
ORIGINAL ARTICLE

Kurt Anderson Æ Rudranarayan Mukherjee

James Critchley Æ John Ziegler Æ Scott Lipton

POEMS: parallelizable open-source efficient multibody software

Received: 28 November 2005 / Accepted: 6 April 2006 / Published online: 14 July 2006
� Springer-Verlag London Limited 2006

Abstract This paper introduces POEMS, parallelizable
open-source efficient multibody software, as a modular
research package being developed to serve as a backbone
software for collaborative research in multibody
dynamics. POEMS aims to serve as a repository of
efficient implementations of relevant algorithms and be
applied to varied applications of interest in research,
academia and industry. It allows the user to model
systems with varied topologies, and choose between
different algorithms for generating and solving the
equations of motion as well as for time integration.
POEMS utilizes a growing number of solvers, integra-
tors, and system types, which lays a good foundation
towards its future development as an optimized, cus-
tomizable, and parallelizable computational tool for
multibody dynamics research and application.

1 Introduction

Multibody dynamics has been and continues to be an
active area of research with numerous applications
such as robotics, spacecraft and vehicle dynamics, gait
analysis, and biomolecular and materials research.
There are several commercially available packages
including ADAMS [1], Autolev [2], and Dymola [3],
that can model and simulate multibody systems. There
also exist a number of packages developed in academia
which possess similar capabilities. One drawback of
the commercially available packages is that they do
not allow access to source code and the user is con-

strained to work within the package’s given limita-
tions. On the other hand, some of the research
packages contain implementation of only specific
algorithms, thereby limiting the scope of the package
to specific applications.

Several attempts [4] have been made to develop
generic multibody packages that allow researchers
access to source code and also contain implementation
of a variety of different algorithms. These packages
have met with varying degrees of success. In this paper
we discuss the development of a research package
called parallelizable open source efficient multibody
software (POEMS). It serves as an environment for
programming new solvers, integrators, and relation-
ships (topologies, constraints, force elements). The
primary objective of POEMS is to promote research
and education in multibody dynamics by providing
implementations of different multibody dynamics
algorithms in a common package. Additionally, the
software is open-source, allowing users access to the
source code for customization and collaborative
development.

In order to apply an algorithm for a particular
multibody dynamics application, a developer normally
has to start from an empty directory and face large
implementation overheads. POEMS aims to fill this
empty directory and cut overheads by providing a user
access to an open source research package which can
be easily customized for their application. Further-
more, it is equipped with different algorithms for effi-
ciently generating and solving the equations of motion
of multibody systems as well as diverse integration
schemes and data structure required to function as a
full fledged dynamics simulation tool. In this paper, we
discuss the structure of the software, its present
capabilities, and ongoing developments. In the next
section, an overview of the overall structure of
POEMS is presented. This is followed by a brief
description on the important modules in POEMS.
Lastly, the current applications and upcoming features
in the software are discussed.

K. Anderson (&) Æ R. Mukherjee Æ J. Critchley
J. Ziegler Æ S. Lipton
Computational Dynamics Laboratory,
Department of Mechanical Aerospace and Nuclear Engineering,
Rensselaer Polytechnic Institute, 110 8th Street,
Troy, NY 12180, USA
E-mail: anderk5@rpi.edu
URL: http://www.rpi.edu/anderk5/lab/
E-mail: mukher@rpi.edu

Engineering with Computers (2007) 23: 11–23
DOI 10.1007/s00366-006-0026-x

2 POEMS overview

POEMS is an object-oriented C++ research package
for simulating the forward dynamics of multibody sys-
tems. It can be compiled and run from both Unix and
Windows environments. Additionally, the software can
be compiled using most commercially or freely available
C++ compilers. It is written with an inherent modu-
larity which allows future developments to be easily
added to the main body of the software. Similarly, it can
be easily coupled with existing software for applications
to different areas. Commonly used kinematic and dy-
namic identities, organization of multibody topologies,
and data structures with matrix manipulations which are
generic to most multibody algorithms are built into the
software and can be called by different modules. This
allows for quick implementations of new algorithms.
Equally important, the open-source nature of this soft-
ware encourages different researchers to access and
customize the source code according to their specific
applications as well as collaborate with the authors for
further development of the package. It should be men-
tioned that although this package is open-source and all
are encouraged to use it, the package is still copyright
material and is distributed with a license. For a detailed
understanding of the open-source paradigm, the inter-
ested reader is referred to reference [5].

3 Current capabilities

The software in its current form has algorithms for
solving equations of motion of articulated multi-rigid
body systems in chain and tree topologies. There are
four primary algorithms that can be used to generate
and solve the equations of motion.

• KaneSolver() : The O(n3) complexity solver based
on Kane’s method [6].

• OnSolver() : The O(n) complexity recursive solver
based on Anderson’s algorithm [7].

• DCASolver() : The divide and conquer method of
O(log(n)) complexity based on Featherstone’s algo-
rithm [8].

• FMMSolver() : The O(n) complexity fast particle
solver based on the fast multipole method [9].

Along with the solution of equations of motion, the
software has time integration algorithms for temporal
simulations. These include the following algorithms

• Runge Kutta 4–5
• Predictor corrector
• Verlet and Velocity Verlet
• Lobatto Patitioned III a–b Runge Kutta 4–5

Along with integration schemes, there are step drivers
viz. FixedStepDriver() for fixed integration time step
and VariableStepDriver for error checking and variable

step integration step sizes. The software also has a
dedicated set of specialized data structures in matrix
form for handling vector and tensor quantities typical of
multibody systems. The capabilities and the structure of
the software are discussed in detail in the following
sections.

