able to run HOTINT.

Please take care that the platform is set to Win32, since it is the only possible right now.

3.2. CODING CONVENTIONS 101

Figure 3.1: Set “Arbeitsverzeichnis” and “Befehl” for ALL CONFIGURATIONS in WCDriver

3.2 Coding Conventions

3.2.1 Comments

3.2.1.1 Use English Language throughout for comments

Everyone should have a chance to understand them.

3.2.1.2 Write detailed comments in header (.h) file

Description of the classes and functions. Here it is important to describe the input and output
parameters and possible limitations etc., not the implementation details.

3.2.1.3 Write comments in implementation (.cpp) files

Here the implementation should be described. No need to repeat the information which is
contained already in the header file. Here the implementation should be explained. It should
be such that

1. The general idea of the code becomes obvious

2. the meaning of variables (“j”, etc.) becomes more obvious

102 CHAPTER 3. HOTINT GUIDELINES

3. parts of the code which are not easy to understand become more readable

4. the code becomes structured (use //+++++++++++++++++ and some small descrip-
tion of each part)

3.2.1.4 Commenting changes in common hotint code

Many developers are working at the program HOTINT. In order to keep an overview about
the new features, the comment format for the changes in the common HOTINT-code is defined
here.

Important or critical code changes (e.g.: changes of the solver code) are marked with an call
sign

//$!FL YYYY[-MM-DD]:[’[’|’]’] [text]

Less critical changes are marked with space sign instead of the call sign

//$ FL YYYY[-MM-DD]:[’[’|’]’] [text]

If two developers want to write comments to the same code, the comments must be written
one after another according to the described rules in one line or in a separate line.

Legend:

F...first name

L...last name

YYYY ... year

MM ... month

DD... day

[] means optional (is not part of comment)

| ... logical OR

’[’ ...ASCII-sign: squared bracket open

’]’ ...ASCII-sign: squared bracket close

Examples:

3.2. CODING CONVENTIONS 103

//$ FL 2011-01-21:[start of comment example 1 with day

CODE

//$ FL 2011-01-21:] end of comment example 1 with day

...

//$ FL 2011-01:[start of comment example 2 without day

CODE

//$ FL 2011-01:] end of comment example 2 without day

...

//$ FL 2011-01: comment example 3 without day

...

//$ FL 2011-01-21: comment example 4 with day

//$!FL 2011-01-21: important code change 5 with day

//$!FL 2011: important code change 6 with year

Create Makro:

Following Makro in Visual Studio can be used to save time and make correct formatted com-
ments.

1. Open Visual Studio .

2. Select Extras → Makros→ “TemporaryMacro aufzeichnen” and write an arbitrary comment
e.g.:
//test

3. Press red stop button or Extras → Makros→ “Aufzeichnung beenden”

4. Start Extras → Makros→ “Makro Explorer”

5. Right mouse click on “Temporary Makro”→ bearbeiten

6. Following code line
DTE.ActiveDocument.Selection.Text = "//test"

must be replaced with
DTE.ActiveDocument.Selection.Text = "//$ FL " & Year(Now) & "-" & Month(Now) & "-"

& Day(Now) & ": "

7. “FL” means the first character of the first and last name (see legend)

8. Store macro and close “Microsoft Visual Studio Macros”

104 CHAPTER 3. HOTINT GUIDELINES

9. With “Strg+Shift+P” or Extras → Makros→ “TemporaryMacro ausführen”, the macro can
be used.

Makro Code:

Option Strict Off

Option Explicit Off

Imports System

Imports EnvDTE

Imports EnvDTE80

Imports EnvDTE90

Imports System.Diagnostics

Public Module RecordingModule

Sub TemporaryMacro ()

DTE.ActiveDocument.Selection.Text = "//$ FL " & Year(Now) & ←↩
↪→ "-" & Month(Now) & "-" & Day(Now) & ": "

End Sub

End Module

Search with regular expression:

The comments can be found with regular expressions like in following figure:

3.2. CODING CONVENTIONS 105

3.2.2 How to structure new HOTINT code?

A clear and uniform structure helps avoiding common errors.

3.2.2.1 Write & and * next to the data type

Write

int& ref = x;

instead of

int &ref = x;

and

int* ptr = &x;

instead of

int *ptr = &x;

Attention: do not write

int* a,b;

since that would mean that a is a pointer to an integer and b is an integer.

3.2.2.2 Declare each variable separately

If

• a variable is defined in the declaration (e.g.) or

• a pointer or reference is declared

always declare each variable separately in a new line.

So

int i, j, k;

or

Matrix mat1 , mat2;

is ok, but not

int i=3, j=2, k=5;

106 CHAPTER 3. HOTINT GUIDELINES

or

Matrix* mat1 , * mat2;

Write instead

int i=3;

int j=2;

int k=5;

respectively

Matrix* mat1;

Matrix* mat2;

3.2.2.3 Use braces

Write if (i<1) {t=1;} instead of if (i<1) t=1; since lines like if (i<1) t=1; s=3; may
lead to errors which are hard to detect. If-commands with condition and body in one line
should only be used for very short commands. In case of doubt always use seperate lines.

3.2.2.4 Write braces into separate lines

Use

for(int i=1; i <=10; i++)

{

for(int j=1; j <=10; j++)

{

test = test +1;

}

}

and not

for(int i=1; i <=10; i++){

for(int j=1; j <=10; j++){

test = test +1;

}

}

or

for(int i=1; i <=10; i++)

for(int j=1; j <=10; j++)

test = test +1;

3.2. CODING CONVENTIONS 107

3.2.2.5 Do not use uncommon constructs

Code like

int sign =1;

if (elemind == 2) {sign = -1}

or

int sign;

if (elemind == 1)

{

sign = 1

}

else

{// elemind == 2

sign = -1

}

is much more common and understood by more people than

int sign = elemind == 2 ? -1 : 1;

3.2.2.6 Use a tab-space of 2 spaces

This ensures that the indentation is the same for everybody. However for new code please take
care to make tabs when tabs are needed and spaces are needed. Then it does not matter how
many spaces a tab-space corresponds.

