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ABSTRACT: A modeling approach that can significantly speed up the
dynamics simulation of large molecular systems is presented herein.
A multigranular modeling approach, whereby different parts of the molecule are
modeled at different levels of detail, is enabled by substructuring. Substructuring
the molecular system is accomplished by collecting groups of atoms into rigid or
flexible bodies. Body flexibility is modeled by a truncated set of body-based
modes. This approach allows for the elimination of the high-frequency harmonic
motion while capturing the low-frequency anharmonic motion of interest. This
results in the use of larger integration step sizes, substantially reducing the
computational time required for a given dynamic simulation. The method also
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includes the use of a multiple time scale (MTS) integration scheme. Speed
increases of 5- to 30-fold over atomistic simulations have been realized in various
applications of the method. c© 2000 John Wiley & Sons, Inc. J Comput
Chem 21: 159–184, 2000
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Introduction

BACKGROUND

T his article describes the details of a new molec-
ular dynamics (MD) method that substantially

improves the computational speed of MD simula-
tions. The goal is to enable simulations over the
longer time frames required for the study of many
important biomolecular events that are currently be-
yond routine treatment with classical all-atom MD
methods. This new approach, MBO(N)D (Multi-
Body Order (N) Dynamics), utilizes a multibody
dynamics framework where groups of atoms are or-
ganized into interacting bodies to achieve long time
steps (1t). The multibody equations of motion are
solved utilizing an O(N) algorithm, the computa-
tional requirements of which scale linearly with the
number of bodies in the system. MBO(N)D goes
beyond rigid body dynamics methods reported to
date,3 – 5 with the addition of internal body flexi-
bility. Use of MBO(N)D’s flexible body modeling
approach facilitates both significant computational
speed increases, factors of 5–30 on the 12–3,000 atom
molecules studied to date, while reproducing the es-
sential dynamic characteristics of the system.

Classical molecular dynamics (MD) propagates
the motion of molecular models by solving the cou-
pled classical equations of motion for all the atoms
in the model. Unfortunately, due to the nature of
the molecular interactions, solving these equations
requires very fine time steps, which limit the simu-
lation time duration. To guarantee stable numerical
integration behavior, the time steps must be small
enough to resolve the highest frequency of the sys-
tem, normally about 1/20 the size of the fastest
period. Because the highest frequency motions in
biomolecules are associated with C—H, O—H, and
N—H bond stretching (periods P = 2π/ω of about
10 fs), time steps on the order of 1t = 0.5 fs must
be used. Consequently, MD simulations of biomole-
cules are severely constrained in time length.

The current length of MD simulations on
moderate-to-high end workstations stand at a few

nanoseconds for a 1000-atom system. Although
there are interesting transitions in the subnanosec-
ond time range, many more biologically interesting
motions occur in the micro- to millisecond time
scale (e.g., allosteric transitions) or longer (e.g., fold-
ing, which may take seconds). Various techniques
(see the next section) have been developed over the
years to increase the time step in MD. Although sig-
nificant, the factors of two to four computational
speed improvement attained from these methods in
general biomolecular applications are still far short
of that required for the microsecond regime. Clearly,
there is a need for new techniques that will signifi-
cantly enhance the computational efficiency of the
basic methodology of MD. The MBO(N)D approach
we have developed will provide a framework for
meeting this need.

CURRENT MD METHODS FOR ENABLING
LONGER TIME STEPS

Many approaches have been developed in an
attempt to overcome the strict time step limits
in MD simulations so that long time-scale sim-
ulations can be routinely undertaken. Examples
include constrained dynamics, multiple time-scale
methods, eigenvector-based schemes, implicit inte-
gration schemes, and path optimization schemes.
Only a brief overview of these methods is presented
herein. For recent in-depth reviews on this topic, see
refs. 6 – 9.

Constrained Dynamics

One way to overcome the MD time step problem
is to replace high-frequency vibrations by algebraic
constraints. This approach is represented by the
SHAKE algorithm,10 which introduces constraints
into the equation of motion using the formalism of
Lagrange multipliers. With the fastest vibrations re-
moved from the model, the integration time step can
be lengthened to 1–2 fs. The most common imple-
mentation of SHAKE is an iterative scheme,10 where
the individual constraints are imposed sequentially
on the results of the unconstrained integration step.
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A self-starting version of SHAKE, termed RATTLE,
was later developed.11 In general, such approaches
allow a modest but significant increase in speed by
a factor of 2, and are standard techniques applied
in most MD studies. Van Gunsteren and Karplus12

have shown that constraining the bond angles with
SHAKE significantly modifies the dynamic proper-
ties of the system while constraining bond lengths
does not significantly alter the dynamics. Note that
computational advantage has to be balanced against
the additional work required to solve the constraint
equations.

In a different application of constrained dynam-
ics, torsion angle dynamics,13 only dihedral angles
are allowed to move, maintaining all bonds and
bond angles fixed. The dynamic simulations are
then performed by integrating the equations of mo-
tion in generalized coordinates.14 – 17 Applications
to alanine nanopeptide17 succeeded in reproducing
the atomistic simulation results (at 1t = 1 fs) of all
atom trajectories using1t = 9 fs for an all-atom rep-
resentation of the molecule. Time steps as high as
1t = 13 fs were successfully used for simulations of
an extended atom representation (i.e., after remov-
ing methyl group rotations). However, despite the
significant time-step increase, application of these
methods to large biomolecules is limited because a
matrix inversion is required at every time step.

Another constraint approach based on internal
coordinates was developed by Durup,18 and used
a set of generalized internal coordinates, arranged
in a “tree-like” topology. A set of holonomic con-
straints is used to freeze out the high-frequency
motions. Time-step increases from 1 to 9 fs were
reported for an application to citrate synthase.
Though the method was applied to a search for re-
action pathways in citrate synthase,19 it has not been
adopted in general, because the choice of coordi-
nates is not straightforward.

An extreme version of constrained dynamics is
rigid body dynamics. In this approach, small groups
of atoms are defined as rigid bodies effectively
constraining the relative motion of all atoms con-
tained within a body. The resulting dynamics only
accounts for the relative translation and rotation be-
tween the bodies.3 This approach is often used as
a sampling procedure and in the course of refining
experimentally determined structures.4

Multiple Time-Scale Methods

Another approach to the integration time-step
problem takes advantage of the multiscale character
of protein motions. In what is known as multi-

ple time-scale (MTS) schemes,20 a hierarchy of time
steps is introduced instead of the traditional single
time step. The idea is to take advantage of the terms
in the biomolecular Hamiltonian that vary more
slowly than other terms. Appropriate time steps are
assigned for the different terms. A significant step
forward in terms of biomolecular simulations was
the introduction of MTS variants that exhibit time
reversal symmetry.21, 22

By applying MTS methods to a variety of sys-
tems, including the protein BPTI, using a splitting
scheme based on bonding topology, Watanabe and
Karplus23, 24 were able to obtain speed-up factors of
about 2–4. The essential properties of the dynamics
(with1t = 0.5 fs as the shortest time step) were suc-
cessfully replicated. Similar results were reported
by Berne and collaborators,25 who obtained a speed-
up factor of 4 by splitting the nonbonded terms into
fast and slow parts based on distance using a con-
tinuous switching function. Forester and Smith26

reported MTS speed-up factors of 2–3 for liquid
water and a solvated protein system. The MTS ap-
proach shows significantly better performance en-
hancements in systems where the separation of fast
and slow motions is more pronounced than in bio-
molecules. The C60 molecule is a good example of
such a system, realizing MTS speed-up factors of 20
or more, enabled by time steps of up to 25 fs for the
slow forces.27

In the context of multiscale approaches to bio-
molecule dynamics, the now common multipole
expansion of the electrostatic field should also
be mentioned.28 There are also preliminary at-
tempts at applying multigrid techniques to molec-
ular problems.29 Multigrid techniques have proven
useful for solving partial differential equations in
other contexts, such as the Navier–Stokes equations
of fluid dynamics.30

Eigenvector-Based Schemes

Normal modes, which are obtained from diag-
onalization of the Hessian matrix (second deriva-
tive of the potential), describe global deformations
around a local minimum on the molecular potential
energy surface. However, the harmonic approxima-
tion involved in the derivation of the modes limits
their usefulness to small amplitudes, making these
eigenvectors inappropriate for overall dynamics.

To overcome this problem, principal component
analysis of MD trajectories, also known as “quasi-
harmonic analysis” or “covariance modes,” was in-
troduced to protein dynamics.31 – 33 In this method,
a covariance matrix is constructed from a long
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MD simulation, and diagonalized to obtain global
modes that describe that motion. The method was
later employed with the hope of describing mole-
cular dynamics trajectories in terms of a small
“essential subspace.”34, 35 Berendsen and cowork-
ers later developed a technique that performs an
adapted form of MD with constraint forces in the
approximate “essential subspace.”36, 37 Because time
information is lost in this protocol, the method is es-
sentially a sampling technique that cannot directly
be interpreted as dynamics. However, it does pro-
vide an enhanced sampling of the configuration
space compared to usual MD.

Space et al.38 used such subspaces in a dynam-
ics method in which the low frequency motion
is propagated via a projective Newton’s equation.
Applying this method to a Lennard–Jones crystal
and a glass, they found convergence to the ref-
erence MD trajectory, although notable deviations
also emerged. Speed ups of 2–5 relative to atomistic
MD were obtained with time steps up to 25 fs, but in
simple molecular models, significant energy damp-
ing was observed.

A recent study by Schulten and coworkers39 sug-
gests that the principal-component analysis method
may not be suitable for describing long-time protein
dynamics. The extremely long trajectories needed to
extract stable principal component modes are cur-
rently impractical.

Implicit Schemes

The Langevin-implicit-Euler scheme was intro-
duced into MD by Peskin and Schlick40 to maintain
numerical stability for large time steps. In implicit
integration schemes, the incorporation of future
information helps avoid stability problems associ-
ated with extrapolation techniques.41 Although the
Langevin framework was introduced to replenish
some of the energy that is damped by the im-
plicit integrator, severe damping of high frequency
modes still occurs, which in turn, has a significant
effect on global motion.42 Therefore, this scheme is
not appropriate for atomistic simulations. However,
for macroscopic models, where high-frequency mo-
tions are irrelevant to the overall behavior, the
Langevin-implicit-Euler allows for dynamical sim-
ulations of large-scale supercoiled DNA models as
an elastic material.43 A variant of this method, in
which energy was put back into the system in an
ad hoc fashion, was used to study possible folding
pathways in BPTI.44 However, this variant should
be regarded as a sampling procedure rather than a
dynamic integration scheme.