4 The POEMS structure

POEMS has an applications programming interface
(API), and thus is initiated and run from a main line
program. The user can initialize POEMS from a main
line or use the POEMS user interface to automatically
create one. In either case, the main line program is an
interface with the rest of the software where the user
may specify input and output file names and parameters
required for the simulation such as the system descrip-
tion, choice of solver and integrator, length of simula-
tion, desired outputs, etc. Once the main line is executed,
the rest of the simulation is organized through a hier-
archy of object-oriented classes that contain the simu-
lation details and processes such as system description,
generating and solving the equations of motion, inte-
grating the state derivatives, and post-processing. The
most prominent of these classes are shown in Fig. 1.
Pointers are used generously in POEMS in order to al-
low for efficient and generic collaboration of the objects.

The main ingredients in a multibody dynamics sim-
ulation are the description of the system under study, an
algorithm for generating and solving the equations of
motion, and a time integration scheme to advance the
simulation over time. Correspondingly, POEMS con-
tains classes called System, Solver, and Integrator to
accomplish each task.

Every simulation in POEMS begins with a Work-
space object. This object is the highest in the hierarchy of
objects within POEMS. As the name suggests, it behaves

INTEGRATORSOLVER

WORKSPACE

SYSTEM

INTEGRATION
RULE

LIST

STEPDRIVER

VIRTUALMATRIX

Fig. 1 Higher order POEMS classes

12

very much like a work space, forming a base of opera-
tions for all other processes. It contains and initializes
the specific objects required to run the simulation de-
scribed by the information in the main line program.
This class has no derived classes, but organizes the
simulation through the use of pointers to the System,
Solver, and Integrator objects and has functions by
which these objects are added. Furthermore, the Work-
space hosts the function Run(), which contains the total
length of the simulation and the integration time-step.
Run() is used to loop through the solve and integrate
process for each time step until the end of the simula-
tion. The Workspace also contains functions required to
output the specific data during or at the end of the
simulation. While there are currently no classes derived
form Workspace, there are future plans for such classes.
Some examples of these include a RealTimeWorkSpace
that synchronizes the time marching of the solution with
real time and an AnimationWorkSpace that stores data
required for a 3D animation.

The System class is the second most important class
in POEMS. It is used to generate and maintain the
description and topology of the multibody system. It
contains and manipulates mass and inertia properties of
constituent bodies, kinematic joints which connect the
bodies, topological information such as locations of
joints and reference points, and forces acting on con-
stituent bodies. This information is contained in two List
objects, generic linked lists, that organize the multibody
system spatially. One List named Bodies contains the
bodies of the system, and another named Joints contains
the inter-connecting joints of the system. The System can
also interface any generic force calculation algorithm
with the system description.

The Solver object is a virtual base class which defines
the interface of a generic solver. It is a generic class from
which specific algorithms for generating and solving the
equations of motion are derived. Each of these algo-
rithms represents a different Solver class that implements
methods specific to that algorithm by using its derived
classes.

The Solver class links a solution algorithm to the
system contained in the System class. Additionally, it
contains a map of the state and the state derivatives (the
generalized coordinates and their derivatives) of the
constituent bodies in the system in order to interface
with the Integrator class. In POEMS the general solve
process is ComputeKinematics(), ComputeForces(),
and then ComputeSolution(), each performing the
processes described by their names. The details in each
of these steps depends on which specific solver is being
utilized.

The Integrator class is similar to the Solver class in
that it is a virtual base class which defines the interfaces
of specific integration schemes that are derived.

Each integration scheme represents a specific imple-
mentation of the virtual base class and relies on poly-
morphism to implementing steps specific to that scheme.
This class contains pointers to the Solver which are used

to access state and state derivatives information. The
other objects associated with the Integrator class are
Stepdriver and IntegrationRule. Their roles in the inte-
gration process and association with Integrator class are
discussed in detail in later sections. Along with these
primary objects, there are several other classes or objects
which work in association with the primary objects.
These are now explained in detail.

5 Describing the multibody system

The organization of the multibody system description
begins at the POEMSObject class. This is the parent
class for all of the derived objects which make up a
multibody system. This class is fairly simple, for all it
includes is a name and ID (identification). Its purpose is
to give a common point from which all other topology
classes can be derived.

Three types of POEMSObject objects are directly
derived from the POEMSObject class. These include the
Body, Joint, and Point classes, as shown in Fig. 2. From
these classes, specific types of bodies, joints, and points
are derived.

Although the Body class is conceptually of a higher
order because all bodies have joints and points, all three
of these objects are on the same order within the code’s
structure. They are linked to each other through the use
of List objects of the list template class. The Body class
data include two List objects, one of the joint type called
Joints and one of the point type called Points. As implied
by the names, these lists contain information about all
the joints and points on a specific body in a System
object. There are currently three types of Body objects;
the InertialFrame, Particle, and RigidBody. All Body
types have some common data. For example, every Body
has position, velocity, and acceleration. However, spe-
cific Body types may also contain data exclusively
associated to that type. For example, only the Inertial-
Frame types have a constant acceleration field like

Fig. 2 The multibody objects in POEMS

13

gravity, the RigidBody types have inertias of their own,
while Particle types just have a mass. The Body object
also contains the force acting on the Body designated as
BodyForce. This stores the state dependent active forces
such as those from an actuator, spring, or damper, and
body forces originating from external potential fields as
obtained from the force calculation module.

The Point class is used for locating important refer-
ence points on a body such as joint location or center of
mass. It is used in conjunction with the Body and Joint
classes. Currently there exists only one type of point, the
FixedPoint. At the Point level the only data stored are
the point’s position. The functions contained here allow
this data to be set and stored, through the use of the
input and output files.

There are currently five types of Joint objects;
FreeBodyJoint, XYZJoint, PrismaticJoint, Spherical-
Joint, and RevoluteJoint. Similar to the Body object,
there are some data common to all Joint objects while
other data are joint type specific. Each joint type has
pointers to its parent and child bodies, called body1
and body2. Similarly, each joint type has pointers to a
parent point and a child point called point1 and point2
where the joints are located on the respective bodies.
Also included are their positions, the initial and cur-
rent values of the states and state derivatives, coordi-
nate transformations between the reference frames of
the two connected bodies, and the number of degrees
of freedom. As the names suggest, the PrismaticJoint
and RevoluteJoint objects only provide one degree of
freedom. The XYZJoint and SphericalJoint objects
provide three degrees of freedom while the FreeBody-
Joint object provides six degrees of freedom. To avoid
singularities arising from the kinematic differential
equations, Euler parameters are used in the modelling
of Spherical and FreeBodyJoint objects.