3.2.2.7 Use spaces

For the usage of spaces exist a small set of rules.

• Use spaces in complicated expressions:

complicated_expression = complicated_expression + 1;

instead of

complicated_expression=complicated_expression +1;

• Use spaces in parameter lists

function(i ,j, k)

instead of

function(i,j,k)

• Use spaces in for-loops

108 CHAPTER 3. HOTINT GUIDELINES

for(int i=1; i<=2; i++)

and not

for(int i=1;i<=2;i++)

• Do not use spaces next to the scope operator. Write

Matrix ::get(x);

and not

Matrix :: get(x);

• Do not place a space between the function name and the parenthesis, but place one between
the closing parenthesis and the const keyword.

function(a, s, d, f) const

and not

function (a, s, d, f)const

• The only exception are operators where a space should be between the operator name and
the parenthesis, but not between the operator word and the operator sign.

Matrix :: operator+ (Matrix m1 , Matrix m2);

and not

Matrix :: operator +(Matrix m1 , Matrix m2);

or

Matrix :: operator + (Matrix m1 , Matrix m2);

The general guideline is to make as much spaces as necessary to make the code as readable as
possible. In case of doubt better insert an extra space.

3.2.3 Efficiency

3.2.3.1 Optimize the code only at parts where it is necessary

Functions that are invoked during every time step (e.g. EvalF2) should be highly effective,
whereas the optimization of functions that are only called once (e.g. the initialization functions)
do not need to be carried to extremes. For such functions it is better to keep the code short,
readable and memory-saving.

3.2. CODING CONVENTIONS 109

3.2.3.2 Operations which include memory allocations: Vector, Matrix, TArray,
mystring, and “<< outputs”

The allocation of Vector, Matrix, TArray and mystring invokes the new operator which is slow.
Writing output with << will create a mystring and is therefore slow. So please avoid the
creation of those objects during time critical sections. During initialization etc. there is no
problem using them. Some hints about how to avoid Vector, Matrix, TArray and mystring:

• Use Matrix2D, Matrix3D, MatrixXD, Vector2D, Vector3D, ConstVector, and ConstMatrix
instead. They get there memory from the stack. However too big ConstMatrix and Con-
stVector should be avoided since that could lead to stack overflow. The guide line is not to
create ConstVector of dimension larger that 100 and analogously ConstMatrixes such that
rows*columns is bigger than 100.

• Reuse matrices and vectors by using +=, *= and ApplySqrMat(M). So for example don’t
write

vec1 = 2*vec1 + vec2;

which would allocate 2 new vectors, write instead

vec1 *= 2;

vec1 += vec2;

which does not allocate any vector. Don’t forget to write a comment to keep the code
readable.

• Define member variables which can be used as temporary matrices, vectors, etc. Take care
that a temporary member variable is not used in two functions, to avoid errors that can be
hardly detected. Static is no solution.

• If you want to return some debug message (in debug mode) and you need to concatenate
mystring therefore, take care that this concatenation is actually done only when the string
is needed (i.e. when being in debug mode).

3.2.3.3 Avoid “static”

The static keyword may cause errors that are difficult to find.

3.2.3.4 Try to reduce code

The shorter the code, the easier to understand and maintain.

110 CHAPTER 3. HOTINT GUIDELINES

3.3 If problems appear

3.3.1 If problems appear in HOTINT

• search in section 3.3.4 if a solution is already posted.

• write an email describing your problem to support@hotint.org

3.3.2 Solutions for problems, which might be caused by yourself
(programming errors):

• use Debug version and search for origin of problem

• if code does not work in Debug version (bad errors), use UO().InstantMessage(”step 1,2,3,...”)
in order to search where the problem might happen

• re-compile the whole code

• delete hotint cfg.txt in the appropriate Release/Debug folder

• look at code which your recently changed

• try minimal version of your new code

• write an email describing your problem to support@hotint.org

3.3.3 Tips for debugging

3.3.3.1 ’Meaningless’ windows framework error

It occasionally occurres (especially using Windows 7) that you get a ’meaningless’ framework
error (e.g. mfc8d.dll!CWnd::IsDialogMessageA... which just tells you the Windows message
514 WM LBUTTONUP, which is your mouse button) instead of an access violation error.
To detect the primary error do not choose your model after starting hotint, but insert your
model into the according hotint cfg.txt line and start debugging.

3.3.3.2 Expansion of class instances (variables) in the watch window

It is often useful to see important fields of frequently used variables in the watch-window of the
debugger without expanding them and searching among other not so important fields. This can
be achieved by adding simple instructions to the configuration file, which can be usually found at
C:\Program Files (x86)\Microsoft Visual Studio 9\Common7\Packages\Debugger\autoexp.dat
The file can sometimes be protected for editing, so that the process will include the following
stages:

mailto:support@hotint.org
mailto:support@hotint.org

3.3. IF PROBLEMS APPEAR 111

1. Close Visual Studio.

2. Make a copy of autoexp.dat somewhere that you can edit it.

3. Open the file and in the very beginning of the section [AutoExpand] add the following lines

Vector3D = <vec[0]>,<vec[1]>,<vec[2]>

TArray <*> = l=<length >, data=<data[0]>,<data[1]>,<data[2]>,<data←↩
↪→ [3]>,<data[4]>,<data[5]>,<data[6]>,<data [7] >...

FieldVariableDescriptor = var=<variable_type >, c1=<←↩
↪→ component_index_1 >, c2=<component_index_2 >

4. Copy the file back to the Visual Studio directory.

5. Start debugging. Now in the watch window all variables of the types Vector3D, TArray and
FieldVariableDescriptor should display something useful directly in the right column.