Implicit schemes, therefore, are not likely to be
effective dynamical integrators at large time steps
due to the damping effects. Implicit methods are
also costly because of nonlinear minimization at
each time step, and not likely to be competitive
with other approaches in terms of simulation time
requirements.9

Reaction Path Optimization

Recently, a different approach was suggested by
Olender and Elber45 to compute long-time molec-
ular dynamics trajectories of fixed length in cases
where both the initial and final states are known.
The technique is an extension of a reaction path
method,46 and is based on the stochastic path in-
tegral of Onsager and Machlap.47 Trajectories are
computed by path optimization between the two
end points, and modes of motion with periods
shorter than the discrete time steps are filtered out
making the trajectory stable for very long time steps.
Although this approach does not solve the time-step
problem for the typical molecular dynamics simu-
lation, it is likely to be useful for specific processes
where both initial and final states are known.

As seen from the above brief overview, extend-
ing the length of molecular dynamics simulations is
an essential issue, leading to a broader application
of this very useful computational technique. The
available approaches offer only limited speedups
of atomistic MD simulations by factors of 2 to 4
(SHAKE, MTS, Langevin–Normal mode), falling
significantly short of what is desired. Other ap-
proaches have either developed into useful sam-
pling procedures (torsion dynamics, rigid body dy-
namics, covariance modes) or deal efficiently with
a restricted class of problems (reaction path opti-
mization), but do not extend the scope of general
purpose MD.

Despite the recent introduction of new ap-
proaches to bridge the gap between the time scales
accessed by computer and those of more physical
processes, the problem is far from being solved. The
MBO(N)D flexible-body method presented herein
represents a new approach to enabling long time-
step MD simulations.

MBO(N)D-Substructured Multibody
Molecular Dynamics

MBO(N)D’s roots lie in applied mathematics
techniques and algorithms developed in the 1980s
for solving similar computational efficiency prob-
lems associated with dynamics simulations of large
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complex mechanical structures (e.g., spacecraft) in
the aerospace industry.48 Proof-of-concept studies
were presented in Turner et al.,49 where various as-
pects of the MBO(N)D approach were discussed,
and results for simple systems were reported.

MBO(N)D is a reduced-variables MD approach
that seeks to dramatically improve computational
efficiency over atomistic simulation methods, while
maintaining comparable accuracy in the trajectory
and ensemble properties at the structure–function
level. The most important feature of MBO(N)D is
that of substructuring, whereby groups of atoms in
a molecular model are grouped into interconnected
flexible and/or rigid bodies. These bodies are al-
lowed to undergo large motions relative to each
other. Within flexible bodies, the relative motions
among the aggregated atoms are assumed small
and at low frequency. For rigid bodies, it is as-
sumed there is no motion between the aggregated
atoms. This approach acknowledges that the es-
sential dynamics of molecules are captured by the
low-frequency modes.32, 34, 38, 50 – 52

MBO(N)D’s substructuring approach contains
two essential elements for substantially improving
the computational efficiency of molecular dynamics
simulations. First, the number of degrees of freedom
in the dynamics equations is drastically reduced,
potentially from tens or hundreds of thousands of
atoms to tens or hundreds of bodies. Second, both
the inter- and intrabody dynamics occur at low fre-
quencies, which allows the simulation time step to
be increased from 1 or 2 fs to 10 fs or more. These
two key attributes allow MBO(N)D dynamics simu-
lations to execute at computational speeds that are
significantly faster than traditional all-atom meth-
ods, depending on the nature of the substructuring
scheme. For systems studied to date, speed ups
of up to 30 have been obtained. As would be ex-
pected, higher levels of aggregation (e.g., moderate-
to large-sized bodies) typically execute faster than
lower levels of aggregation (e.g., small bodies and
atomistic regions).

Substructuring schemes for MBO(N)D simula-
tions are determined by the amount of relative
motion expected throughout the molecule. For re-
gions where motions are expected to be very small
or small enough to be unimportant to the particular
event of interest in the simulation, the atoms can be
grouped together into rigid bodies. Regions where
there are moderate amounts of motion can be mod-
eled as flexible bodies. Regions where large confor-
mational changes are expected are modeled with
many small bodies or individual atoms. The devel-
opment of appropriate substructuring schemes is an

important aspect of MBO(N)D, and is addressed in
detail in the Substructuring Strategies section.

The internal motions of MBO(N)D’s flexible bod-
ies are modeled by a reduced set of body-based
modes, which are added to the motion associated
with the three translational and three rotational
rigid body degrees of freedom. The eigensolution
process needed to generate these flexible body
modes is far more computationally efficient than
in traditional normal mode analyses. This is be-
cause MBO(N)D’s modal displacement vectors and
frequencies are calculated separately for each indi-
vidual body, rather than for the entire system. The
resulting mode set for each flexible body is then re-
duced by selecting only the lowest frequency modes
that correspond to the overall motions of the body.
The high-frequency modes, which correspond to lo-
calized vibrations, are typically not important to the
event of interest, and are ignored during subsequent
simulation.

MBO(N)D’s rigid bodies are considered as spe-
cial cases of flexible bodies where none of the
body-based modes are retained. Individual atoms
(particles) are modeled classically, with three trans-
lational degrees of freedom, and are used in regions
of the molecular model where no aggregation into
larger bodies is appropriate or desirable.

Compared to individual atoms, rigid bodies have
a larger mass, and hence, lower frequency con-
tent when subjected to the same level of forcefield
interactions. When bodies are made flexible, the
truncation of high frequency modes correspond-
ing to localized motions maintains the frequency
content of the body at a low level. Thus, substruc-
tured modeling allows the use of long time steps in
MBO(N)D. Because arbitrarily large motions subject
to interaction forces are permitted between bodies,
MBO(N)D’s substructured modeling approach cap-
tures anharmonic motions that other reduced order
methods, such as normal modes, cannot properly
reproduce.

Substructuring allows multigranular simulations
in MBO(N)D where different regions of the mole-
cule are modeled at varying levels of aggregation
(flexible/rigid bodies and/or atoms), depending on
their importance to the particular event being stud-
ied. Parts of the system, such as the region near an
active site of a protein, are modeled at a fine level
of granularity by using individual atoms and small
bodies. Other parts far away from an active site are
modeled at a coarse level of granularity by using
large bodies.

MBO(N)D’s multigranularity can be coupled
with integrator implementations that make use of
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the multiple time scales present in the physical sys-
tem. Even for conventional all-atom models, one
can take advantage of the separation of time scales
that exist between fast interactions such as bond
stretching and slow interactions such as long-range
electrostatics. For MBO(N)D, a natural separation
of time scales arises from differences in body size.
The motions and interactions involving individu-
ally modeled atoms are expected to have high-
frequency content, while bodies are expected to
have lower frequency content. Consequently, the
motion in regions that are modeled using particles
can be integrated using shorter time steps, while the
motion in regions that are modeled as bodies (rigid
or flexible) can be integrated using longer time
steps. As will become apparent, multiple time-scale
(MTS) integration is the key to allowing MBO(N)D
handle the higher frequency content of atomistic
regions, while still achieving maximum computa-
tional efficiency from the body-dominated portion
of the model. A similar multigranular approach was
developed by Head-Gordon and Brooks,3 where
small virtual rigid bodies were used in regions sur-
rounding a central atomistic region to account for
global motions that are not captured in stochastic
boundary molecular dynamics methods.

Force field interactions for MBO(N)D are gener-
ally obtained by conventional all-atom calculations,
such as the CHARMM all-atom force field.53 One
alternative to the conventional scheme, afforded by
MBO(N)D’s body-based formalism, is to replace in-
teractions that are internal to a body with modal
stiffness terms. This allows the bond and nonbond
pairlists to be reduced in size by eliminating in-
teraction calculations between atoms that reside in
the same body, resulting in a more efficient com-
putational process. In addition, fast multipole algo-
rithms can be applied to speed up nonbond calcula-
tions for large molecules.28, 54

MBO(N)D is currently integrated with
CHARMM,53 which provides the molecular defini-
tion, the force field interactions, and postsimulation
analyses. The output from an MBO(N)D simulation
is the same as that from all-atom simulations, with
the addition of body-based information. The coor-
dinates and velocities of every atom at every step
in MBO(N)D trajectories can be determined from
the translations, rotations, and modal amplitudes
of the bodies. Thus, conventional postsimulation
analysis algorithms, such as those in CHARMM,
can be applied directly to the trajectories resulting
from MBO(N)D simulations.

In the following subsections the elements of the
MBO(N)D modeling approach are described, in-

cluding the substructuring and body-based mode
methodology, use of constraints, handling of force
field interactions, and a new integrator developed
for MBO(N)D.

MULTIBODY DYNAMICS

In the MBO(N)D approach, a molecule is gen-
erally described as a cluster of multiple, flexible
substructures (bodies) that comprise a dynamic sys-
tem. Member bodies of the molecule are capable of
undergoing large relative excursions, and are inter-
connected by fixed or free bond lengths. This type of
multibody system is acted on by inertial forces such
as those due to centripetal and Coriolis acceleration
as well as by the usual forces derived from empirical
potentials.

Figure 1 shows a topological configuration exam-
ple of a typical multibody system. The five hinges
and four bodies shown result in one closed path. For
each body of the system, there is a body-fixed, right-
handed reference frame located at a user-selected
location within the body. A body’s elastic deforma-
tion is measured relative to this reference frame.

A hinge is defined by locating one point on each
of two bodies. Each pair of points, pi and qi, in Fig-
ure 1, constitutes a hinge. Clearly, a typical body
may contain one or more hinge points, but a single
hinge defines the relative motion of only two bodies.

An orthogonal reference frame is attached to
point p, and another is attached to point q. (The

FIGURE 1. A multibody dynamics system
substructured into several bodies connected by hinges.
Shown are the body-fixed reference frames (dotted lines)
and the inertial frame (solid lines). Roman numerals
indicate body numbers. pi and qi indicate the two points
associated with hinge i.
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subscripts on p and q are implied.) Now six rela-
tive position/orientation coordinates are associated
with the hinge defined by points p and q. These
coordinates are used to define the relative posi-
tion/orientation of the bodies “joined” by points p
and q. Point q is located relative to point p by a p-
frame referenced position vector. This vector may
be expressed in Cartesian coordinates or spherical
coordinates, depending on the constraints across
the hinge. The orientation of the q-frame with re-
spect to the p-frame is represented by three Euler
rotations. If NH is the number of system hinges,
6 × NH position/orientation coordinates are used
in conjunction with modal displacement coordi-
nates for defining the system’s position state. Only
the time-variable position/orientation coordinates
of the 6 × NH set of coordinates are included as
state-vector elements. The position/orientation co-
ordinates whose rates are constrained to be zero are
not included; however, the position/orientation co-
ordinates themselves need not be zero.