5.1 System topology

The topology for a multibody system is controlled by the
algorithm chosen for generating and solving the equa-
tions of motion. For example, the recursive O(N)
algorithm works in a series of three linear sweeps of all
bodies while the divide and conquer scheme works in a
binary tree structure. Each solver is associated with its
derived classes which are used to describe the topology.
For example, for the O(N) algorithm, the Onsolver class
and its associated class, OnBody, are used to describe the
topology and recursive properties of the system. The
topology handling for the OnSolver and the DCASolver
are discussed next.

5.1.1 Topology for the OnSolver

When a system is added to a Workspace and an Onsolver
object (the chosen solution algorithm) is created and
added to the Workspace, the CreateModel() function is

called to start creating the system topology. The OnBody
(body type object associated with Onsolver) Inertial-
Frame is added first. For the InertialFrame, a new
RecursiveSetup() function is called which sets gravity
and the pointers of the OnBody object to its Body, Joint,
and children objects. Then, starting at the first joint from
InertialFrame, the first OnBody child object is accessed
using the RecursiveSetup() function. For this OnBody
object, the required kinematic properties for the O(N)
solver are added. The process repeats until all OnBody
object properties have been defined and the recursion
stops.

The CreateModel() function now calls on the func-
tion CreateTopologyArray(). An array of OnBody type,
bodyarray, is first constructed with the CreateTopolo-
gyArray() function using recursion. This function be-
gins with the OnBody, named Inertialframe, and then
cycles through all the OnBody objects beginning at the
first child OnBody object. This continues until all
OnBody objects have been added to bodyarray. If the
system is a chain system, the OnBody objects would be
numbered in bodyarray from 0 starting at InertialFrame
and ending with the OnBody object at the end of the
chain. If the system is a tree system, then when the
function reaches the body where the system breaks into
different chains, it would continue numbering the bodies
on the ensuing chains in the system until all bodies have
been accounted for.

In the next step of the CreateModel() function, the
link between the solver state variables and all of the
OnBody objects located in bodyarray are set up using
pointers and the ColMatMap class by calling on the
CreateStateMatrixMaps() function. The state variables
of ColMatMap type, located in the Solver class (the
parent class of a Onsolver), are directly linked to the
state variables of each OnBody object in a system. This
allows for the integrator and solver classes to work
seamlessly without having to copy or pass the system
states repeatedly between the two classes. Now that the
system topology has been defined, the Solver can
recursively cycle through the body’s joints to obtain a
solution. The CreateModel() function ends at this
point. When this function is finished, the pointers that
link the System object to the Solver object are created
with the CreateStateMatrixMaps() function, and the
model is then finished and ready to be solved.

5.1.2 Topology for the DCASolver

In the DCASolver which sets up a binary tree structure,
the process is very much the same, apart from the
CreateTree() function where instead of using an array,
a tree structure is used to define the arrangement of the
system topology.

Beginning at the CreateModel() function of the
DCASolver, similar to the O(N) solver, the CreateTo-
pologyArrays() function is called. Here, the solver’s
pointer to the system is used to access the lists of Joint

14

and Body objects. These lists are stored as indexed ar-
rays called joint and body, which will be used to initialize
the DCABody objects. The next step in the model cre-
ating process is to begin the construction of the balanced
binary tree structure. This is done by using the AVLTree
class to create a DCATree object. This class uses bal-
ancefactor variables to rotate and sort nodes in the tree,
in order to always keep it in an optimized configuration.
In this tree object, the DCABody objects will be the
nodes of the tree. Then all of the currently uninitialized
DCABody nodes are inserted one at a time while the
AVLTree class keeps the tree balanced (Fig. 3).

Now that the tree is created, the previously created
joint and body arrays can be used to initialize the base
nodes of the tree, the physical non-composite bodies. A
post-order tree traversal, which begins at the base of the
tree and moves up is used, and the SetPointer() func-
tion is called. In this function, the right and left pointers
of the DCABody node are checked and if they are
NULL, which means it is a base body, the localbody and
the localjoint pointers are set in succession for each base
body at a time. At this point, the balanced DCATree is
created and initialized with pointers to the appropriate
data and the system topology is almost completed. In
the last step, just as was done for the O(N) solver, the
CreateStateMatrixMaps() function is called and the
system is now ready for the DCASolver to compute the
solution. This process is summarized in Fig. 4.

6 Solving the equations of motion

There are several different algorithms in POEMS for
generating and subsequently solving the equations of
motion of the system. The simplest of these is Particle-
Solver, which solves Newton’s equations of motion by a
scalar division of the force by mass. A fast particle solver
based on the fast multipole method [9] is available in
POEMS for efficient O(N) solution in inverse-square
type force fields. For articulated multi-rigid body sys-
tems in chain and tree configuration, a state-space O(N)
recursive algorithm [7] is used for serial implementation.
A traditional KaneSolver of O(n3) complexity [6] based
on the classical velocity projection method, also known
as Kane’s method [6], is also available for articulated
systems. Featherstone’s divide and conquer algorithm
[8] is a featured solver for parallel implementations. The
implementations of the OnSolver and DCASolver in

OnSolver ->CreateModel()

Create OnBody InertialFrame

RecursiveSetup() – Set:
Gravity, Children, Points, Joints, Body, Pointers

RecursiveSetup() – Set:

Children, Points, Joints, Body, Pointers

Forward and Backward Kinematics

Body Count = Body Count + 1

Body = Last Body ?

OnSolver-> CreateTopologyArray

OnSolver -> CreateStateMatrixMaps

Yes
No

Fig. 3 The CreateTopology() process for the OnSolver

DCASolver-> CreateModel()

Initialize body and joint
Arrays

Calculate Balanced Binary
Tree Size

Create DCATree & Insert
DCA Bodies into Tree

Begin Post Order
Transversal

Right & Left

NULL?