6. Add additional variable types, which you would like to have auto-expanded, with the fields
you wish to see, to autoexp.dat

3.3.4 Known frequent problems

3.3.4.1 Can’t find WorkingModule.dll

Occasionally occurres since, as a postbuild event, hotint and its dll’s are moved to the directory
HotIntWin32/release respectively HotIntWin32/debug

That’s a problem where it is not yet sure, which of the followings steps is necessary, but the
total of it serves as solution. If you encounter this problem please try the following order of
solution steps and look after each step, if the problem is still there, to enhance this solution:

• look if the WorkindModule.dll is contained and up to date in the hotint/debug, hotint/re-
lease, hotint/release2 folder respectively.

• If yes try the folowing steps:

– restart Visual Studio, delete hotint cfg.txt (might not be necessary), newly recompile

– restart Windows, delete hotint cfg.txt (might not be necessary), newly recompile

• If no: recompile and check again (make sure you check the correct configuration). if still no:
the project properties have to be checked (consult an experienced user).

• If specific dll’s (e.g. from partner company) are not found by the Workingmodule.dll, the
error message is also ”Can’t find ...”. In this case, use the dependency walker to locate the
missing dll’s.

http://www.dependencywalker.com/

112 CHAPTER 3. HOTINT GUIDELINES

3.3.4.2 Visual Studio is asking for ’Ausführbare Datei für Debugsitzung’

This errors occured on a x64 system with windows xp. MS Visual Studio 2005 was installed
and after the update (SP1) was done the following error appeared:

The update is somehow changing the settings of ’Startprojekt’ which can be fixed in the fol-
lowing way:

3.4. HOW TO CREATE AN INSTALLER 113

Afterwards you have to rebuild your project (Strg+Alt+F7)

3.4 How to create an installer

If you want to distribute your Project to a customer it is a good way to do this by the use of
an installer.

The following guideline is tested for Microsoft Visual Studio 2005!

This section consists of 2 tutorials:

1. How to create an installer and set up your system for the first time in VisualStudio

2. How to create an installer for a specific project

3.4.1 How to create an installer and set up your system for the first
time in VisualStudio

1. Make sure, that your model compiles and runs correctly in Release Mode

2. Create a new Install-project (www.youtube.com/watch?v=d0h7CqC3Ltg)

(a) Datei/Neu/Projekt: choose options like in the following figures (Fig. 3.2 - 3.5)

114 CHAPTER 3. HOTINT GUIDELINES

Figure 3.2: Start Wizard

Figure 3.3: chose type of project

3.4. HOW TO CREATE AN INSTALLER 115

Figure 3.4: Also Check: ”Primäre Ausgabe aus MBSElementsAndModels”

Figure 3.5: add additional files

116 CHAPTER 3. HOTINT GUIDELINES

(b) add all DLLs (only DLLs and in these folders but no sub-folders!) you are using (be
sure to use the correct platform x86 or x64) to the same folder as the previous files

• VC: all DLLs in the (5 sub-) folders of C:\Program Files (x86)\Microsoft Visual
Studio 8\VC\redist\x86

• Compiler (e.g. C:\Program Files (x86)\Intel\ComposerXE-2011\redist\ia32\compiler)

• If the folder C:\Program Files (x86)\Intel\ComposerXE-2011\is not found, search
the file ’redist.txt’ in the ’Intel’-folder. This text file contains the DLLs for your
platform x86 or x64. Search and add those platform-specific DLLs *

(c) ”Fertig stellen”

(d) If there are warnings like ”the file xyz.dll is already added, do you want do add the
other file?” always answer with ”yes”

(e) Now there is a new Project ”Installer”

3. In the folder ”Gefundene Abhängigkeiten” you can see all dlls. Remove the following dlls
(right mouse button and then ”Ausschliessen”):

• opengl32.dll

• glu32.dll

4. Click on ”Installer”, than set the properties in the ”Eigenschaftenfenster”:

Figure 3.6: Also Change Localization to English!

5. change properties of installproject

• go to ’Eigenschaften von Installproject’ → Konfigurationsmanager → check ’Erstellen’

3.4. HOW TO CREATE AN INSTALLER 117

Figure 3.7: Konfigurationsmanager

6. Add folders and Files to Filesystem (this folders are installed on the destination computer)

Figure 3.8: Filesystem

Create the following folders.

• documentation/examples

• output

• userdata

• HotIntWin32/Release

Do not forget to set ”AlwaysCreate” to ”true” in the properties

7. Remove [Manufacturer] from ”Anwendungsordner”-Property ”DefaultLocation” It should
be: [ProgramFilesFolder]\[ProductName]

118 CHAPTER 3. HOTINT GUIDELINES

8. Move Files from ”Anwendungsordner” to Release

Figure 3.9: Move files from the “Anwendungsorder” to the ”HotIntWin32/Release”-folder

You have to move the following files:

• Primäre Ausgabe von WorkingModule

• Primäre Ausgabe von WCDriver

• Primäre Ausgabe von MBSElementsAndModels

• hotint cfg.txt

• tableaus.txt

Add the dll-files of the folder HotintWin32\Release-Folder to the folder release

• blas win32 MT.dll

• lapack win32 MT.dll

9. Check license file

• Add the rtf-file ”HotInt V1/licenses/License Free.rtf” to Anwendungsordner/documen-
tation

• lapack win32 MT.dll

10. Edit the GUI of the Installer:

(a) Check dialog boxes of installer (modify if necessary with right mouse click on ”Installer”-
then Project/Ansicht/Benutzeroberfläche) The entries should be as follows: Willkom-
men (Copyright Warning and Welcome Text), Fertig, UpdateText. The entries have to
be equal for ”Installieren” and ”Administratorinstallation”.