The base-body, indicated by Body I, and the base
hinge, indicated by points p1–q1 of Figure 1, are
given special consideration. Point p1 of the pair is
coincident with the inertial origin. Although mo-
tions across other hinges represent relative motion
between the associated bodies, motion across the
base hinge defines the motion of the base body
relative to the inertial frame. By traversing consec-
utive sequences of bodies and hinges, starting from
the base body, and calculating positions and orien-
tations along the way, one can obtain the inertial
positions and orientations of all of the bodies and
particles within the multibody system. Note that the
selection of any one body as the base body is purely
arbitrary. Atom coordinates and velocities can be
calculated from the multibody variables (which are
the displacement vectors, Euler angles, modal coor-
dinates, and their time derivatives).

Interaction forces are applied to each of the atoms
in each body. The effect of these interaction forces on
the body coordinates is determined by: summing up
the atomistic forces to obtain the body force vector;
summing up the moments about the body reference
to get the body torque vector; and multiplying the
atomistic forces by modal displacement vectors to
obtain the body’s modal force vector [see also the
Generalized Force Vector section and eq. (10)].

Multibody Equations of Motion

In MBO(N)D, the rigid or flexible bodies are ori-
ented with respect to one another through a series of
vectors that span the hinge points between bodies,

and through a corresponding series of angular co-
ordinates that define the relative orientation of the
bodies. These relative hinge coordinate vectors, β,
are of dimension 6×1. For the case of unconstrained
relative motion

β = [θ1 θ2 θ3 x y z]T, (1)

where θ1, θ2, and θ3 are Euler angles for uncon-
strained hinges. For the case of bond-length con-
straints,

β = [φ θ r x y z]T, (2)

where φ, θ , and r are spherical coordinates for bond-
length constrained hinges. In both cases, x, y, and z
are the components of the vector defined from the
hinge’s p frame origin to the hinge’s q frame origin.

For rigid bodies, the positional state of the system
is completely described by the above set of rela-
tive coordinates. For flexible bodies, an additional
set of modal coordinates is used to describe the de-
formational state of each of the flexible bodies. The
deformed position of the ith atom within a flexible
body is given by

{xi} =
∑

j

φijξj +O
(
ξ2

j

)+O
(
ξ3

j

)+ · · · , (3)

where φij is the partition of the jth mode shape vec-
tor corresponding to the x, y, and z coordinates of
atom i, and ξ the jth modal coordinate for the flexi-
ble body.

In MBO(N)D and many structural dynamics for-
mulations, the second and higher order terms in
eq. (3) are ignored, based on the assumption that
deformations are small. Equations of motion involv-
ing nonlinear terms in ξ are computationally more
intensive, and are, therefore, avoided whenever
possible. In MBO(N)D, large motions are allowed
between bodies, thus providing a computationally
efficient solution to the problem of limited motions
inherent to the linear modal representation.

The hinge kinematics of the multibody system
can be written as

β̇ = BU, (4)

where β is vector of relative velocities across hinges,
B is a matrix of kinematic coefficients that relate
hinge relative velocities to body velocities, and U
is a vector of nonholonomic body velocities con-
sisting of angular velocities, translational velocities,
and modal velocities and modal velocities,55

U = [ωx ωy ωz vx vy vz ξ̇1 ξ̇2 . . . ξ̇m
]T .
(5)
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The matrix B in eq. (4) is defined in such a way as
to simplify the specification of free and constrained
degrees of freedom. For bond-length constraints,
the appropriate partition of the B matrix is used
to transform velocities from Cartesian frames into
spherical frames. The radial degree of freedom, rep-
resenting the bond direction, can be specified as the
constrained degree of freedom.

An orthogonal set of selection matrices, 8 and 8
(consisting of ones and zeroes), are created to extract
the free and constrained relative degrees of free-
dom, respectively:

β̇ = 8β̇ f +8α̇. (6)

The variable β f represents the unconstrained
hinge degrees of freedom, and the variable α rep-
resents the constrained hinge degrees of freedom.
For a frozen degree of freedom, which is the most
common type of constraint, α is zero. Rheonomic
constraints, where α is an explicit function of time,
can also be specified within this formulation. Such
constraints can be useful for forcing parts of the
molecule to move in a predefined manner.

The multibody equations of motion that are used
in MBO(N)D are derived from Lagrange’s equa-
tions of motion,48 with the generalized velocities
transformed into the set of nonholonomic velocities
defined by the U vector. The dynamics of the multi-
body system are governed by the equation

MU̇ = G+ BT8λ, (7)

where M is a generalized inertia matrix, G is a vector
of generalized forces, 8 is the constraint selection
matrix of eq. (6), and λ is a vector of generalized
constraint forces. For rigid bodies, the correspond-
ing partitions within U, M, G, and B contain only
translational and rotational degrees of freedom; for
particles, the corresponding partitions contain only
translational degrees of freedom. The terms com-
prising the generalized force vector are described in
the next section. The equations of motion are subject
to the following constraint:

α̇ = 8T
β̇. (8)

The O(N) algorithm takes advantage of the spar-
sity of the matrices M and B,56 and is used to solve
eqs. (7) and (8) in MBO(N)D. Body accelerations, U,
are transformed into relative accelerations, β, in a
recursive procedure that traverses the topology of
the multibody system. Note that the computational
requirements of the O(N) algorithm scale linearly
with the number of bodies (N) in the system. Ap-
pendix A (supplementary material) contains a con-
cise description of the algorithm.

Generalized Force Vector

The generalized force vector is composed of the
following terms for each body:

G = Gff +�MU + 1
2 UMjU − ṀU. (9)

The first term, Gff , accounts for chemical interac-
tions embedded in forcefield form. The � matrix
in the second term consists of linear and angular
velocities, and accounts for gyroscopic and coriolis
effects. The last two terms account for changes in
the body’s inertia matrix, resulting from the defor-
mation of the body. The subscript j represents the
derivative with respect to the jth modal coordinate.

The dynamics of the MBO(N)D flexible multi-
body model are driven by forcefield interactions
between bodies as well as interactions within flex-
ible bodies. The equations of motion deal with body
forces, body torques, and modal forces. Currently
two alternative methods for calculating these ag-
gregate forces are available within MBO(N)D. Note
that interactions between atoms within rigid bod-
ies are not computed, because they do not affect
the dynamics. The two methods are described as:
(a) Conventional atomistic forcefields—all forcefield
evaluations are performed as in all-atom models,
and the resulting force vector is processed to obtain
the generalized forces, as follows:

Gff =


∑

rj × fj∑
fj∑
φT

j fj

 . (10)

Here, the implied summation over j includes all
atoms within the body being considered: rj is the
vector from the body reference origin to atom j, fj is
the total force applied to atom j, and, φj represents
the jth partition of the body-based mode vectors for
the flexible body.

Note that any number of fast multipole approx-
imations described in the literature28, 54 can be ap-
plied to speed up the nonbond force field calcu-
lations. In this case, certain nonbond components
of the forcefield interactions are evaluated by a
conventional fast multipole method. The resulting
atomistic force vector is processed as in eq. (10)
to yield Gff . (b) Modal stiffness calculations—for
flexible bodies, interactions between atoms on the
same body can be approximated by a linearization
about the nominal body structure used for body-
based mode generation. This method is equivalent
to using the Hessian matrix projected into modal
space, and multiplied by the modal coordinates
to obtain the modal force. There are no effects on
body translation or body rotation that result from

166 VOL. 21, NO. 3



MBO(N)D

body internal interactions. To use the modal stiff-
ness approach, the force vector is separated into two
terms—the interbody interaction term, and the in-
trabody interaction term,

Gff = Ginter + Gintra. (11)

The interbody interaction term is computed as in
eq. (10), but using a modified bond list and nonbond
pair list that is restricted to the interactions involv-
ing at least one atom outside body j. For dihedral
interactions, this term includes dihedrals where one
or more atoms are within body j and at least one
atom is outside body j. The same applies for bond
angle terms. The intrabody interactions are approx-
imated by a modal stiffness term

Gintra = Kξ = φTHφξ . (12)

The matrix K is formed by transforming the appro-
priate Hessian matrix, H, into modal space via a
matrix of modal displacement vectors, φ. The modal
coordinate is represented by ξ . The Hessian matrix
includes only those interactions where all atoms in-
volved are within body j.

Bond-Length Constraints

Constraints for bond lengths and bond angles are
important elements in MD simulations.10 Typically,
these constraints are used in an attempt to elimi-
nate the time constants that are attributable to bond
stretching and angle-bending terms. In MBO(N)D,
such constraints are handled by the O(N) recursion
algorithm that eliminates the constrained degrees of
freedom from the system model.

MBO(N)D’s constrained hinge bond lengths are
constraints that are applied across covalent bonds
that exist between bodies and/or particles. For
models involving flexible bodies, the body-based
modal displacement vectors do not currently ac-
count for fixed bond lengths within the bodies.
Thus, the specification of bond length constraints
affects only those covalent bonds that are between
bodies.

Whenever hinge bond lengths are constrained
in an MBO(N)D substructured simulation, there
exists the possibility of closed topological loops be-
cause MBO(N)D exactly enforces the constraints by
removing the corresponding degrees of freedom.
Examples involving closed loops include: aromatic
side chains if modeled as atomistic regions; disul-
fide bonds if not completely enclosed within one
body; and, in some instances, bodies defined by
nonconsecutive groups of atoms, such as in across-
strand beta-sheet bodies. MBO(N)D has no inher-
ent difficulty in handling closed topological loops.

However, as the number of closed loops increases,
the computational time and required memory in-
creases. In such cases, it is prudent to turn off the
hinge bond length constraints

Degrees of Freedom and Temperature

The MBO(N)D substructured model typically in-
volves fewer degrees of freedom than the corre-
sponding atomistic model. The number of degrees
of freedom of the system is given by

nDOF =
NB∑

i= 1

(6+mi)+ 3× natom − nconstraints. (13)

Each multiatom body (i) has six rigid degrees of
freedom and mi modal degrees of freedom. Each
individually modeled atom has three degrees of
freedom. The total number of degrees of freedom is
reduced by the presence of bond-length constraints
(described in the previous section).

The calculation of system temperature in
MBO(N)D takes into account the reduced number
of degrees of freedom in the system. The formula
used for the temperature calculation is

T = 2K
kBnDOF

, (14)

where T is temperature, K is the total kinetic energy
of the system, and kB is the Boltzmann constant.

For comparison between MBO(N)D and atom-
istic models, both sets of simulations are run at the
same temperature. The MBO(N)D model exhibits
lower kinetic energy than the atomistic model, but
this energy is distributed among correspondingly
fewer (but important) degrees of freedom.