Visit Node

Set the ith Joint
and Body
Pointer

DCASolver-> CreateStateMatrixMaps()

DCASolver-> CreateTopologyArrays()

NO

Last Node?
YES

Fig. 4 The CreateTopology() process for the DCASolver

15

POEMS are described in detail in the following para-
graphs. The fast particle solver based on the fast mul-
tipole method is discussed in detail in a later section.

6.1 OnSolver

In the OnSolver solution process, the array of OnBody
objects, called bodyarray, is used to recursively sweep
through the chains and trees of bodies in the system.
After the input and topology creation stage is com-
pleted, the three sweeps associated with the O(N)
recursive solver are carried out. The first sweep starts at
the base of bodyarray, and works outward to the ter-
minal body, the second coming from the terminal body
back to the base, and the last travelling back to the
terminal body. A detailed flow chart of this process is
shown in Fig. 5.

• The first sweep occurs in the OnBody function
LocalKinematics(). It is called recursively for each
OnBody object in the array. In this sweep the recursive
kinematic properties are calculated. These include the
calculation of the velocities, partial velocities, and
kinematical relations for relative body accelerations.

• The second sweep is the recursive triangularization
sweep and occurs in the LocalTriangularization()
function. It calculates the generalized inertia and ac-
tive forces and the articulated inertia values and
conducts a recursive triagularization of the equations
of motion.

• The third sweep is a recursive forward substitution
that recursively calculates the generalized state deriv-
atives for each body in the LocalForwardSubstitu-
tion() function.

6.2 DCASolver

In the DCASolver solution process, four traversals of the
balanced AVL binary tree, DCATree, are used. This tree
is initialized in the create model process as described
earlier. These traversals are similar to the commonly
known C++ pre-order and post-order binary tree tra-
versals. The leaf nodes of the tree are the actual physical
bodies of the system while the top is the single composite
assembly of the entire system. The pre-order traversal is
used to traverse from the root of the tree to the leaf
nodes of the tree, while the post-order traversal is used
to traverse from the leaf nodes of the tree to the root.
The four sweeps of this divide and conquer algorithm
are consecutively post-order, pre-order, post-order, pre-
order traversals, with the last traversal yielding the
accelerations of the body’s joint handles.

• In the first sweep of the DCA algorithm, only the base
DCABody nodes are visited consecutively by the
InitializeNode() function. The InitializeNode()
function is contained in the DCABody class. In this
function, the quantities needed exclusively for the
DCA algorithm are calculated. This includes the
articulated inertia terms for the body handles for each
of the joints and the joint motion subspace relations.

• In the sweep two, the ComputeForces() function is
called using a pre-order traversal. This function cal-
culates any actuator forces between the bodies or any
force field relations.

• In sweep three, the Sweep3() function is used in a
post-order traversal, which visits all nodes except the
base nodes to build the articulated composite inertias
terms for each of the composite bodies. Also in this
function, pointers are passed up from the left child
nodes in the tree, so that the composite DCABody
nodes can have access to the desired localjoint and
localbody pointers. At the conclusion of the third
sweep, the single composite body for the system is
constructed, and the first handle acceleration and
force values can be calculated using the boundary
conditions of the system.

• Sweep four begins in the Sweep4() function, where
only the composite nodes are visited. In this function,
the left and right nodes of each DCABody object are
accessed and the handle forces and accelerations
between each body are calculated in a pre-order
traversal.

IntegrationRule -- > Step()

OnSolver -- > Solve()

Body Count = Body Count + 1

Body = Last Body ?

No

OnBody-- > LocalKinematics()

Body Count = Body Count - 1

Body = First Body ?

No

OnBody-- > LocalTriangularization()

Yes

Yes

Body Count = Body Count + 1

Body = Last Body ?

No

OnBody-- > LocalForwardSubstitution()

Yes
State Derivatives

Fig. 5 OnSolver process

16

It is noted that in this last sweep, pointers are used for
each node to point each DCABody node’s state deriva-
tive variable to the respective Joint object’s variable.
This allows for the coordination of updating the system,
solver, and integrator values of the state derivatives as
explained earlier.

Although, the DCA solver has been implemented
only in serial, it has the infrastructure that allows for
easy extension to parallel implementation. Due to this
algorithm’s inherent balanced binary tree structure, it
can be parallelized on an optimal number of processors
equal to the number bodies in the system. Depending on
actual communication costs additional parallelization
with individual bodies may be realized. Each of the four
sweeps described above can be parallelized, breaking up
the computing tasks at each level of the tree.

7 Force calculations

The active forces on the system can be of varied types
such as actuator force, springs, dampers, friction or
gradients of some inter-body potential field. Given the
varied nature of these forces, the user has to specify how
forces are calculated within the POEMS software by
writing an application-specific force calculation func-
tion. This may seem complicated, but to maintain flex-
ibility in applications of POEMS, allowing the user to
write the force field calculations is the best option. This
also allows the user to interface POEMS with other
software dedicated for calculating forces such as
CHARMM [10] in molecular dynamics simulations.

Constant force fields like uniform gravity are easily
accommodated into the software. This is carried out by
accelerating the inertial frame in the opposite direction
of the gravity force vector. The user simply has to
specify the constant acceleration value once during the
input stage and it is accommodated into the system
description during the CreateModel() function.

Other active forces depend on the state of the system,
i.e., the position and velocity data for the component
bodies in the system. Any custom force calculation
scheme introduced by the user has to access this data.
The System object maintains a list of bodies. The ele-
ments in these lists are the component body instances
created in the simulation. The body object stores the
position and velocity of all points on it. Thus by
accessing the list of bodies from the System, the position
and velocity data for each body in the system can be
accessed. This data can now be used by the user’s cus-
tom force calculation scheme to generate the forces. The
calculated forces need to be passed to the Solver for
setting up the equations of motion. One way to do that is
to pass the calculated forces as an input in the Run()
command. Alternately, one could create an array of
forces for each body in the Body object and store the
forces there at every integration step. The open-source
nature of this code provides flexibility to the user to

create data structures and functions for force calculation
for their specific requirement.