(b) Add the License Agreement:

• right click on ”Starten”: Dialogfeld hinzufugen / Lizenzvertrag

• Set the entry ”LicenseFile” in the properties to the rtf-file

• Move the ”Lizenzvertrag” to the correct position (before ”Installation bestätigen”!)

• Make sure that this step is done for ”Installieren” and ”Administratorinstallation”

11. Compile the whole project (get a coffee)

12. The executable of the installer is in the folder Installer/Release

13. copy the folder with the installer

14. go to another computer and test your installer

15. The installer is not finished yet!
You have to also follow the steps, which are described in the section 3.4.2. Otherwise
important things like version numbers or license may be wrong!

3.4. HOW TO CREATE AN INSTALLER 119

3.4.2 How to create an installer for a specific project

You need at least 15 minutes for this procedure!

1. Make sure, that you already have set up an installer before, otherwise follow the tutorial for
creating an installer for the first time, see 3.4.1.

2. if it is for the homepage: create a new log entry, that a new release is ready
this changes the version number in the file WorkingModule \ hotint version.h

3. if it is for the homepage: create a new docu

(a) include models auto documentation.cpp in all models.h

(b) Compile project

(c) delete config-file

(d) run model ”generate tex-files for docu”

(e) start TeXniCenter and compile documentation/HID USERs.tex

(f) check the pdf (version, date,)

(g) run the script generate files for highlighting in the folder development \ autogeneration

4. Make sure, that your model compiles and runs correctly, and no other models are included,
check all models.h!

5. Check if the hotint config.txt is correct. Especially make sure, that the flag ”GeneralOp-
tions.Application.remove experimental menu items” is true. Correct and save(!) the hotint config.txt
if necessary!

6. Check if menu has correct view (no experimental options or elements)

7. Add the Projekt ”Installer/Installer.vdproj” to your ”Projektmappe”

8. Add files and folders, that are necessary for your model to the ”Dateisystem(Installer)”
(right mouse click on ”Installer”- Project / Ansicht /Dateisystem)

(a) if it is for the homepage:

i. add examples in documentation/examples

ii. check if the hotint version in the examples is set correct

iii. rename HID USERs.pdf to ”documentation.pdf” and add it to the folder documen-
tation

iv. add the 2 files

• HOTINT.xml

• hotint highlight notepad.xml

to the folder documentation.

(b) if it is for a company partner: add your specific files

9. Set correct version number

120 CHAPTER 3. HOTINT GUIDELINES

(a) Set the name of the outputfile: SetupX.Y.Z.msi 1, see Figure 3.10 (right mouse click on
”Installer”- Project/Eigenschaften to get this window)

Figure 3.10: Name of the installer file

(b) Set the correct version number in the properties of the installer-project

10. Check dialog boxes of installer (modify if necessary with right mouse click on ”Installer”-
Project /Ansicht /Benutzeroberfläche)

11. Check license file!

(a) If it is for the Release on www.hotint.org:
Add the rtf-file ” HotInt V1/licenses/License Free.rtf” to Anwendungsordner/docu-
mentation

(b) If it is for a company partner:
replace the rtf file e.g. by License CompanyPartners.rtf

(c) change the property settings in the dialog boxes of installer to the correct rtf-file

12. Check registry entries from setup (if they are needed)

13. Compile the whole project in Mode Release Win32

14. The executable of the installer is in the folder Installer/Release

15. Test your installer at another computer

3.5 How to include Intel MKL

Requirements:

• HOTINT

• MKL

First Steps:

1X Major update, Y Minor update, Z newest number of changes log. X and Y are defined by Johannes
Gerstmayr

3.6. HOW TO INCLUDE PARDISO (SOLVER) 121

1. Install Intel MKL

2. Run mklvars32.bat, if the variables are not set afterwards,
open Systemsteuerung → System → Erweitert → Umgebungsvariablen
and set the variables as defined in mklvars32.bat as new variables with the according file
path. Check if variables are set via echo %variablename% in the command line.

3. Make sure Projektmappen-Explorer is active (Ansicht > Projektmappen Explorer)

4. Select Extras > Optionen and Projekte und Projektmappen > VC++-Verzeichnisse

5. From the Verzeichnisse anzeigen für list, select Includedateien
Add the directory for the Intel MKL include files, that is “<mkl directory> \include”

6. From the Verzeichnisse anzeigen für list, select Bibliotheksdateien
Add the directory for the Intel MKL include files, that is “<mkl directory> \ia32\lib”

7. From the Verzeichnisse anzeigen für list, select Ausführbare Dateien
Add the directory for the Intel MKL include files, that is “<mkl directory> \ia32\bin”

8. Modify WorkingModule properties:
Linker → Eingabe: Zusätzliche Abhängigkeiten: mkl intel c dll.lib mkl intel thread dll.lib
libiomp5md.lib mkl core dll.lib
C/C++ → Präprozessor: Präprozessordefinitionen: USE MKL
If you want to use Pardiso from MKL also set
C/C++ → Präprozessor: Präprozessordefinitionen: USE PARDISO
NOTE: if you only use USE PARDISO without the MKL, follow the “Getting Started
with Pardiso using Hotint”-file and make sure to remove the Zusätzliche Abhängigkeiten:
mkl intel c dll.lib mkl intel thread dll.lib libiomp5md.lib mkl core dll.lib which cause trouble
otherwise.

3.6 How to include Pardiso (Solver)

Requirements:

• Internet

• HOTINT

First Steps:

1. Open http://www.pardiso-project.org and select “Download Software and License”

2. Choose between Academic and Commercial

3. Fill in your Data
The license is specified for the computer you want to use it on, therefore you have to specify
under Windows with hostname in capital letters (uppercase) and the user identification with
the username.

122 CHAPTER 3. HOTINT GUIDELINES

4. Submit Form.

5. You will receive an email containing a download link where you can download the files for
the use of Pardiso under Windows.