Initial Coordinates and Velocities

The initial conditions for MBO(N)D position and
velocity variables are obtained by a least-squares fit
to the atomistic coordinates and velocities. Conse-
quently, MBO(N)D can be started from the same
set of coordinates and velocities from which an
atomistic MD run starts. The final coordinates and
velocities of an MBO(N)D run can also be read in
by an all-atom code to start an atomistic simulation.
The least-squares fitting procedure is used only once
during initialization.

For the positional variables, the least-squares fit
is performed to solve for the following quantities:
the displacement vectors from the inertial frame
origin to the body frame origin; the rotational trans-
formation matrices that orient the body frames with
respect to the inertial frame; and the modal ampli-
tudes of each body. Hinge bond-length constraints
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are also imposed for covalent bonds between bod-
ies, if specified for the simulation. An iterative
Newton–Raphson53 procedure is followed, where
the second-derivative matrix is a function of the po-
sitional variables to be solved.

For the velocity least-squares fitting, the veloc-
ity vectors, angular velocity vectors, and modal
velocities are solved for in a one-time calculation.
The fitting problem is linear and, therefore, requires
no iteration. The fitting also includes derivatives
of the bond-length constraints, if these were used
for the position fitting. Furthermore, six additional
constraints are applied to the velocities, such that
the MBO(N)D model’s linear and angular momenta
match those of the input atomistic conditions. These
can be set to zero.

After the positional and velocity variables have
been computed, these are easily converted into rela-
tive and modal coordinates, and relative and modal
velocities to initialize the MBO(N)D dynamics inte-
gration.

MBO(N)D INTEGRATION ALGORITHMS

Numerical integration of the MBO(N)D equa-
tions of motion is performed by a specially for-
mulated algorithm. The Verlet-type integrators that
are commonly used for molecular dynamics are not
directly applicable to the MBO(N)D equations, be-
cause such integrators assume that the acceleration
variables are not functions of velocity. The accel-
eration expression in the MBO(N)D equations of
motion depends nonlinearly on the velocity vari-
ables as shown in eq. (9). These velocity-dependent
terms arise from gyroscopic and Coriolis effects,
kinematic constraints, and deformation-dependent
inertia terms.

Integrators commonly used for multibody dy-
namics, such as Runge–Kutta and predictor-
corrector methods, are not computationally efficient
for use in MBO(N)D because of the large number
of forcefield evaluations involved. Additionally, the
energy conservation characteristics of these integra-
tors over a large number of integration steps are
poor. An iterated velocity Verlet, which is some-
times used in atomistic MD for treating velocity
dependency,22 also results in poor conservation of
energy when utilized in MBO(N)D.

The integration algorithm developed for
MBO(N)D to handle the velocity-dependent terms
and afford high computational efficiency is similar
to the velocity Verlet algorithm. This new integra-
tor, hereinafter called the Lobatto integrator for
brevity, is based on the Lobatto III a-b partitioned

Runge–Kutta integrator.57 The essential difference
in this new integrator lies in the inclusion of
velocity-dependent terms that are always evaluated
at the half step. The positional dependencies are
evaluated at the beginning and end points of the
integration interval. The algorithm proceeds as
follows. The velocity variables are propagated to
the half step,

v
(

t+ 1t
2

)
= v(t)+ a

[
x(t), v

(
t+ 1t

2

)]
1t
2

, (15)

where v(t) is the velocity state, x(t) is the position
state, a[·] is the acceleration, and 1t is the integra-
tion step size. Note that the acceleration term is
evaluated with the position variables at the begin-
ning of the interval, while the velocity variables are
evaluated at the half point of the interval. Because
the velocity at the half step is present both in the left-
hand and right-hand parts of eq. (15), the solution
needs to be solved by iteration. The initial iterate is
calculated as follows:

v(0)
(

t+ 1t
2

)
= v(t)+ a

[
x(t), v(t)

]1t
2

. (16)

In MBO(N)D simulations, it has been found that one
iteration is sufficient for convergence.

The position variables are propagated to the full
step:

x(t+1t) = x(t)+ v
(

t+ 1t
2

)
1t. (17)

The full-step positions are then used to evaluate the
full-step accelerations. The full-step velocities are
then obtained using the following equation:

v(t+1t) = v
(

t+ 1t
2

)
+ a

[
x(t+1t), v

(
t+ 1t

2

)]
1t
2

. (18)

Note that, as in eq. (15), the position and velocity
variables are evaluated at different time points for
calculation of the acceleration term. In this case, the
position variables are at the full step, while the ve-
locity variables are at the half step. Thus, the same
set of velocities is used to compute the acceleration
terms in both eqs. (15) and (18). Because of this, the
acceleration evaluation at the end of the integration
interval is different from that at the beginning of the
next integration interval. This is due to the veloc-
ity dependencies of the acceleration terms being at
the middle of the respective intervals. Nevertheless,
the number of forcefield evaluations is the same as
that required for Verlet integrators, which is once
per integration step. This is because contribution
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to the generalized force vector due to force field
evaluations, Gff , which are dependent only upon
positions, can be evaluated at the end of the current
step and saved for reuse at the beginning of the next
step. Similarly, the iteration required for solution of
eq. (15) is not very time consuming because the it-
eration is only over the velocity-dependent terms,
which are less computationally intensive to calcu-
late than the position-dependent terms.

One can show by Taylor expansion of the accel-
eration term that the above integrator is accurate
to second order. Even though the Lobatto integra-
tor performs exceedingly well compared to many
other integrators, there is still a small amount of
drift in linear and angular momentum, which needs
to be removed from time to time. This is not surpris-
ing, given the complexities arising from quadratic
dependency on velocity, with position-dependent
coefficients, for the MBO(N)D accelerations.

Figure 2 is a comparison of three integra-
tors: fourth order Runge–Kutta, Verlet central
difference,58 and the Lobatto integrator for an
MBO(N)D simulation of ubiquitin using a 1-fs time
step. The 1231-atom ubiquitin structure (1UBQ from
the Protein DataBank) consists of two alpha helices
and five beta strands. To prepare for the MBO(N)D
simulations, the structure was minimized, heated,
and equilibrated atomistically. This procedure was
then followed by MBO(N)D equilibration and pro-
duction simulations. In the MBO(N)D model, all
unstructured regions were treated atomistically (i.e.,
atoms as particles), each alpha helix was treated as a
flexible body, and each beta strand was treated as a
flexible body. Vacuum modes with frequencies less
than 80 cm−1 were selected for each flexible body.
MBO(N)D simulations were performed using the

FIGURE 2. Total energy for 10 ps MBO(N)D
simulations of ubiquitin using 1-fs time steps for three
different integrators: fourth order Runge–Kulta (RK4),
Verlet Central Difference (VCD), and Lobatto. The CPU
times are reported for runs done on an SGI/R4000
computer.

three integration methods, under constant energy
conditions. Conservation of energy was used as the
criterion for judging the accuracy of the integrators.
Note that in the example presented, the Runge–
Kutta integrator used four times as many force field
evaluations as the Verlet central difference and Lo-
batto integrators. The figure shows that the total
energy is conserved extremely well for the simula-
tion performed by the Lobatto algorithm compared
to the other two. The CPU times reported in Figure 2
are for runs performed on an SGI/R4000 computer.
The results show that the Lobatto integrator is the
most efficient, and accurate of the three tested.

A multiple time-scale version of the Lobatto inte-
grator has been developed to handle multigranular
models. Details are shown in supplementary mater-
ial.

MODELING BODY FLEXIBILITY

Whole-Molecule Modes vs. Body-Based Modes

Body-based or component modes refer to a set
of modes used to describe a portion, in this ap-
plication a flexible body, of the modeled system.
For MD applications, the component modes form
a basis set for the group of atoms that comprise
a body. Component modes are used in the engi-
neering community59 – 61 as an intermediate step
in the solution for system eigenvectors. Recently,
such methods have been adapted to the problem
of solving for the whole-molecule normal modes
of large macromolecules.62, 63 Similar methods for
efficient calculation of normal modes have been de-
veloped by Durand,64 and Mouwad and Perahia.65

The methods are similar, with each solving a num-
ber of small diagonalization problems, and coupling
these solutions to obtain the low-frequency modes
of the entire system.

Component modes have been used directly to
describe deformational motions of flexible compo-
nents of articulated mechanical systems, such as
mechanical robots with flexible arms, where there
are large motions between the component parts.66

Although the body-based modes account for small
motions within the body, translational and rota-
tional degrees of freedom allow for large motions
between bodies.

Mode generation involves several issues: the
method of mode generation, the coordinates from
which to start the generation process, and the se-
lection of modes to retain. In MBO(N)D, two types
of body-based modes have been implemented: vac-
uum modes and fixed environment modes. These
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methods reflect the use of different boundary con-
ditions for the molecular component.

Vacuum and Fixed Environment Modes
in MBO(N)D

Calculation of the Hessian matrix for each body
in the absence of the rest of the system results in
a set of modes referred to as vacuum modes. This
set of modes is simple to calculate, as knowledge of
other parts of the molecule is not required. How-
ever, these modes may be less useful when the
body’s deformational motions are strongly affected
by its surroundings, such as in buried regions.

The second method of generation uses a Hessian
matrix that is calculated assuming the rest of the
system is fixed in inertial space. This set of modes
is referred to as fixed environment modes. This
approach accounts for some of the effects of the in-
teraction with the rest of the system; however, the
fixed environment modes may be overly restrictive
on the low-frequency motions of the body.

The calculation of modes is straightforward for
both mode generation methods. The usual Hessian
matrix for the entire system can be divided into par-
titions that represent the bodies of the system:

H =


HAA HAB HAC . . .

HBB HBC . . .

HCC . . .
...

 . (19)

To calculate the fixed environment modes for
body A, diagonalize the partition HAA after mass
weighting it. To obtain the vacuum modes for
body A, modify the assembly process to exclude the
components that arise from interactions between
atoms in body A and atoms outside of it. Diago-
nalization of the resulting mass-weighted Hessian
partition then yields the vacuum modes.

Within any MBO(N)D model, it is possible to
use a set of vacuum modes for one body and a
set of fixed environment modes for another body,
as long as the same type of modes is used within
any given body. MBO(N)D simulations using vac-
uum and fixed environment modes on a variety of
molecular systems has not resulted in a clear prefer-
ence. In general, we have favored the use of vacuum
modes because they are more efficient to compute.

Choice of Reference Coordinates

The proper choice of reference coordinates for
body-based mode generation is very important for
obtaining good simulation results. Normal modes

are computed for the molecule using its minimum-
energy state as the reference coordinates for calcu-
lation of the system Hessian matrix. The resulting
modes are, thus, valid in the narrow harmonic re-
gion around this minimum energy state. Often, the
minimum-energy structure is in a different confor-
mation than those that are at room temperature. To
generate a set of body-based mode vectors that are
valid at the temperature of interest, the following
procedure was adopted for generating the reference
structure. A structure that has been equilibrated
at room temperature or other desired simulation
condition is subjected to a small number of mini-
mization steps using steepest descents to yield the
reference structure. Note that this is only a partial
minimization, and serves to relieve instantaneous
bad contacts while keeping the conformation close
to the desired initial state. Alternative methods of
obtaining an initial coordinate set exist such as min-
imization using a gradient criteria. However, it is
unclear which method is most general.