8 Time integration

POEMS has several integrators and step drivers in
its library. The integrators include Runge–Kutta
4/5, Runge–Kutta–Fehlberg 4/5, Lobatto, Predictor–
Corrector, Verlet schemes, and simple Forward Euler.
Different step drivers also exist, including variable step
and fixed step drivers. New integration schemes and step
drivers can be easily added to the POEMS library by the
user for a custom simulation.

Integration in POEMS is run by the general classes of
the Integrator, along with the specific IntegrationRule
(e.g. RungeKutta 45) and the specific Stepdriver class
(e.g. VariableStep). The bulk of the integration process
takes place in the specific IntegrationRule object where
the integration scheme is implemented. An Integration-
Rule object also contains the pointers and functions that
are used to link all of these classes together with the
system and solver.

The integration process begins when the Integrate()
function of the Integrator class which is called from the
Workspace’s Run() function. From the Integrate()
function, a pointer to the Stepdriver object is used to
access the driver’s Step() function. The Stepdriver class
is a virtual class and is only used to organize the different
types of drivers. Consequently, the Step() function of a
specific derived driver class (e.g. VariableStep) is ac-
cessed. Here, the current step size, dt, is set using the
using the properties of the specific step control scheme.
After getting the dt value, a pointer to the object, Intrule,
of the IntegrationRule type is used to run the Step()
function of the specific IntegrationRule object. The sys-
tem is simulated here by calling the solver and running
the integration scheme. The process ends here for a
constant step driver. For step drivers with error control,
the error is estimated while still in the Step() function
of the specific driver object. If the error is acceptable,
then the Step() function finishes and the next integra-
tion is started by using the Integrate() function again.
If it is not acceptable, then the Reset() function of the
specific IntegrationRule object is called where the time
step dt is reduced and the integration step is carried out
till the acceptable error level is reached. In this fashion
integration continues for each iteration in the loop of the
Run() function until the maximum time of simulation is
reached.

9 The fast multipole method

POEMS employs an implementation of fast multipole
method (FMM) [9] for calculating 3-D particle interac-
tions. It follows through the primary steps of the upward
pass, downward pass, and direct neighbor interactions
as prescribed in [9]. For a detailed analysis of the theory

17

and principles behind this algorithm, the interested
reader is referred to [9]. The FMM code used in POEMS
utilizes its own unique set of data structures and func-
tions not used elsewhere in the program, which are ex-
plained next.

The two important classes are the Octree class and
the Box class. The Octree class possesses a function
Subdivide() which subdivides a Box by creating eight
new boxes which represent its children. The class makes
use of two other essential functions, Neighbors() and
InteractionList(). Neighbors() takes a given Box and
inserts a list of its neighbors into an array. Interaction-
List() generates an array for a Box and inserts a list of
boxes within its interaction list by using the Neigh-
bors() function.

While the Octree serves as the foundation of the code,
the Box objects themselves contain most of the primary
data and functions to make it work. Each Box represents
a cube of some size within the entire computational
space. It holds information pertaining to its number,
level, center coordinates, and parent, which are specified
upon the object’s creation as well as specific data such as
numbers, strengths, locations, and charges of particles
located within the Box. All of these computational boxes
are organized spatially using bit interleaving procedures
to create uniquely ordered box numbers. Two functions
which are not a member of Box, BitInterleave() and
BitDeinterleave(), are used for this. The Box objects
employ many functions which are crucial to the code.
These are

• CalcMultipole()-Calculates the multipole expansion
of the Box based on the locations and strengths of
particles within it

• ShiftMultipole()-Shifts the multipole expansion of
the Box to another Box which is specified as an
argument of the function

• CalcLocal()-Calculates the local expansion of the
Box based upon the multipole expansions and loca-
tions of all Boxes within its interaction list

• ShiftLocal()-Shifts the local expansion of the Box to
another Box which is specified as an argument of the
function

• EvalPotentials()-Evaluates the potentials of each
particle within the Box based upon the particle loca-
tion and the local expansion of the Box

• EvalDirectOutside()-Directly evaluates the potential
force upon each particle in the Box from those in
another Box based upon the locations and strengths of
the particles in each

• EvalDirectInside()-Directly evaluates the potential
force upon each particle in the Box from other parti-
cles within the same Box based upon their locations
and strengths

On its own, the Box object bears most of the essential
data and methods used in the FMM code. The main
code itself runs through seven primary steps, much like
the description given by [9]. The two initial function calls

to ScaleFactor() and CoordShift() are used to modify
the particle locations such that all particle coordinates
are positive and less than unit dimension. The Octree is
created and Subdivide() is used until the proper mesh
levels exist. The function BoxOf() takes the new
coordinates and returns the number of the box at the
finest level of the mesh in which the particles reside. The
function ATERM() is then called to create an array of
the A terms which are used in the FMM. This completes
the preprocessing steps (Fig. 6).

The first step is to form the multipole expansion for
each Box at the finest level of refinement, accomplished
by calling CalcMultipole() upon them. The second step
involves shifting the multipole expansions to each parent
at each level. This is performed by calling ShiftMulti-
pole() numerous times, starting at the finest level and
proceeding to coarser levels until the expansion for every
single Box has been formed. It is to be noted that several
assistant functions facilitate this process. Among these
are SphereCoord(), which takes Cartesian coordinates
and converts them to spherical coordinates, Sphere-
Harm(), which returns the spherical harmonic of a
given h and /. The third step involves use of both
CalculateLocal() and ShiftLocal(). It involves finding
the local expansion of each Box at a given mesh level,
starting with the first level, and then shifting these newly

Workspace - >Run()

Integrator - >Integrate()

IntegrationRule – > Step()
Call Solver – Solve

Integrate and Estimate Error

Time = Time + Step Time

Stop

Time = Simulation Time?