6. The email also contains your license key for the specified host and user.
Save the key without surrounding whitespace in a file named “pardiso.lic”.
The license is valid for one year.

7. Paste “libpardiso400 INTEL IA32.lib” into arbitrary folder (e.g. “C:\ .. \cpp\pardiso\”)

8. Paste the files “libpardiso400 INTEL IA32.dll”, “libiomp5md.dll” and “pardiso.lic” into the
folders “../WCDriver3D/Release”, “../WCDriver3D/Release2” and “../WCDriver3D/Debug”.

9. Switch to or stay in configuration Release.

10. Modify WCDriver properties:
Linker → Allgemein: Zusätzliche Bibliotheksverzeichnisse: e.g. “C:\ .. \cpp\pardiso\”

11. Modify WorkingModule properties:
Linker → Allgemein: Zusätzliche Bibliotheksverzeichnisse: e.g. “C:\ .. \cpp\pardiso\”
Linker → Eingabe: Zusätzliche Abhängigkeiten: libpardiso400 INTEL IA32.lib
C/C++ → Präprozessor: Präprozessordefinitionen: USE PARDISO

12. Use Pardiso

Hints:

• Do not use these adjustments in the configuration Debug.

• If you want to use Pardiso also in the configuration Release2, repeat steps 10-12 within this
configuration.

• If you want to stop using Pardiso, but may want to use it later on again, just change the
Präprozessordefinitionen in Step 11 to noUSE PARDISO. (It is a descriptive change, easily
withdrawn.)

3.7 How to include BLAS/LAPACK

Requirements:

• HOTINT

• BLAS/LAPACK

First Steps:

3.8. USEFUL VISUAL STUDIO SETTINGS 123

1. If you are using the Intel MKL (WorkingModule → Eigenschaften: C/C++ → Präprozes-
sordefinitionen USE MKL), do nothing!

2. If you are NOT using the Intel MKL:
Edit your system path: Systemsteuerung > System > Erweitert > Umgebungsvariablen >
Systemvariablen:
Path = <old path>;<mylocalhotintdir> \WCDriver3D\extern lib

3. Make sure Projektmappen-Explorer is active (Ansicht > Projektmappen Explorer)

4. Modify WorkingModule properties:
Linker → Eingabe: Zusätzliche Abhängigkeiten: lapack win32 MT.lib, blas win32 MT.lib.
Linker → Allgemein: Zusätzliche Bibiotheksverzeichnisse: ..\WCDriver3D\extern lib

3.8 Useful Visual Studio settings

3.8.1 Save and Build before start

By default the combination Ctrl+F5 starts the program without debugging and without build-
ing the project.

If one wants that the project is saved and compiled before starting, one has to modify the
settings of Visual Studio.

Go to Extras→Optionen→Projekte und Projektmappen→Erstellen und Ausführen

Change the option “Beim Ausführen, bei nicht aktuellen Projekten” to “Immer erstellen”.

124 CHAPTER 3. HOTINT GUIDELINES

3.8.2 Expansion of class instances (variables) in the watch window

It is often useful to see important fields of frequently used variables in the watch-window of the
debugger without expanding them and searching among other not so important fields. This can
be achieved by adding simple instructions to the configuration file, which can be usually found at
C:\Program Files (x86)\Microsoft Visual Studio 8\Common7\Packages\Debugger\autoexp.dat
The file can sometimes be protected for editing, so that the process will include the following
stages:

1. Close Visual Studio.

2. Make a copy of autoexp.dat somewhere that you can edit it.

3. Open the file and in the very beginning of the section [AutoExpand] add the following lines

Vector3D = <vec[0]>,<vec[1]>,<vec[2]>

TArray <{*}> = l=<length >, data=<data[0]>, <data[1]>,

<data[2]>, <data[3]>, <data[4]>, <data[5]>, <data[6]>, <data←↩
↪→ [7] >...

FieldVariableDescriptor = var=<variable_type >, c1=<←↩
↪→ component_index_1 >, c2=<component_index_2 >

4. Copy the file back to the Visual Studio directory.

5. Start debugging. Now in the watch window all variables of the types Vector3D, TArray and
FieldVariableDescriptor should display something useful directly in the right column.

6. Add additional variable types, which you would like to have auto-expanded, with the fields
you wish to see, to autoexp.dat

3.9 AutoComplete and Highlight HOTINT syntax in notepad++

• Go to the folder Hotint V1\development\autogeneration.

• Copy the file HOTINT.xml to the notepad folder ’plugins\APIs’ (e.g. C:\Program Files
(x86)\Notepad++\plugins\APIs)

• open NOTEPAD++

• click on icon User defined language

3.10. HOW TO ADD YOUR ELEMENT TO THE SCRIPT LANGUAGE 125

• import file hotint hightlight notepad.xml (in the folder Hotint V1\development\autogeneration)

• close NOTEPAD++

If you open a file with the extensions ’txt’ or ’hid’ with notepad++ there should be 2 new
features now:

• highlighting of known keywords

• auto complete (ctrl + space) for known keywords

3.10 How to add your Element to the Script Language

Some parts of HOTINT are autogenerated, see 2.1.9, for more details. These parts are essential
for the script language and the documentation!

If you have a special element or constraint and want to use it in script language, follow these
steps:

The example is done with the class ANCFBeamShear3DLinear which is derived from ANCF-
BeamShear3DGeneric.

author: D. Reischl

3.10.1 Changes in the h-file of your element

1. Make sure, that your element has a constructor in the form like: ANCFBeamShear3DLinear

(MBS* mbs)

• you must not use any other arguments in your constructor!