Any modal solution using nonminimum-energy
coordinates results in modal displacement vec-
tors that correspond to imaginary or unstable fre-
quencies. These unstable modes are important for
describing barrier crossings and transitional mo-
tions within the molecule or flexible body.67 For
MBO(N)D, the purpose of the body-based modes
is to provide a set of basis vectors for describing
the elastic motions of the body. The imaginary fre-
quencies do not present a problem for MBO(N)D
dynamics calculations, because the frequency val-
ues themselves are not used in propagating the
dynamics of the system. However, these frequency
values may influence the selection of the modes to
be retained for the simulation (see the next section).

For example, identifying the transition states as-
sociated with unstable modes may influence mode
selection. Selection of unstable modes associated
with desired barrier crossings68 would allow for this
type of motion in the subsequent simulation.

The procedure of applying a short amount of
minimization to obtain the reference structure has
the effect of reducing the number of unstable modes
that would have resulted if no minimization had
been applied at all. Including the remaining unsta-
ble modes allows more anharmonic motion during
the simulation.

Selection of Body-Based Modes

Currently, there are two alternatives for the se-
lection of body-based modes for use in MBO(N)D
dynamics. The first approach is to use the frequency
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associated with each mode as a means for select-
ing or discarding modes. For stable modes, one
can select a cutoff frequency such that only modes
lower than this frequency are retained. For unsta-
ble modes, animation of the modal displacement
vectors has shown that unstable modes with large
imaginary values correspond to highly localized
motions, such as bond stretching and angle bend-
ing, and involve only two or three atoms of the
body. As the magnitude of the imaginary frequency
decreases, there is less localized behavior and more
global behavior in the unstable modal displace-
ment vectors. Thus, a selection criterion for unstable
modes is to select a cutoff frequency and animate
the modes in the vicinity of this cutoff frequency
to observe what kinds of motions are described by
those modes.

The second mode-selection approach utilizes
some form of analysis on the modal displacement
vectors to evaluate and rank the modes. A delocal-
ization factor criterion70 has been implemented to
help determine whether a particular mode should
be retained. This factor is used to distinguish modes
that have localized behavior, such as local bond
stretching and angle bending, from those that have a
global behavior, such as helical torsion and bending.
The delocalization factor is defined as

delocalization factor =
∑

i8
4
i(∑

i8
2
i

)2 , (20)

where the8i are the elements of the modal displace-
ment vector of interest.

In general, the smaller the value of the delocal-
ization factor, the more global the character of the
mode. A minor problem with this criterion is that
some types of concerted local behavior, such as lo-
calized C—H stretching all over the molecule, may
yield a small delocalization factor. Because these
modes tend to be of high frequency, it seems that
the best approach is first to apply a frequency cut-
off, and then to sort the low- to medium-frequency
modes by using the delocalization factor.

SUBSTRUCTURING STRATEGIES

The essential idea behind MBO(N)D’s substruc-
tured modeling methodology is that large relative
motions are allowed between bodies, while relative
motions within each body are assumed to be small
for flexible bodies, or negligible for rigid bodies. The
goal of the substructuring procedure, therefore, is to
identify groupings of atoms that can be treated as
bodies, and to identify the bonds, hinges, or general
areas where large motions take place.

For proteins, information on the system’s mo-
tion can be obtained from several sources: (1) If the
Protein Data Bank (PDB) has 3D coordinates for
several conformations of a given molecule, analy-
sis of the multiple set of conformations provides
information for grouping atoms into bodies or iden-
tifying hinges. (2) Short atomistic MD or Monte
Carlo trajectories can be analyzed to suggest the dy-
namical characteristics of the local conformational
space. (3) Dynamical information from NMR spec-
troscopy and crystallographic B-factors (tempera-
ture factors) can give a rough indication of which
parts of the system have larger motions. (4) Knowl-
edge of particular types of protein dynamics can
be applied. For example, alpha helices tend to have
small amounts of motion, followed by beta-sheets,
and unstructured regions. Prolines tend to intro-
duce kinks into alpha helices, glycines introduce
disordered floppy points, and peptide groups tend
to stay planar. This type of information can be used
to specify the substructuring scheme for molecular
systems where other information on structural flex-
ibility is not available.

A number of MBO(N)D substructuring strategies
have been explored for proteins, and the following
sections describe how these strategies work. The ba-
sic MBO(N)D modeling framework allows for the
development of many different types of substruc-
turing strategies. The following descriptions can be
regarded as examples from which a user can de-
velop a specific strategy for the particular modeling
problem at hand.

Molecular Domains

Some protein motions can be characterized as
motions between domains. To substructure such a
molecule, first identify the two or more domains
and the linker regions between domains. The linker
regions will need to be more finely substructured
than the domain regions. The typically correlated
nature of the side chain motions of residues near the
interdomain/linker region requires finer substruc-
turing in this region. (See the Side Chain section.)
The portions of the domains away from the linker
region can be substructured into much larger bod-
ies. The disparity in body sizes and the associated
disparity in time scales for the dynamic simulation
can be handled best by use of the MTS integrator.

Secondary Structure Elements

It is natural to expect that structurally well-
defined regions such as alpha-helices and beta-
sheets, whose atoms exhibit concerted motions,
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would be good candidates for grouping into rigid
or flexible bodies. However, a grouping of the con-
stituent residues of such secondary structures into
bodies does not necessarily yield the desired results.
This is because statically defined secondary struc-
tures may actually exhibit considerable motion at
the ends of the helical regions that is not well cor-
related with motions of the interior residues of that
helical section. Interactions between beta strands
may also be weak at certain locations within a pro-
tein.

One needs a way of evaluating the flexibility
of the secondary structure elements to identify the
core residues that maintain their stiffness through
the hydrogen-bonding structure during molecular
dynamics. These subsets are excellent candidates
for substructuring into rigid or flexible bodies. The
choice between rigid and flexible representation
depends on both the amount of internal motion ex-
pected and the importance of that motion to the
dynamic property being studied.

Alpha Helices. For alpha helices, a good way to
identify these stiff secondary-structure elements is
to carry out pseudodihedral angle analysis with a
preliminary short atomistic simulation. Pseudodi-
hedral angles are formed from the alpha carbon
atoms from each set of four consecutive amino acid
residues. The analysis involves the calculation of the
difference between the largest and smallest values
(the maximum difference) of each pseudodihedral
angle during the atomistic simulation. Then, the
model can be separated into bodies based on a
cutoff value on the range of pseudodihedral angle
motion.

Pseudodihedral angle analysis can actually be
used to identify any region, having small enough
relative motions that its component residues can
be aggregated into bodies. However, this analy-
sis works best for identifying alpha helical regions
whose residues can be grouped into bodies. Our
experience had shown that a maximum pseudodi-
hedral angle difference threshold of about 45◦works
well for differentiating residues with low relative
motions from highly mobile regions, such as loops.
An example of this analysis is shown in supplemen-
tary material.

Beta Sheets. Application of pseudodihedral an-
gle analysis to beta strands or bridges along the
protein backbone usually indicates that there is too
much motion in a beta-sheet to allow for modeling
as a single body. Analysis of the motion of the beta
sheet in the cross-strand direction, perpendicular to

FIGURE 3. Schematic of the vectors used for the beta
bridge analysis.

the backbone and along the hydrogen-bonding net-
work, enables the identification of nonconsecutive
residues that exhibit low relative motions. These
residues can be grouped into rigid or flexible bodies.

The following beta bridge analysis can provide
useful information for grouping residues across beta
strands into bodies. For each residue, we define a
vector within a residue between the main-chain car-
bon and the amide nitrogen as shown in Figure 3.
The motion between each pair of residues can be
grossly characterized by the translational and angu-
lar motion between these vectors. Considering only
pairs of residues that are geometrically close to each
other, we can sort the residue pairs by the amount of
angular motion between them. Those with small rel-
ative angular motions are candidates for grouping
into beta bridge bodies. See supplementary material
for an example analysis.

In addition to the secondary structure analysis
described above, programs such as DSSP can be
used to analyze MD trajectories to determine the
flexibility of secondary structure elements.71

Loops and Turns. By their nature, loop and turn
regions exhibit highly anharmonic motions due
mostly to dihedral motions between residues. When
necessary, these regions can be modeled atomisti-
cally, but at the expense of limiting the size of the
time step that can be used in the MBO(N)D simula-
tion. The loop and turn regions (as well as any other
region) should be substructured into the largest pos-
sible bodies that still allow the desired essential
function of these regions to be expressed.

Several loop-substructuring strategies are useful
in achieving this balance: divide the loop region
into a few bodies; group two to three consecutive
residues into bodies, being careful not to separate
the peptide plane into separate bodies; or treat the
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peptide planes as bodies and the side chains as bod-
ies, starting at the alpha or beta carbon.

Side Chains. Side chains can be substructured
independently of the protein backbone, as several
rigid or flexible bodies, or they can be treated atom-
istically. A χ-angle analysis over a short atomistic
run is often effective in helping to decide on a sub-
structuring scheme for side chains. However, for
longer side chains, crankshaft motion with little
change in excluded volume is possible. Side-chain
motion can be more effectively determined by con-
sidering the side-chain angle formed by the vector
from the N to C atoms of the residue, and the vector
from the Cα to an atom at the side-chain terminus.
Figure 4 is a schematic diagram showing the vectors
that are used to define the side-chain angle. If the
analysis of multiple structures, or of frames from
an atomistic trajectory, shows that the overall rela-
tive motion between the side chain and main chain
(as measured by our side-chain angle) of a given
residue is large, a candidate substructuring is to cut
at the φ and ψ angles, and even the χ1 angle. Ad-
ditional analyses, such as calculating the dihedral
fluctuations for φ,ψ and χ1 angles can be performed
on the candidate residues. A large dihedral fluctu-
ation will indicate that a particular torsion angle
should not be constrained. See supplementary ma-
terial for an example plot of side chain angle.

For globular proteins, experience has shown that
it is important to allow χ1 and other torsional side
chain motions in buried regions of the protein for
certain essential dynamic characteristics to be re-
produced. Note that allowing side-chain motion
within buried regions does not necessarily require
the use of smaller time steps. The atomic fluctu-
ations depend on details of the local packing en-
vironment, which may serve to over damp local
oscillations.72, 73

FIGURE 4. Schematic diagram showing the vectors
used for defining overall angular motion between
side-chain and main-chain groups.