Yes

No

StepDriver – >Step()
Calculate Step Size

StepDriver – >Step()
Estimated Error < Tolerance

Yes

No

Fig. 6 The integrator class

18

found expansions to each child Box at the next level of
refinement. This is repeated until the fourth step at the
finest level, where only CalcLocal() is used since there
are no children. Step five is a simple calling of EvalPo-
tentials() upon each Box to compute the particle
potentials from the local expansions. The only remain-
ing steps are to find the direct interactions from neighbor
Boxes and within each Box using EvalDirectOutside()
and EvalDirectInside(), respectively. Once summed, the
algorithm is complete and the particle potentials have
been found. This completes the FMM algorithm.

10 Data structures in POEMS

The List object is a class of its own and allows the user
to add items to a dynamic list of elements. The use of
lists in POEMS is hardwired into the software, as one
can manipulate these lists by using the add and remove
element functions of the class. The organization of List
objects is shown in the Fig. 7. Two List objects are
stored in a System object, a List of all the Body objects
organized as they appear spatially in the system, and a
List of Joint objects that follows the organization of the
Body objects. These List objects follow a specific num-
bering scheme to organize the description of the multi-
body topology. The other two List objects are the
aforementioned joints, and points lists which contain
topology information locally on each body.

The heart of all mathematical operations in POEMS
is located in matrix operations, and thus matrices are the
primary data structure used in the program. Matrix
operations, much like a Matlab software [11] environ-
ment, are programmed into the POEMS software.
Operator functions allow all the basic arithmetic and
additional optimized operations such as cross products,
stacking and unstacking matrices, Matrix inversions,
LU factorizations, and Euler parameter operations. In
addition, special optimized matrix operations are uti-
lized from the FastMatrixops file. Also, within the spe-
cific matrix type classes, the data of each matrix are
directly stored in appropriately sized arrays with double
precision.

POEMS uses an object-oriented approach to store
matrix objects in order to allow inheritance of different
matrix types. There are many different matrix types,
some of which are shown in Fig. 8. Specific matrix
classes are derived from virtual parent classes and allow
concise definition of all of the matrix properties. By
defining specifically sized matrix objects, optimization of
the software increases. The VirtualMatrix class is the
parent class for all of general Matrix types: 3 · 3, 4 ·
4, banded matrix, 6 · 6, or any general size. The
Matrix type is any general sized matrix, the Banded
Matrix type is a general size banded matrix, and the
other three are 3 · 3, 4 · 4, and 6 · 6 square
matrices. Examples of 3 · 3 matrices which are often
used are inertia, transformation, identity, zero, and shift
symmetric (used for the cross product). The 4 · 4
matrices are specifically used for Euler parameters.
Sometimes a spatial matrix is required, which warrants
the use of a 6 · 6 matrix. Some examples of this case
are an inertia spatial matrix, with both inertia and mass
terms, a shift matrix, and a spatial transform matrix.

The VirtualColMatrix and the VirtualRowMatrix
classes are very similar to the VirtualMatrix class and
lead to the derivation of the column and row matrices.
The RowMatrix type is derived from its parent Virtual-
RowMatrix class and the ColMatrix, Vect3, Vect4,
Vect6, and ColMatMap types are derived from the
parent VirtualColMatrix class. The RowMatrix type is a
row matrix of any arbitrary length. The ColMatrix type
is a column matrix of arbitrary length; it can be used as a
vector or in data manipulation when using matrices that
do not have column or row lengths of 3, 4, or 6.

LISTS IN
POEMS

THE
SYSTEM
CLASS

BODIES LIST
OF BODY

TYPE

JOINTS LIST
OF JOINT

TYPE

JOINTS
LIST OF BODY’S

JOINTS OF
JOINT TYPE

POINTS
LIST OF

BODY’S POINTS
OF POINT TYPE

FOR EACH BODYFOR EACH BODY

Fig. 7 Organization with list class

MATRIX

MATRIX CLASS
FOR ANY

MATRIX SIZE

MATRIX6X6

6X6 MATRIX
CLASS

MATRIX3X3

 3X3 MATRIX
CLASS

VIRTUALMATRIX

PARENT CLASS OF
ALL MATRIX TYPES

COLMATRIX

COLUMN MATRIX
CLASS

COLMATMAP
COLUMN MATRIX

CLASS WITH
POINTERS

VECT6

6 ELEMENT
VECTOR CLASS

VECT3

3 ELEMENT
VECTOR CLASS

VIRTUALCOLUMNMATRIX

PARENT CLASS OF ALL
COLUMN MATRIX TYPES

ROWMATRIX

ROW MATRIX
CLASS

VIRTUALROWMATRIX

PARENT CLASS OF
ROWMATRIX

Fig. 8 Using matrices in POEMS

19

11 The user interface

POEMS’ user interface is designed for user-friendliness
and simplicity. It was created with Qt4, a C++ GUI
software toolkit, and uses a straightforward design that
allows one to construct a dynamics simulation with ease.
It consists of three widgets (Qt objects): a MainWindow,
BodyEditor, and JointEditor. They are discussed in some
detail below.

The MainWindow widget serves as the center of
operations for the program and it is laid out with dif-
ferent sections containing selections for each aspect of
the simulation as shown in Fig. 9. The first group in the
upper left shows possible types of problems for the user
to solve, including rigid body, flexible body, both, or
particle. Depending on this choice, the next group to the
right will show different solvers available to handle the
type of problem chosen. The next two sections possess
choices on whether to use Cartesian or relative coordi-
nates and what type of step driver to be used. Several
numerical inputs follow, including length of simulation,
step size, absolute tolerance, and relative tolerance. Two
more sections present choices of integrator and forces.
For the selection of forces, the user may choose to use
uniform gravity or browse for an external file containing
a custom force calculation algorithm.