• It is advised to use a function called InitConstructor() or ElementDefaultConstructor()
to set the default values of your element in all the constructors of your element

2. Add the following code in your h-file in order to tell the edc-converter, that it should process
your class: class ANCFBeamShear3DLinear: public ANCFBeamShear3DGeneric //EDC[beginclass,

classname=ANCFBeamShear3DLinear,

parentclassname=ANCFBeamShear3DGeneric, addelementtype=TAEBody,

addelementtypename=ANCFBeamShear3DLinear]

126 CHAPTER 3. HOTINT GUIDELINES

• if your class is derived from a class, do something very similar with the parent class:
class ANCFBeamShear3DGeneric: public Body3D //EDC[beginclass,

classname=ANCFBeamShear3DGeneric, parentclassname=Body3D]

• note the difference, that only in the child class the tags addelementtype2 and
addelementtypename3 are used

• addelementtypename MUST NOT contain any characters that cause problems in TeX,
especially no ” ”

3. Add the documentation of your class here in the h-file. The following tags are available:

• all line breaks in the h-file are ignored

• If you want to force a line break in the docu, use the TeX-Command for line break \\

• You can use TeX code and therefore also formulas in all the tags except of ’texdescrip-
tion’

• The syntax for all tags is, if nothing else is stated: tag = "my description", e.g.
texdescription = "This is a wonderfull element"

• If you want to put some part of your docu just in the developer docu and hide it in
the user docu, use the TeX command \developer{...}. Do not use it with the tag
’texdescription’. It is just possible to use this command inside the quotes of a tag:
tag="\developer{...}" is possible, but \developer{tag="..."} is not.

• texdescription: short description of the class. Do not use formulas, references or
special TeX commands here!

• texdescriptionDOF: degrees of freedom, how many, which ones and in which order

• texdescriptionNode: are nodes necessary for the element, which ones, how many d.o.f.s

• texdescriptionGeometry: center of gravity, reference and initial configuration, local
coordinate system

• texdescriptionEquations: especially for constraints it is convenient to write the equa-
tion(s)

• texdescriptionLimitations: only penalty formulation, just for small rotations, no
shear

• texdescriptionComments: some additional comments. Only use this tag if it is abso-
lutely necessary!

• modus: Are there different modi available? Use the syntax modus="{name of the mode}{description}",
e.g. modus="{element to ground}{Position2.element\ number AND Position2.node\ number
have to be equal to 0}". You can use as many modus-tags as necessary. The modi are
converted to a table, so do not use any commands or characters which are not allowed in
a table in TeX, especially do not use line breaks \\. You can use \newline if necessary.

• example: a short example how to set up this element in script language. Just the file-
name without the path! The file has to be stored in documentation/ EDCauto documentation/
docu examples

2addelementtypename is the name that is visible to the user
3addelementtype is used to group the elements, e.g. 2D/3D, constraints/elements, a.s.o. The available types

are listed in ElementsAndModelsLibraryInterface.h

3.10. HOW TO ADD YOUR ELEMENT TO THE SCRIPT LANGUAGE 127

• figure: you can use figures in all of the descriptions above. Figures are defined ac-
cording to the syntax: figure="filename,caption" , e.g. figure="beam3d, This is

a nice caption" You can add more than one figure. It is possible to reference to
the figures with \ref{AddElementTypeNamefigureX} e.g. \ref{LinearBeam3Dfigure2}.
Figures have to be stored in documentation/ EDCauto documentation/ figures.

• reference: you can use references to the bibliography in all of the descriptions above.
References are defined according to the syntax: reference="citation" , e.g. reference="M.

Mustermann, A new approach, 2012" You can add more than one citation. It is pos-
sible to reference to the citations with \cite{AddElementTypeNamereferenceX} e.g.
\cite{Mass3Dreference1}.

4. go to the end of your class in the h-file and add the code:
//EDC[endclass, ANCFBeamShear3DLinear] to tell the edc-converter where your class ends

• if your class is derived from a class, do the same for the parent class
//EDC[endclass,ANCFBeamShear3DGeneric]

5. Add the description of the variables. This information is used to auto-generate the GetEle-
mentDataAuto and SetElementDataAuto of your element. Go to the place in your h-file
where the variables of your element are defined.

(a) you have to use a separate line for each variable:
int n1,n2; this is not possible
int n1; this is correct
int n2; this is correct

(b) Add the description of the variables.
int n1; //EDC[varaccess, EDCvarname="nodenumber1",

EDCfolder="Geometry", tooltiptext="global number of node 1 (left),

node must already exist"]

(c) For more details see the file ElementEDCauto.cpp

(d) If you want to have/change access to variables of (any) parent class, there are 4 ways:

i. if the variable already has an EDC-Access and the name and tooltip text are
correct for your derived element: do nothing! The variable will be available for
your element.

ii. if the variable does not have and EDC-Access yet, but you want to use it, add this
code:
//EDC Vector q0 //EDC[varaccess, EDCvarname="node3initialposition

iii. if the variable has an EDC-Access, but you want to remove it, use the flag remove:
//EDC double dampingm; //EDC[varaccess,remove, EDCvarname= "massprop ..

iv. if the variable has an EDC-Access, but you want to change the name or tooltiptext:
first add a line to remove the variable, than add a line to define the EDC-Access

6. add the following lines to your h-file:
virtual void GetElementDataAuto(ElementDataContainer& edc);

virtual int SetElementDataAuto(ElementDataContainer& edc);

virtual int ReadSingleElementDataAuto(ReadWriteElementDataVariableType& RWdata);

virtual int WriteSingleElementDataAuto(const ReadWriteElementDataVariableType& RWdata);

virtual int GetAvailableSpecialValuesAuto(TArrayDynamic

<ReadWriteElementDataVariableType>& available variables);

128 CHAPTER 3. HOTINT GUIDELINES

7. save your h-file

8. do not compile!

3.10.2 Use the EDC-converter:

1. go to tools/EDC converter/release

2. add the name of your h-file (and of parent classes) in filelist.txt

• do not change the order of the first 6 filenames!