MBO(N)D Test Cases

This section presents the results from a number
of simulation analyses on various molecular sys-
tems that have been conducted by us to test and
evaluate MBO(N)D. We selected these systems to
characterize the dynamics of MBO(N)D and vali-
date the use of substructured modeling in a variety
of systems that differ substantially in size and range
of motion, and to compare the results to correspond-
ing atomistic methods. Due to the larger number of
DOF, atomistic systems require significantly more
time to stabilize energetically than body-based sys-
tems; our test systems are, therefore, relatively small
to permit an easier task for meaningful compar-
isons. Consequently, the systems studied herein do
not afford optimum conditions for demonstrating
MBO(N)D’s computational speed capability, which
is favored by much larger molecules with larger
bodies than those we will discuss. Our analyses and
results are, nevertheless, an important first step in
assessing MBO(N)D’s capability to yield acceptable
agreement with atomistic simulations in terms of
the essential dynamics. Once MBO(N)D’s capabili-
ties and behavior are well understood at this level,
our methodology can be extended to much larger
systems where it will have the opportunity to fa-
cilitate significantly higher computational speedups
compared to atomistic simulations.

All MBO(N)D simulations were performed using
the MBO(N)D code. The standard atomistic sim-
ulations, to which we compare our results, were
performed with the CHARMM molecular model-
ing program.53 We explored a variety of different
substructuring strategies to determine the effects
on the dynamics of each of the following five sys-
tems. (1) Alanine dipeptide—a relatively small and
simple system that has a well-defined and frequent
transition between two distinct conformers on the
subnanosecond time scale. (2) The terminal frag-
ment of the L7/L12 ribosomal protein from E. coli—
a globular protein system containing loops, helices,
and beta strands that exhibits key motion between
two of the three helices. A wide range of substruc-
turing strategies were applied to 1CTF. (3) Dick-
erson dodecamer—this system is a DNA duplex
initially in the B form. The goal is to characterize
the ability of MBO(N)D to handle large conforma-
tional changes induced by a external shear force in
nucleic acids. (4) HIV-1 protease–ligand complex—
a protein–ligand complex that represents a model
system encountered in rational drug design. We ap-
plied a unique pulling protocol to examine ligand–
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protein dynamics with MBO(N)D. (5) Liquid crystal
polymer—an alternate system to those based on bi-
ological molecules. This system is used in optics
and represents a problem in polymer dynamics. (See
supplementary material.)

ALANINE DIPEPTIDE

Alanine dipeptide (CH3CONHCH(CH3)CONH
CH3) is a good model system with which to under-
stand the basic behavior of the MBO(N)D method
and to simplify direct comparison with atomistic
dynamic simulations. This dipeptide is structurally
simple, which significantly reduces the complex-
ity of the analysis, and it exhibits well-defined
low frequency anharmonic motion. This motion
was analyzed previously using standard atomistic
techniques,75, 76 and is characterized by a transition
between two distinct conformations at 300 K. One
conformer is referred to as C5, and is proximate to
φ = −180 and ψ = 180. The other conformer, C7eq,
is proximate to φ = −60 and ψ = 60. The bar-
rier between these two conformers is on the order
of 1 kcal/mol on the CHARMM potential energy
surface. Simulation conditions are detailed in sup-
plementary material.

Alanine Dipeptide Results

The following two substructuring schemes were
used with MBO(N)D. First, a single, flexible-body
for the entire system using all of the body-based
modes. The purpose of this run was to characterize
MBO(N)D’s ability to capture anharmonic motions
through the projection of atomistically calculated
force field interactions onto the modal degrees of
freedom. Although the transformation of the direc-
tion of motion from modal to atomistic is linear, the
atomistic forces that are projected onto these DOF
are nonlinear. The interplay between the linear and
nonlinear effects can be assessed with the single
flexible-body example. Second, two rigid bodies for
each peptide group (—CONH—) and the remain-
ing atoms treated as particles (single atom bodies).
Because peptide groups are quite rigid, we expect
that treating such groups as rigid bodies should be
consistent with atomistic models.

Table I shows a summary of the relative popu-
lations between the two dominant conformations
of alanine dipeptide at 300 K (C5 and C7eq) ob-
tained from three different simulations: an atomistic
MD simulation, and the two different MBO(N)D
simulations. As seen in the rigid body, MBO(N)D
simulation shows very good agreement with the

TABLE I.
Relative Population of the C5 and C7eq Conformers
and Transition Rates of Alanine Dipeptide for Various
Simulations (1 ns).

Transition rate
Model (C5/C7eq)∗100 (ps−1)

Atomistic 23.7 0.38

MBO(N)D
Rigid peptide 21.1 0.37

plane bodies
One flex body— 14.1 0.12

all modes

atomistic simulation results. The agreement is ob-
tained both in terms of the relative occupation of the
two minima and in terms of transition rates, reflect-
ing on MBO(N)D’s success in reproducing aspects
of the system’s thermodynamics and kinetics. The
flexible body result, however, is more restricted in
barrier crossings reflecting the fact that the modes
were calculated near the C7eq conformer. In other
words, these modes bias the region of the initial co-
ordinates.

Figure 5a and b shows that the distribution of
the phi and psi angles for the rigid peptide bod-
ies match the atomistic results well. The distribution
from the single flexible body with all modal DOF (c),
however, favors the C7eq conformer about which
the modes were calculated. These results suggest
that the rigid body substructuring used is better
suited for this type of anharmonic behavior, while
single flexible bodies are good for more local behav-
ior. We note, however, that significant anharmonic
motion occurs even when all the DOF are due
to modes. We believe this result from the single
flexible-body simulation to be significant because it
suggests that the linear approximations made with
modes can be extended to include anharmonic mo-
tion by projecting nonlinear forces onto these DOF.
Additional analysis results such as time correlation
functions are shown in supplementary material.

C-TERMINAL FRAGMENT OF RIBOSOMAL
PROTEIN

We wished to explore a more extensive set of sub-
structuring strategies on a model protein to further
characterize MBO(N)D on a typical problem in bio-
physics: interdomain motion. We, therefore, chose
the C-terminal fragment (1CTF) of the L7/L12 ri-
bosomal protein from E. coli,79 as this model. 1CTF
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FIGURE 5. φ–ψ scatter plots for alanine dipeptide at 300 K for (a) atomistic, (b) MBO(N)D simulations with rigid
peptide plane bodies, and (c) single flexible body with all modal DOF. The values from initial coordinates are
represented by the white circle.

is a medium-size protein that contains 65 residues,
and is essential for efficient polypeptide synthesis
in bacteria. 1CTF contains three α-helices and three
β-sheets that account for approximately 76% of its
structure.

Simulations by Åqvist et al.,80, 81 using the GRO-
MOS force field, found that an important feature of
the dynamics of 1CTF is the low frequency motion,
around 5 cm−1, of the B helix relative to the rest
of the structure. This motion was clearly displayed
when helix C is used as a reference for the rela-
tive movement. Helix C is tightly bound to the beta
sheet and, therefore, has restrained motion. Thus,
the motion between helices B and C is considered
the essential dynamic behavior of 1CTF. The pur-
pose of this test case was to assess the speedups
attainable from various MBO(N)D substructuring
strategies, as well as the level of agreement in the
essential dynamics with atomistic simulations.

1CTF Results

We explored different values of integration time
steps to determine the relationship between each
different substructuring scheme amd stability of the
simulation. The conservation of total energy was
monitored so as to evaluate the stability of each
simulation. We will only discuss results of simula-
tions exhibiting the highest time step that resulted
in stable simulations (defined as ≤1 kcal/mol RMS
fluctuation of the total energy).

The following substructuring schemes were used
for the MBO(N)D simulations. For each scheme, the
total number of DOF is listed, together with the
maximum time step used. The atomistic model con-
tained 1185 DOF.

Case 1. Loops and β-strands were substructured
into several small rigid bodies with hinges defined

at selected ψ dihedrals. Each helix was substruc-
tured as a single rigid body. Total of 20 bodies. This
scheme is shown in Figure 6. Total number of DOF
= 95. Maximum time step = 20 fs.

Case 2. Same substructuring as in case 1, with
body-based modes added to each of the 20 bodies.
The modes in each body were sorted by delocaliza-
tion factor [eq. (20)] and the lowest 10 modes were
added to each helix body. Similarly, the lowest three
modes were added to each of the small bodies. Fifty-
eight modes were added. Total number of DOF =
153. Maximum time step = 10 fs.

Case 3. The entire system was substructured
into 31 small rigid bodies with hinges at φ or ψ an-

FIGURE 6. Structure of the C-terminal fragment of the
ribosomal protein from E. coli (1CTF79). The three
helices are marked as A, B, and C. Substructured
according to case 1; the residue ID numbers between
bodies are shown.
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gles. Total number of DOF = 150. Maximum time
step = 15 fs.

Case 4. Based on case 1 substructuring, with each
helix further separated into a flexible main-chain
body and several side-chain bodies (except for Ala
and Gly residues), resulting in 66 bodies. Body-
based modes with a natural frequency less than
100 cm−1 were added to bodies with more than 10
atoms. One hundred seven modes were added. To-
tal number of DOF = 432. Maximum time step =
5 fs.

Case 5. Peptide planes and side chains modeled
as bodies, and Cα atoms as particles. The five low-
est frequency modes were added to each side-chain
body. Total of 150 bodies and 180 modes. Total num-
ber of DOF = 966. Maximum time step = 1 fs.

Case 6. Domain-based substructuring. Two small
domains in 1CTF were separated into subdomains
including: αα domain (which includes helices A
and B), and the B-sheet domain (which includes the
β-sheet and helix C). Those domains were substruc-
tured into bodies, which had several residues each.
Then, linker residues, connecting between the two
domains, were substructured with one-residue bod-
ies (a total of 20 bodies). Total number of DOF = 95.
Maximum time step = 20 fs.

We performed additional simulations using the
MTS integrator for cases 1, 2, 3, and 6 to evaluate
the performance of this methodology with different

substructuring. MTS was not utilized with cases 4
and 5, as the potential for simulation speedup was
in the range of that attainable by atomistic tech-
niques. Integration time steps used in these MTS
runs are listed in Table II. In these substructur-
ing strategies, case 1 is the coarsest substructure
scheme, and case 5 is the finest.

A summary of results from all MBO(N)D and
atomistic simulations performed for 1CTF are listed
in Table II. Each MBO(N)D simulation shows good
total energy conservation during the 140 ps produc-
tion run; the RMS fluctuation of total energy for
each MBO(N)D simulation is well below our cri-
terion for a stable run (<1 kcal/mol). shows the
following three general trends. First, smaller time
steps result in increased stability. Second, increas-
ing the number of DOF lowers the time step needed
for stable simulation. It is possible that two differ-
ent substructuring strategies can result in different
stabilities and speedups, even though they have the
same number of DOF. In other words, the number
of DOF used is not necessarily a good predictor of
MBO(N)D performance; proper substructuring rep-
resenting the motions of interest is important also.
Third, MTS results in energy stabilities comparable
to the single time step results, but with increased
speed (as we will show).