The input of the system data is handled using the
BodyEditor and the JointEditor as shown in Fig. 10.
These are initiated by selecting the User Typed option in
the main menu. This manual input system in POEMS
allows for quick and efficient creation of joints and
bodies. There are push buttons which add, edit, or delete
from a list of bodies and a list of joints. In the Body-
Editor window the user may specify a name and type of
body, choosing from inertial-frame, rigid body, or par-
ticle. Depending on this second choice, other parameters
of the body will appear to be created or changed. Some
of these include center of mass, handles, mass, inertia,
velocity, and angular velocity. Upon confirming the

choices, the body is either created or changed as speci-
fied. A similar process occurs when the user desires to
create or edit a joint in the list and a JointEditor widget
is called. The primary difference, however, is that the
JointEditor calls up a current list of the bodies and al-
lows the user to select one which is its parent body and
one which is its child body, choosing the handle point on
each where it is connected. Additionally, the joint’s axis
with respect to the global axis is specified. Through the
use of these two processes, a simple system may be de-
fined rapidly and changed easily. Moreover, manually
entered bodies and joints are saved along with the rest of
the simulation, so the user may add or remove them over
several sessions as desired. However, manually entering
very large systems can be very costly and time-con-
suming, and such cases would call for external data in-
put. Hence the External File option, as with the forces,
allows the user to browse for a existing data file. This
option is for either restarting a simulation where the
system data were stored earlier or for the user to start
the simulation from a custom data file. For systems with
a large number of bodies, the POEMS Generated option
can be used. This is for reading from different data files
that contain the system data and writing the POEMS
specific data file. There are several utilities that support
this feature, but not all data input scenarios are covered.

Finally, there is a group of push buttons in the lower
right corner which are used to run the simulation, start a
fresh one, save the current one, load another one from
an external file or exit the program. These functions may
also be called from the File group at the top menu.

12 Verification of the software

The recursive O(N), Kane, and divide and conquer
solvers for articulated body systems have been exten-
sively tested and verified against the industrial strength

Fig. 9 Main menu of POEMS GUI Fig. 10 Other menus of POEMS GUI

20

multibody software Autolev�. The systems compared
are two- and three-dimensional many-body articulated
systems connected by different kinematic joints includ-
ing revolute, prismatic, spherical and six degree of
freedom free-body joints. The test results compared the
system states and state derivatives generated by POEMS
with identical systems simulated using Autolev�. For all
of the test cases, the states and state derivatives matched
up to machine precision for the same error bounds on
the integrators. The result of the fast multipole method
based FMMSolver compared with a direct inter-particle
solver is presented in the Fig. 11 which shows the
absolute error for each particle. The implementation of
the FMMSolver is based on a five term multipole
expansion at three levels of discretization.

13 Application in simulation polymer melts

The dynamics of the bead-spring model of polymer
chains is simulated in this application. In order to in-
crease the time step of integration as compared to tra-
ditional molecular dynamics simulations, the inter-bead
axial vibrations are constrained. In the analysis, the bead
spring model of the polymer chains is replaced by an
articulated body model made of beads connected by
massless rigid links. The connection of successive links
to beads is modelled using kinematic joints and relative
degrees of freedom.

The system discussed in this paper consists of 32
polymer chains and each chain has 16 beads. The
interaction between the beads is modelled as non-bon-
ded interatomic interactions, by using the normalized
Lennard–Jones pairwise potential. The system is mod-
elled under periodic boundary conditions and as a
constant energy ensemble. For the simulations discussed
here, the simulation box is a cube and the material
density is maintained at about 0.85. In the model, the
chains are free floating. The base body is modelled as

connected to the inertial reference frame by a six degree
of freedom joint allowing relative translational and
rotational degrees of freedom. The successive bodies are
connected to the base body by spherical joints allowing
only rotational degrees of freedom. The time integration
is carried out using the Lobatto integration scheme
as found in [12]. The implementation of this work in
parallel and some of the results are discussed next.

13.1 Coarse-grain parallel implementation

In our parallel implementation, a Linux cluster using
four processors is used. The parallel communications are
handled using message passing interface (MPI). The 32
chains are equally divided and 8 chains are assigned to
each processor.

Figure 12 shows a flow chart of the work done on
each processor. The simulation begins with the identifi-
cation of the number of processors available and iden-
tification of the rank of individual processors. Based on
the rank of a processor, it is assigned certain chains in
the system. The processors all load the same data file
which contains the position and velocity of all chains in
the system. Each processor calculates the forces acting
on its assigned chains from the position data of all atoms
in the system. The processors then compute the system
description in relative coordinates of only the chains
assigned to it. This is a fixed one time cost. At this point
a loop begins as shown in the flow chart. Each processor
formulates, solves and integrates the equations of mo-
tion for the chains assigned to it. Since each chain is an
independent articulated body system, the processors are
independent of each other. The new states, obtained
from the time integration, are now modified to enforce
periodic boundary conditions. Each processor then
communicates with all other processors and exchanges
the position data. After the communication with all
processors is complete, the processor calculates forces
acting on the chains assigned to it for the next time step.
The processors loop through this process until the total
number of time integrations are complete.

From the above scheme, it is clear that there is a need
for one communication per integration step where the
positions of the beads on the chains are exchanged.
Apart from this one communication overhead, the
processes assigned to each processor needs no further
communications. Each processor independently and
serially implements the O(n) solver and the force cal-
culation algorithm. This reduces the loss of efficiency
due to communication and allows for an effective
speedup on a modest number of processors.

13.2 Validation and results

Figure 13 shows a plot of kinetic, potential and total
energy of the system over long temporal scales for a
constant energy ensemble. In the figure, a small drift in
the total energy can be observed. However the drift isFig. 11 Error from the FMMSolver

21

significantly small, the ratio of standard deviation to
mean value is only about 0.63%. By eliminating the high
frequency axial vibration of the beads, an increase in the
time step by an order of magnitude is obtained.