• adjust the integer in this file

• note, that the order of the elements in the docu corresponds to the order in this list.
So please paste your file close to similar elements

3. run EDC converter.bat - it is located in folder HotInt V1/tools/EDC converter/release

4. The converter has now generated the file ElementsLib/ElementEDCauto.cpp

3.10.3 Test your element:

1. compile your project

2. Check if the element is available in the GUI. Press button ”Add Element”

• Check all the options in the window (are all default values correct, are all the parameters
in the correct sub-trees,...)

• press ”OK”

• your element should be in the mbs now

3. press ”file/Save As” in the GUI to save your model to a file

4. you can see your element in script language now in this file

3.10.4 error handling

Implement the function CheckConsistency in your element, to avoid crashes

3.10.5 The results

your element is now available

• in the GUI

• in the script language

3.11. HOWTOADD SENSORS/NODES/MATERIALS/BEAMPROPERTIES/ TO THE SCRIPT LANGUAGE129

• in the docu

• for saving

3.11 How to add Sensors/Nodes/Materials/BeamProp-

erties/ to the Script Language

All the steps in section 3.10, have to be done except the fact, that the flag ”addelementtype”
is not used.

There are only differences for the section 3.11.1: (this example is for adding a node)

3.11.1 Test your element:

1. Check that the function GetTypeName() returns the correct name. This name is used for
the user and has to be used in all of the following steps!
virtual mystr GetTypeName() return "Node3DS1rot1";;

2. Go to MBSElementsAndModels/MBSObjectFactory.cpp

(a) create a new case in MBSObjectFactory::AddNode(int objectTypeId)

(b) add a new line in MBSObjectFactory::MBSObjectFactory(void):
AddObjectInfo(OFCNode, "Node3DS1rot1", 0, "", "");

(c) In AddObjectInfo you can use flags instead of the 0. Up to now only TAENotInRelease
is checked.

(d) make sure that the order in a) and b) is equal

3. compile your project

4. Check if the element is available in the GUI. Press button ”Add Element”

• Check all the options in the window (are all default values correct, are all the parameters
in the correct sub-trees,...)

• press ”OK”

• your element should be in the mbs now

5. press ”file/Save As” in the GUI to save your model to a file

6. you can see your element in script language now in this file

130 CHAPTER 3. HOTINT GUIDELINES

3.12 How to start a HOTINT computation from com-

mand line or Matlab

HOTINT can be started from a DOS-Window (or from MATLAB), with additional options-
commands. The options are parsed after the HOTINT-config File is read. The order of reading
the options is:

• HOTINT-config File

• ModelData-File

• additional options-commands

Each option-text may not include spaces! Instead of “ use \”, otherwise DOS ignores the “.
These options will be used in the HOTINT-options if known, or put to the model data if it is
a not known keyword. At the moment, for starting hotint.exe from DOS/Matlab, the current
directory MUST be the root directory of hotint.exe

Examples: starting from DOS-window:

• hotint.exe \"SolverOptions.Solution.output_filename =\"dir/my ←↩
↪→ nice file.txt\""

• hotint.exe GeneralOptions.Application.←↩
↪→ start_computation_automatically =1

• hotint.exe MyOptions.usemodeNr =2 hotint.exe SolverOptions.←↩
↪→ Solution.output_filename =\"dir/myfile.txt\"

example using MATLAB:

• dos(’hotint.exe GeneralOptions.Application.←↩
↪→ start_computation_automatically =1 SolverOptions.Solution←↩
↪→ .output_filename =\" malatbfile1.txt\" &’)

If the ”&” character is used, it is possible to run multiple computations parallel, for example
(using Matlab):

• dos(’hotint.exe GeneralOptions.Application.←↩
↪→ start_computation_automatically =1 SolverOptions.Solution←↩
↪→ .output_filename =\" malatbfile1_slowRotation.txt\" Rotor.←↩
↪→ rot_freq =10 &’)

3.12. HOWTO START AHOTINT COMPUTATION FROMCOMMAND LINE ORMATLAB131

• dos(’hotint.exe GeneralOptions.Application.←↩
↪→ start_computation_automatically =1 SolverOptions.Solution←↩
↪→ .output_filename =\" malatbfile2_fastRotation.txt\" Rotor.←↩
↪→ rot_freq =1000 &’)

Breaking down a statement into a number of lines can result in a clearer programming style.
Because you cannot continue an incomplete string to another line following work-around is
recommended:

%% starting Hotint from Matlab

%% multiple computations parallel (all options in one line)

dos(’hotint.exe GeneralOptions.Application.←↩
↪→ start_computation_automatically =1 SolverOptions.Solution.←↩
↪→ output_filename =\" matlabfile1_slowRotation.txt\" Rotor.←↩
↪→ rot_freq =10 &’)

dos(’hotint.exe GeneralOptions.Application.←↩
↪→ start_computation_automatically =1 SolverOptions.Solution.←↩
↪→ output_filename =\" matlabfile2_fastRotation.txt\" Rotor.←↩
↪→ rot_freq =1000 &’)

%% multiple computations parallel (options in multiple lines)

command = [’dos(’ ’’’hotint.exe ’ ... % do not change this ←↩
↪→ line !!!

’GeneralOptions.Application.←↩
↪→ start_computation_automatically =1 ’ ... % make←↩
↪→ sure you end your strings with the blank -←↩
↪→ character!

’SolverOptions.Solution.output_filename =\"←↩
↪→ matlabfile1.txt\" ’...

’Rotor.rot_freq =10 ’...

’&’ ’’’)’] % do not change this line !!!

eval(command)

command = [’dos(’ ’’’hotint.exe ’ ...

’GeneralOptions.Application.←↩
↪→ start_computation_automatically =1 ’ ...

’SolverOptions.Solution.output_filename =\"←↩
↪→ matlabfile2.txt\" ’...