Figure 7 shows the speedup vs. the ratio of the
MBO(N)D to atomistic B-C angle RMS fluctuation.
Representative probability density functions of the
B-C helical angle are presented in Figure 8. As
expected, both figures show that finer MBO(N)D

TABLE II.
Comparison of Atomistic and MBO(N)D Simulations of 1CTF.

Number
of 1tb Erms

c

bodies Modes DOFa (fs) (kcal/mol)

Atomistic — — 1782 1 0.06
Case 1 20 0 95 20 0.37

20, 40, 60, 80 0.35
Case 2 20 58 153 10 0.15

10, 20, 30, 40 0.21
Case 3 31 0 150 15 0.64

15, 30, 45, 60 0.51
Case 4 66 107 432 5 0.59
Case 5 150 180 966 1 0.05
Case 6 20 0 95 20 0.59

20, 40, 60, 80 0.79

a DOF is the total number of degrees of freedom in the system.
b The MTS values are also listed for cases 1–3, and 6.
c “Erms” is the root mean square fluctuation of the total energy over the 140-ps simulation.
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FIGURE 7. Speed up vs. ratio of MBO(N)D to atomistic
normalized standard deviation of the B-C interhelical
angle.

substructuring leads to better agreement with the
atomistic results.

Figure 7 also shows that the MTS integrator in-
creased the CPU speedup over the single time-scale
integrator by a factor of 1.2 to 1.6 for the 1CTF sim-
ulations. Comparison of the accuracy and speedup
values for cases 1 and 2 shows that the inclusion
of flexible modes can sometimes result in the need
for a smaller integration step size to maintain stabil-
ity. Including modes yields a smaller speedup, but
significantly improves the agreement with atomistic
motions, illustrating the speed/accuracy trade-off
in MBO(N)D simulations. Note that case 5, which
represents a very fine level of substructuring, shows
excellent agreement with the atomistic result, albeit
with little computational speedup. The domain-
based substructuring approach (case 6) shows the
greatest level of speedup (factor of 32 with the
MBO(N)D/MTS integrator), and still results in a
reasonable level of accuracy. In general, one can ob-
serve that the finer substructuring schemes require
small integration step sizes (1 fs for case 5). Con-
versely, the coarser substructuring schemes can use
large integration step sizes (20 fs base step size for
cases 1 and 6). The slowest time-scale bins for the
MTS runs were updated at intervals that were as
long as 80 fs.

To compare dynamic motion between helices B
and C, the power spectra of the helical angle motion
for representative cases were calculated for compar-
ison with the atomistic simulation (Fig. 9). As this
type of analysis requires a longer simulation for the
accurate calculation of the power spectra, 500-ps
segments of the MBO(N)D and atomistic produc-
tion runs were utilized. Both MBO(N)D and atom-
istic simulations show a very distinctive low fre-

FIGURE 8. Representative probability density
functions of the deviation of the B-C interhelical angle
about its respective average for several MBO(N)D runs
compared with the atomistic result.

quency peak near 8 cm−1. The overall characteristics
of case 5 show good agreement with the atomistic
results due to the finer substructuring treatment of
case 5. Cases 1 and 3 have very simple characteris-
tics in their spectra because substructuring removed
most of the atomistic thermal fluctuations in the sys-
tem. However, each case reproduced the essential
dynamic motion observed in atomistic simulations,
as can be seen from the agreement of the positions
in the strong peaks in each of the spectra.

Figure 10 shows the RMS fluctuations of Cα
atoms from the MBO(N)D and atomistic simula-
tions. Except for the finer substructuring schemes,
cases 4 and 5, the MBO(N)D results of RMS fluc-
tuations are generally lower in magnitude than the
atomistic result because the grouping of the atoms
into bodies results in the thermal fluctuations of
the atoms being ignored. In general, we would not
expect atomistic RMS fluctuations to be a good mea-

FIGURE 9. Representative power spectra of the B-C
interhelical angle motion from MBO(N)D and atomistic
simulations.
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FIGURE 10. Comparisons of the atomistic and
MBO(N)D simulations showing RMS fluctuations of Cα
atoms.

sure of the performance of MBO(N)D, because these
detailed motions are ignored in MBO(N)D. Nev-
ertheless, the relative values of the atomistic RMS
fluctuation plot are well represented by all of the
MBO(N)D simulations.

An analysis of the pseudodihedral angles for the
simulations (Fig. 11) shows that the trends in the
relative peaks and valleys are consistent for most
of the MBO(N)D runs (the coarsest run, case 6,
having the least undulations) with the atomistic
simulation. The pseudodihedral analysis is a coarser
metric than the RMS fluctuation data in Figure 10,
yet shows similar trends between the different sub-
structurings.

DNA SHEARING SIMULATION

We carried out a simulated shearing apart of the
two strands of a DNA duplex to test the ability of
MBO(N)D to reproduce motions in nucleic acids
involving large induced conformational changes.
The shearing apart of DNA duplexes is an event
that occurs, for example, during cell division, and
has been studied by Atomic and Chemical Force
Microscopy83 and simulation methods.84

FIGURE 11. Comparisons of the atomistic and
MBO(N)D simulations showing pseudodihedral angle
range.

Our shearing simulations were designed to be
consistent with Atomic or Chemical Force Mi-
croscopy experiments, which have suggested that
the strands undergo significant conformational
changes before separating. The essential dynam-
ics inspired by these previous experiments are the
formation of a unique “stretched” form of DNA (S-
ladder), and the point at which the strands separate.

The DNA duplex used was the Dickerson do-
decamer. The simulation protocol is similar to that
described in Konrad and Bolonick.64 Initial condi-
tions and simulation protocols are detailed in the
supplementary material.

DNA Shearing Results

The first MBO(N)D substructuring scheme, D1,
is based on the assumption that the functional
groups—phosphodiester (O(POO−)O), sugars, and
bases—are essentially rigid, and can be treated as
separate bodies. The puckering of the sugars, of
course, is an important motion related to certain
conformational transitions, but this motion is not
critical to the essential dynamics, as we will show.
The second substructuring scheme, D2, is similar to
D1, except that each phosphodiester group was di-
vided into three bodies: one rigid body, consisting of
the phosphorus and two oxygens, and two individ-
ual atoms corresponding to the 3′ and 5′ oxygens.
The impetus for the D2 substructuring was based on
recent evidence suggesting that the ζ torsion plays
a major role in conformational transitions involving
the backbone of a nucleic acid.89, 90 These two sub-
structuring schemes seem to suggest the minimum
substructuring needed to reproduce the essential
dynamics of DNA shearing while exhibiting signifi-
cant speedups, as will be shown.

The applied tension and the strand separation
distance—measured as the distance between the
two terminal atoms to which the pulling forces were
applied—as a function of time, are shown in Fig-
ure 12 for the MBO(N)D and atomistic simulations.
Figure 12 shows that overall, both MBO(N)D simu-
lations capture the essential behavior of the system,
although the finer D2 substructuring scheme yields
a better quantitative agreement with the atomistic
simulation in the comparison of strand separation
force. This improvement in the unraveling and sep-
aration of the DNA strands is consistent with other
evidence that suggests phosphate flexibility is im-
portant to the overall dynamics of DNA duplexes
under equilibrium conditions.91 The values of the
rupture forces in Figure 12 are almost one order of
magnitude higher than those observed by Konrad
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FIGURE 12. DNA strand separation distance as a
function of time for three different simulations. Also
shown is the applied force at each time step.

and Bolonick. The increased values of the rupture
forces in the MBO(N)D simulations may be due to
the absence of a good representation of solvent. (See
the Discussion section.) Nevertheless, the compari-
son between MBO(N)D and atomistic simulations is
valid because both sets of runs were carried out un-
der the same conditions. Our results are consistent
with the experimental observation that the length
of the DNA is increased by a factor of two in the
stretched conformation over that of the unstretched
conformation.83 Additional analyses are shown in
the supplementary material.

The more accurate D2 simulation was able to run
at a time step of 10 fs, yielding a sevenfold speedup
over the atomistic simulation. The less accurate D1
simulation was run at a 15-fs time step with a 10-
fold speedup.

HIV-LIGAND PULL

As a demonstration of MBO(N)D’s application to
a problem of pharmaceutical interest, an MBO(N)D
model of HIV protease was developed, and a small
molecule (Cbz-Val-Phe-Phe-Val-Cbz, referred to as
A74707) was simulated being pulled out of the pro-
tein cavity (Fig. 13). The purpose of this test was
to see how well MBO(N)D performs on protein–
ligand interactions and dynamics. HIV protease
is a 3136-atom homodimeric enzyme that cleaves
virus-specific polyprotein products, and is criti-
cal for virus replication. This aspartyl proteinase
is classified as an “all beta” structure, although
each polypeptide chain does contain a single nine-
residue alpha-helix. The structural features of inter-
est in the protease are the two β-turn structures—
flaps—that envelop the ligand. (See supplementary
materials for more detail.)

FIGURE 13. A schematic of the pulling experiment for
HVP. HVP is drawn as a Cα trace, and the ligand is drawn
as a ball and stick. The orientation of the pulling vector is
shown; a constant force is applied along this vector
between a fixed point 45 Å away in space and a
proximate atom on the ligand.

Two distinct conformations identified by X-ray
crystallography suggest that HIV protease under-
goes a large conformational change upon binding
of a substrate or inhibitor. One conformation is an
“open flaps” form, which has no inhibitor bound
to it; the other a “closed flaps” form, which has an
inhibitor bound in the active site.92 It is thought
that the flap movement is important to the ligand-
binding event. An HIV ligand-pull simulation (de-
scribed below) was developed to investigate this
movement. The protocol used in this simulation is
similar to atomic force microscopy experiments93

and simulations of streptavidin/biotin94 and the
DNA shearing described previously.88 The initial
structure and simulation conditions are described in
the supplementary material.

HIV LIGAND UNBINDING RESULTS

The A-74707 was substructured into seven bod-
ies: one body comprised the main-chain atoms, and
the remaining side-chain groups were each placed
into a separate body. Two substructuring strategies
were explored for the HIV protease bodies. The
first strategy (H1) groups every three consecutive
residues into rigid bodies (cutting at the ψ angle).
Our experience with substructuring suggests that
cutting every three residues for proteins is a good
base substructuring that permits a reasonable com-
promise between accuracy and speedups. The sec-
ond strategy (H2) is a finer version of H1. Residues
that were within 3.5 Å of the ligand, and showed
significant motion from the side-chain analysis (the
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FIGURE 14. Plot of extraction force vs. applied force
increment at every 10 ps for atomistic simulations and
MBO(N)D simulations using the H1 and H2
substructures.