A few critical structural properties commonly studied
in polymer melt simulations are also presented.
Figure 14 shows the plot of the mean-square displace-
ment of the center of mass of the system(g)3 and that of
the middle beads in the chain (g)1 on a log–log scale.
The g3 values attain a slope of 1 and maintain a constant
value of 1. This is in agreement with characteristic
features of fluids, further indicating the validity of the
model.

The mean square end-to-end vectors (< R2 >) and
the mean square Radius of Gyration (< Rg2 >)
calculated from the trajectory for polymer chains as
shown in Fig. 15. As expected, both these values
are varying with time but the moving average of
both quantities maintain a constant value. Further, the
ratio of < R2 > / < Rg2 > is about six, as expected
of Gaussian chains.

14 Future work and conclusions

As indicated earlier, POEMS is an ongoing collaborative
effort aimed at developing an open source computa-

tional multibody dynamics simulation tool. The present
capabilities of POEMS have been discussed to some
extent in the previous sections. For rigid body articu-
lated systems there are three algorithms presently func-
tional within the package. At present, the software has
been implemented and verified for chain and tree sys-
tems. An immediate extension of these algorithms is to
implement capabilities to handle systems with kinemat-
ically closed loops by implementing the algorithm pre-
sented in [13]. Currently, another key focus in the
development of POEMS is its ability handle flexible
body dynamics using the algorithm described in [14].
Similarly, at a later point capabilities to handle impact
through collision detection and impact-momentum for-
mulation will be added to POEMS. Sensitivity analysis
[15] using direct differentiation is another area of interest
and algorithms for the same are an upcoming feature in
POEMS. One of the core applications of this package is
in multi-scale molecular dynamics. For this application,

Load Data File

Generate System Description in Relative Coordinates

Solve the articulated body system in O(N) complexity

Integrate the state derivatives to generate new states

Calculate forces acting on assigned chains only

Start Simulation

Identify specific chains based on rank of processor

Calculate forces acting on assigned chains only

Increment time

Is Time < simulation length ?

End

YesNo

Exchange new states with all processors - MPI
Communication with all other processors

Fig. 12 Work done on each processor

Fig. 13 Energy conservation over long temporal scales

Fig. 14 Log–Log plot of mean square displacements of center of
mass and middle beads

22

the POEMS package will be extended to include several
multi time scale (MTS) integrators. POEMS is also
being developed as an additional library to be added to
the LAMMPS [16] code being developed by Sandia
national laboratories to add to the capabilities of
LAMMPS as a rigid body articulated system solver.

With the addition of these capabilities, POEMS will
continue to grow in its abilities as a backbone research
software package and serve as a new powerful tool to aid
researchers and educators alike in the world of multi-
body dynamics.

Acknowledgments The funding for this work was provided by NSF
NIRT 0303902, NSF State-Time 0219734, NSF CAREER 9733684
and the funding provided by Sandia national laboratories (docu-
ment number 220699) for this project. The authors would like to
thank the funding agencies.

References

1. http://www.mscsoftware.com
2. http://www.autolev.com
3. http://www.dynasim.se
4. Masarati P, Moradini M, Quaranta G, Mantegazza P (2003)

Open-source multibody analysis software. In: Conference pro-
ceedings, IDMEC/IST, Lisbon, July, 1–4

5. http://www.opensource.org
6. Kane TR, Levinson DA (1985) Dynamics: theory and appli-

cation. Mcgraw-Hill, New York
7. Anderson KS (1993) An order-n formulation for the motion

simulation of general multi-rigid-body tree systems. Comput
Struct 46(3):547–559

8. Featherstone R (1999) A divide-and-conquer articulated body
algorithm for parallel O(log(n)) calculation of rigid body
dynamics. Part 1: basic algorithm. Int J Robot Res 18(9):867–
875

9. Greengard L, Rokhlin V (1987) A fast algorithm for particle
simulations. J Comput Phys 73:325–348

10. Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swami-
nathan S, Karplus M (1983) Charmm: a program for macro-
molecular energy, minimization, and dynamics calculations.
J Comput Chem 4:187–217

11. http://www.mathworks.com
12. Chun HN, Padilla C, Chin D, Masakatsuwatanabe, Valeri K,

Alper H, Soosaar K, Blair K, Becker O, Caves L, Nagle R,
Haney D, Farmer B (2000) MBO(N)D: a multibody method
for long-time molecular dynamics simulations. J Comput Chem
21(3):159–184

13. Mukherjee R, Anderson KS (2005) An orthogonal complement
based divide-and-conquer algorithm for constrained multibody
systems. Nonlin Dynam (in press)

14. Mukherjee R, Anderson KS (2005) A logarithmic complexity
divide-and-conquer algorithm for multi-flexible articulated
body systems. Comput Nonlin Dynam (in press)

15. Bhalerao KD, Mukherjee RM, Anderson KS (2005) A divide
and conquer direct differentiation approach for multibody
system sensitivity analysis. In: Eleventh conference on nonlin-
ear vibrations, stability, and dynamics of structures,

16. http://www.cs.sandia.gov/sjplimp/lammps.html

Fig. 15 Mean square end-to-end vector and radius of gyration

23

	POEMS: parallelizable open-source efficient multibody software
	Abstract
	Introduction
	POEMS overview
	Current capabilities
	The POEMS structure
	Fig1
	Describing the multibody system
	Fig2
	System topology
	Topology for the OnSolver
	Topology for the DCASolver
	Solving the equations of motion
	Fig3
	Fig4
	OnSolver
	DCASolver
	Fig5
	Force calculations
	Time integration
	The fast multipole method
	Fig6
	Data structures in POEMS
	Fig7
	Fig8
	The user interface
	Verification of the software
	Fig9
	Fig10
	Application in simulation polymer melts
	Coarse-grain parallel implementation
	Validation and results
	Fig11
	Future work and conclusions
	Fig12
	Fig13
	Fig14
	Acknowledgments
	References
	CR1
	CR2
	CR3
	CR4
	CR5
	CR6
	CR7
	CR8
	CR9
	CR10
	CR11
	CR12
	CR13
	CR14
	CR15
	CR16
	Fig15

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