’Rotor.rot_freq =1000 ’...

’&’ ’’’)’]

eval(command)

132 CHAPTER 3. HOTINT GUIDELINES

Bibliography

[1] K. E. Brenan, S. L. Campbell, and L. R. Petzold. Numerical Solution of Initial-Value Prob-
lems in Differential-Algebraic Equations. SIAM, Philadelphia, 1996.

[2] E. Eich-Soellner, C. Führer, Numerical Methods in Multibody Dynamics, Teubner, Stuttgart,
1998.

[3] J. Gerstmayr, M. Stangl, High-Order Implicit Runge-Kutta Methods for Discontinuous
Multibody Systems, Proceedings of the APM 2004, St. Petersburg, Russia, submitted.

[4] J. Gerstmayr, J. Schöberl, An Implicit Runge-Kutta Based Solver for 3-Dimensional Multi-
body Systems, PAMM, Volume 3(1), 2003, pp. 154-155.

[5] E. Hairer and G. Wanner, Stiff differential equations solved by Radau methods or the
RADAU5-code, available via WWW at ftp://ftp.unige.ch/pub/doc/math/stiff/radau5.f
(1996)

[6] E. Hairer, (Nørsett) and G. Wanner, Solving ordinary differential equations I (II), Springer
Verlag Berlin Heidelberg, 1991.

[7] E. Hairer and Ch. Lubich, and M. Roche, The numerical solution of differential-algebraic
systems by Runge-Kutta methods, Lecture Notes in Math. 1409, Springer–Verlag, (1989).

[8] A. Shabana Dynamics of Multibody Systems, Third Edition, Cambridge University Press,
2005.

[9] R. R. Craig Jr. and M. C. C. Bampton, Coupling of substructures for dynamic analyses,
AIAA Journal, 6(7), pp. 13131319, 1968

[10] J. Gerstmayr and A. Pechstein, A generalized component mode synthesis approach for
multibody system dynamics leading to constant mass and stiffness matrices, Proceedings of
the ASME 2011 International Design Engineering Technical Conferences & Computers and
Information in Engineering Conference IDETC/CIE 2011, Washington, DC, USA, 2011.
Paper No. DETC2011/MSNDC-47826, submitted.

[11] Masarati, P, Direct eigenanalysis of constrained system dynamics, Proceedings of the
Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, 2009.

[12] R. Ludwig and J. Gerstmayr, Automatic Parameter Identification for Generic Robot Mod-
els, Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body
Dynamics, 2011.

133

134 BIBLIOGRAPHY

[13] K. Nachbagauer, P. Gruber, J. Gerstmayr. Structural and Continuum Mechanics Ap-
proaches for a 3D Shear Deformable ANCF Beam Finite Element: Application to static
and linearized dynamic examples. Journal for Computational and Nonlinear Dynamics, 8,
021004, DOI:10.1115/1.4006787, 2012.

[14] K. Nachbagauer. Development of shear and cross section deformable beam finite elements
applied to large deformation and dynamics problems, Johannes Kepler University Linz,
2012.

[15] K. Nachbagauer, P. Gruber, Yu. Vetyukov, J. Gerstmayr. A spatial thin beam finite ele-
ment based on the absolute nodal coordinate formulation without singularities. Proceedings
of the ASME 2011 International Design Engineering Technical Conferences, Computers and
Information in Engineering Conference IDETC/CIE 2011, Paper No. DETC2011/MSNDC-
47732, Washington, DC, USA, 2011.

[16] P. Gruber, K. Nachbagauer, Yu. Vetyukov, J. Gerstmayr. A novel director-based
Bernoulli-Euler beam finite element in absolute nodal coordinate formulation free of ge-
ometric singularities. Mechanical Science, 2013 (to appear).

	General Information
	HOTINT Developers Manual
	General Information
	Program Structure
	Entry Points - Where to start from?
	Description of the multibody/mechatronic system in HOTINT
	Algorithmic structure of the integrator
	Dense and sparse matrices
	Integration Window
	Vectors, Matrices, Nonlinear Solver
	Graphical commands (optional):
	Autogenerated parts of HOTINT

	The Multibody System Kernel
	Several main points have been focused in the multibody kernel:
	Main structure of the multibody kernel
	Multibody system: mbs.h

	Sensors
	Sensors and Measuring
	Deflection Sensor

	Loads
	Loads
	Add momentum to finite element

	Elements
	Base class Element: element.h
	Bodies
	The base class Constraint
	Rigid3D
	Geometric Elements
	Finite elements
	CMSElement + GCMSElement
	Control elements (time continuous and discrete elements)

	Import and export of data and interfaces to other software
	FEMesh
	Generate cylinders, rings and discs

	Models
	How to add objects to the mbs
	Possibilities for error handling

	HOTINT Guidelines
	How to get HOTINT running from the Source Code
	Requirements
	Unpack HOTINT
	When using Visual Studio 2008
	When using Visual Studio 2010

	Coding Conventions
	Comments
	How to structure new HOTINT code?
	Efficiency

	If problems appear
	If problems appear in HOTINT
	Solutions for problems, which might be caused by yourself (programming errors):
	Tips for debugging
	Known frequent problems

	How to create an installer
	How to create an installer and set up your system for the first time in VisualStudio
	How to create an installer for a specific project

	How to include Intel MKL
	How to include Pardiso (Solver)
	How to include BLAS/LAPACK
	Useful Visual Studio settings
	Save and Build before start
	Expansion of class instances (variables) in the watch window

	AutoComplete and Highlight HOTINT syntax in notepad++
	How to add your Element to the Script Language
	Changes in the h-file of your element
	Use the EDC-converter:
	Test your element:
	error handling
	The results

	How to add Sensors/Nodes/Materials/BeamProperties/– to the Script Language
	Test your element:

	How to start a HOTINT computation from command line or Matlab

	Bibliography