Side Chains section) of a short atomistic pull simu-
lation were substructured more finely as side-chain
bodies (cutting at the φ and ψ angles). The H1
and H2 substructuring strategies, along with that
for A-74707, resulted in 131 and 145 bodies, respec-
tively, for the protease–ligand system. Figure S7 in
supplementary material shows details of the sub-
structured model. In this test case, the amount of
motion needed was greater than that allowed by
modes; therefore, these simulations were done with
small rigid bodies in the hinge-bending regions of
the protein.

Figure 14 shows the extraction forces required
to pull the A-74707 from HIV protease for a va-
riety of applied forces from the atomistic and
MBO(N)D simulations. This figure suggests that
both MBO(N)D simulations are converging on the
atomistic results in the slow pulling region. The re-
sults for H1 converged faster than H2 because fewer
degrees of freedom are included. The range of val-
ues for the extraction forces in Figure 14 underscores
the need to perform multiple simulations with dif-
ferent rates of pulling. Only when the values of the
extraction forces have converged within a reason-
able range of one another can the contribution to
the dynamics from inertial effects be understood.
The maximum extraction force was computed as
the maximum value of a curve that resulted from
averaging every 20 ps over the raw data. We es-
timate that the errors associated with each point
in Figure 14 is 50 pN, which is based on the shift
in maximum value when the window of averag-
ing is increased to 40 ps (as was done similarly by
Grubmueller94).

Figure S8 in supplementary materials shows the
ligand escaping the protease, and is representa-

tive of MBO(N)D and atomistic pulling simulations.
The range of movement between the flaps was ap-
proximately 60◦ for both methods. These results
suggest that MBO(N)D can reproduce the essential
features of protein–ligand interactions that involve
substantial conformational changes during unbind-
ing. MBO(N)D, however, shows an eightfold CPU
speedup over the atomistic simulations.

Discussion

We have developed a modeling methodology
based on multibody dynamics, MBO(N)D, for per-
forming long time scale simulations of macromole-
cules. MBO(N)D is designed to take advantage of
the fact that low-frequency motion dominates the
overall global motions of macromolecular systems.
Our studies on various systems that differ sub-
stantially in size and dynamics suggest that the
global motions from MBO(N)D are quite compa-
rable to atomistic results. The studies also suggest
that our substructuring strategies are applicable to
a wide range of molecular systems. Interhelical an-
gle motions, separation forces, order parameters,
end-to-end distance, and transitional structures are
all properties that seem to be well within the ca-
pabilities of MBO(N)D. The maximum speedups
associated with these results vary from a factor 8
to 30, depending on the system, type of property,
and corresponding substructuring. Detailed or high
frequency motions such as RMS atomistic fluctua-
tions are sacrificed for the gains in speed. The size
and frequency of the motion of a body affects the
maximum time step. That is, some MBO(N)D sim-
ulations can tolerate small bodies as long as its
frequency of motion is relatively low: for example,
buried side chains bodies that were relatively im-
mobile in 1CTF resulted in 10 fs time step, but all
side-chain bodies (some of which were relatively
mobile) resulted in a much lower time step.

The key elements of MBO(N)D are the grouping
of atoms into rigid or flexible bodies (substructur-
ing), and the modeling of body flexibility using a
truncated set of body-based mode shape vectors.
Both elements serve to eliminate high-frequency
motions from the simulation. The remaining low-
frequency motions permit the use of long integra-
tion time steps that give MBO(N)D a computational
speed advantage over atomistic simulations.

Macromolecular systems have diverse local and
global dynamical properties, and therefore, no sin-
gle substructuring strategy works best for all pos-
sible cases. We have not identified a single analysis
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method that will completely automate the process
of substructuring, but have instead relied upon
semiautomated approaches. The types of analyses
described in this article help in determining the
most plausible substructuring for the system under
question, with the intent being that the important
properties—global properties—will be captured ad-
equately. We have, nevertheless, found that the sim-
ple protocol of first defining a “base” substructuring
that involves three residues per body for the en-
tire protein, and then refining the substructuring
in areas of interest is a reasonable approach to the
problem.

We have shown that a multibody protocol cou-
pled with the Lobatto integrator produces very sta-
ble dynamics with elevated time steps for constant
energy and constant temperature ensembles. As far
as we know, the time steps used for the constant en-
ergy runs are the largest reported in the literature to
date that use atomistic force fields.

The multibody equations of motion in MBO(N)D
are solved by an efficient O(N) algorithm that scales
linearly with the size of the system. The Lobatto in-
tegrator, which is used to propagate the dynamics,
is very efficient, and has two main advantages over
other integrators for multibody dynamics applica-
tions. First, it requires only one force field evalu-
ation per step while being accurate to the second
order. This attribute is on par with the Verlet class
of integrators for atomistic MD. Second, it accounts
for the nonlinear velocity dependency of the acceler-
ation expression. Proper handling of this nonlinear
velocity dependency is critical to the efficient and
accurate propagation of MBO(N)D dynamics.

The position fluctuations from MBO(N)D sim-
ulations at the detailed atomistic level, however,
tend to be lower in magnitude than for atomistic
simulations. This reduction in atomistic mobility
is not surprising because most or all of the inter-
nal high-frequency motions have been eliminated.
Said differently, the small localized atomistic mo-
tions are neglected while the more global motions
are retained (e.g., domain–domain bending). Never-
theless, the fluctuation profile—the relative fluctua-
tions among the atoms and residues—is reproduced
by the MBO(N)D models. Reducing the degrees of
freedom, as noted by others, can also have the un-
desirable effect of eliminating the coupling between
degrees of freedom (e.g., the coupling between bond
angles and torsions). This problem can be alleviated,
however, by adjusting the force field for the remain-
ing degrees of freedom,103 as was done, for example,
by Head–Gordon and Brooks for virtual bodies.3

With the macromolecule substructured into bod-
ies, and body flexibility captured with body-based
modes, the model allows large relative motions to
take place between the bodies, while small defor-
mational motions are assumed within the flexible
bodies. Force field interactions are computed in the
normal atomistic fashion, with the resulting atom
forces being projected into the reduced degrees
of freedom, yielding body forces, body torques,
and modal forces, for dynamic propagation of the
MBO(N)D model. The ability of the bodies to un-
dergo large motions, and the use of the fully non-
linear force field are the features that allow the
MBO(N)D modeling approach to capture the impor-
tant anharmonic effects of molecular dynamics.

The substructuring capability in the MBO(N)D
methodology is very versatile. For example, as bod-
ies become smaller (i.e., smaller number of atoms
per body, with a corresponding increase in the num-
ber of bodies), and more body-based modes are
included, the system approaches an atomistic rep-
resentation. The multiple time scale Lobatto inte-
grator exploits systems with dissimilar sizes and
motions, and produces up to a twofold speed im-
provement over the multibody simulations with
single time steps, depending on the system and sub-
structuring used.

There are several potentially useful applications
of the MBO(N)D modeling approach, and some ex-
amples are briefly discussed in turn.

1. Folding of structural elements in proteins:
MBO(N)D substructuring can be used to pre-
serve certain structural features (e.g., an alpha
helix) during dynamics. The large-scale mo-
tions between these structural elements can
then be explored.

2. Protein–ligand, protein–protein, and protein–
nucleic acid interactions: the long time scale
properties of these complexes continue to be
one of the main problems that cannot be
treated meaningfully using atomistic meth-
ods. The main advantage of MBO(N)D in
these cases is speed, and therefore, the ability
to explore longer time-scale properties.

3. Supramolecular assemblies and rigid rod
polymeric systems: systems that approach
mesocale dimensions are known to have
properties that cannot be elucidated from
studying the individual component mole-
cules. MBO(N)D provides the framework that
can be used to build very large assemblies of
molecules and study their dynamical proper-
ties.
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There are a number of ongoing MBO(N)D devel-
opment efforts that are being pursued by us and
others to broaden its applicability to other types
of simulations. The most important of these is the
modeling of solvent. Solvent mediates many molec-
ular motions and properties, and correctly account-
ing for the environment of a molecule is crucial for
meaningful results in many cases. Solvent can medi-
ate, for example, bulk properties such as dielectric
screening, as well as localized properties such as
the geometry and dynamics of side chains at the
protein/solvent interface. In special but important
cases of localized properties, a molecule of solvent
can be considered as part of the ligand binding site
in a protein. A good model of solvent will, there-
fore, address either one or all of these properties
adequately, depending on the problem to be stud-
ied. The example simulations in this article were
performed with a crude implicit solvation protocol
(distance-dependent dielectric).

We are considering several other implicit solva-
tion methods approaches for incorporation within
the MBO(N)D paradigm that have shown promis-
ing simulation results. These methods are the fol-
lowing. First, including only a reduced number of
explicit waters that are proximate to the surface of
the macromolecule, and that fill the depressions and
holes if appropriate. This “thin shell approach” to
solvation is the most straightforward approach as
each explicit water molecule is treated as a body.
Indeed, recent work by Steinbach104 and Mazur105

shows that a relatively small number of explicit
water molecules is sufficient to solvate myoglobin
and DNA with good reproduction of key dynam-
ical properties. A fully solvated system would not
be appropriate for MBO(N)D, as the existence of a
large number of very small bodies can severely limit
the speedups that can be obtained. Second, meth-
ods such as electrostatic continuum methods106, 107

or empirical solvation potentials,112, 113 are con-
sistent with the reduced variable approach of
MBO(N)D. These methods have levels of fidelity
and time constants that are commensurate with typ-
ical MBO(N)D substructured models. Recent results
by McCammon, for example, have demonstrated
the advantage of the Poisson–Boltzmann Stochastic
Dynamics method for reproducing conformational
statistics of alanine dipeptide from fully solvated
simulations.108 Studies on macromolecules using
these methods, however, are still ongoing. Third,
hybrid methods that combine the aspects of explicit
molecules of water at the surface of the macromole-
cule, with the implicit description of water outside
the solvent shell. The approaches in this area are

broad, and have been successful in PKa calculations
for BPTI,109 binding free energy calculations for HIV
protease inhibitors,110 and the dynamics of enzyme
catalysis.111

The MBO(N)D modeling methodology has
shown promise in providing significant compu-
tational speedups while reproducing important
dynamical global properties of protein, nucleic acid,
and polymeric systems. A number of modifications
to the methodology have been identified, that will
further enhance MBO(N)D’s ability to reproduce
other important dynamical behaviors. MBO(N)D
represents a new approach to removing the
computational bottleneck associated with atomistic
methods. The goal of MBO(N)D is to permit the
efficient study of very long time-scale properties
and of very large molecular systems.
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